| [253] | 1 | # |
|---|
| 2 | #----------------------------------------------------------------------- |
|---|
| [2552] | 3 | # run control parameters: |
|---|
| [253] | 4 | #------------------------------ |
|---|
| 5 | |
|---|
| [2552] | 6 | # planet type |
|---|
| 7 | planet_type = generic |
|---|
| 8 | |
|---|
| 9 | # Number of days to run model for |
|---|
| [253] | 10 | nday = 365 |
|---|
| [2552] | 11 | |
|---|
| 12 | # Number of dynamical steps per day (must be a multiple of iperiod) |
|---|
| [253] | 13 | day_step = 360 |
|---|
| [2552] | 14 | |
|---|
| 15 | # Apply a Matsuno step every iperiod dynamical step |
|---|
| [253] | 16 | iperiod=5 |
|---|
| 17 | |
|---|
| [2552] | 18 | # Control output information in the dynamics every iconser dynamical steps |
|---|
| [253] | 19 | iconser=120 |
|---|
| 20 | |
|---|
| [2552] | 21 | # Apply dissipation every idissip dynamical steps |
|---|
| [253] | 22 | idissip=1 |
|---|
| 23 | |
|---|
| [2552] | 24 | # dissipation operator to use (star or non-star) |
|---|
| [253] | 25 | lstardis=.true. |
|---|
| 26 | |
|---|
| [2552] | 27 | # use hybrid vertical coordinate (else will use sigma levels) |
|---|
| [253] | 28 | hybrid=.true. |
|---|
| 29 | |
|---|
| [2552] | 30 | # iterate lateral dissipation operator gradiv nitergdiv times |
|---|
| [253] | 31 | nitergdiv=1 |
|---|
| 32 | |
|---|
| [2552] | 33 | # iterate lateral dissipation operator nxgradrot nitergrot times |
|---|
| [253] | 34 | nitergrot=2 |
|---|
| 35 | |
|---|
| [2552] | 36 | # iterate lateral dissipation operator divgrad niterh times |
|---|
| [253] | 37 | niterh=2 |
|---|
| 38 | |
|---|
| [2552] | 39 | # time scale (s) for shortest wavelengths for u,v (gradiv) |
|---|
| [253] | 40 | tetagdiv=5400. |
|---|
| 41 | |
|---|
| [2552] | 42 | # time scale (s) for shortest wavelengths for u,v (nxgradrot) |
|---|
| [253] | 43 | tetagrot=10000. |
|---|
| 44 | |
|---|
| [2552] | 45 | # time scale (s) for shortest wavelengths for h (divgrad) |
|---|
| [253] | 46 | tetatemp=10000. |
|---|
| 47 | |
|---|
| [2552] | 48 | # multiplicative constants for dissipation with altitude: |
|---|
| 49 | # coefficient for middle atmosphere |
|---|
| 50 | dissip_fac_mid = 2 |
|---|
| 51 | # coefficient for upper atmosphere |
|---|
| 52 | dissip_fac_up = 10 |
|---|
| 53 | |
|---|
| 54 | # coefficient for gamdissip |
|---|
| [253] | 55 | coefdis=0. |
|---|
| 56 | |
|---|
| [2552] | 57 | # time marching scheme (Matsuno if purmats is true, else Matsuno-Leapfrog) |
|---|
| [253] | 58 | purmats=.false. |
|---|
| 59 | |
|---|
| [2552] | 60 | # run with (true) or without (false) physics |
|---|
| [253] | 61 | physic=.true. |
|---|
| 62 | |
|---|
| [2552] | 63 | # call physics every iphysiq dynamical steps |
|---|
| [253] | 64 | iphysiq=5 |
|---|
| 65 | |
|---|
| [2552] | 66 | # Use a regular grid |
|---|
| [253] | 67 | grireg=.true. |
|---|
| 68 | |
|---|
| [2552] | 69 | # Output in diagfi file every ecritphy dynamical steps |
|---|
| [253] | 70 | ecritphy=360 |
|---|
| 71 | |
|---|
| [2552] | 72 | # longitude (degrees) of zoom center |
|---|
| [253] | 73 | clon=0. |
|---|
| 74 | |
|---|
| [2552] | 75 | # latitude (degrees) of zoom center |
|---|
| [253] | 76 | clat=0. |
|---|
| 77 | |
|---|
| [2552] | 78 | # enhancement factor of zoom, along longitudes |
|---|
| [253] | 79 | grossismx=1. |
|---|
| 80 | |
|---|
| [2552] | 81 | # enhancement factor of zoom, along latitudes |
|---|
| [253] | 82 | grossismy=1. |
|---|
| 83 | |
|---|
| [2552] | 84 | # Use an hyperbolic function f(y) if .true., else use a sine |
|---|
| [253] | 85 | fxyhypb=.false. |
|---|
| 86 | |
|---|
| [2552] | 87 | # extention along longitudes of zoom region (fraction of global domain) |
|---|
| [253] | 88 | dzoomx= 0. |
|---|
| 89 | |
|---|
| [2552] | 90 | # extention along latitudes of zoom region (fraction of global domain) |
|---|
| [253] | 91 | dzoomy=0. |
|---|
| 92 | |
|---|
| [2552] | 93 | # zoom stiffness along longitudes |
|---|
| [253] | 94 | taux=2. |
|---|
| 95 | |
|---|
| [2552] | 96 | # zoom stiffness along latitudes |
|---|
| [253] | 97 | tauy=2. |
|---|
| 98 | |
|---|
| [2552] | 99 | # Function f(y) as y = Sin(latitude) if = .true. , else y = latitude |
|---|
| [253] | 100 | ysinus= .false. |
|---|
| 101 | |
|---|
| [2552] | 102 | # Use a sponge layer |
|---|
| [253] | 103 | callsponge = .true. |
|---|
| 104 | |
|---|
| [2552] | 105 | # Sponge layer extends over topmost nsponge layers |
|---|
| 106 | nsponge = 3 |
|---|
| 107 | |
|---|
| 108 | # Sponge: relaxed towards teta=teta_ave |
|---|
| 109 | # and mode0(u=v=0), mode1(u=u_ave,v=0), mode2(u=u_ave,v=v_ave) |
|---|
| [253] | 110 | mode_sponge= 2 |
|---|
| 111 | |
|---|
| [2552] | 112 | # Sponge layer time scale (s): tetasponge |
|---|
| [253] | 113 | tetasponge = 50000 |
|---|
| 114 | |
|---|
| 115 | # some definitions for the physics, in file 'callphys.def' |
|---|
| 116 | INCLUDEDEF=callphys.def |
|---|