[253] | 1 | # |
---|
| 2 | #----------------------------------------------------------------------- |
---|
[2552] | 3 | # run control parameters: |
---|
[253] | 4 | #------------------------------ |
---|
| 5 | |
---|
[2552] | 6 | # planet type |
---|
| 7 | planet_type = generic |
---|
| 8 | |
---|
| 9 | # Number of days to run model for |
---|
[253] | 10 | nday=669 |
---|
| 11 | |
---|
[2552] | 12 | # ndynstep (overrides nday): number of dynamical steps to run for |
---|
| 13 | # ndynstep=20 |
---|
| 14 | |
---|
| 15 | # Number of dynamical steps per day (must be a multiple of iperiod) |
---|
[253] | 16 | day_step = 960 |
---|
| 17 | |
---|
[2552] | 18 | # Apply a Matsuno step every iperiod dynamical step |
---|
[253] | 19 | iperiod=5 |
---|
| 20 | |
---|
[2552] | 21 | # Control output information in the dynamics every iconser dynamical steps |
---|
[253] | 22 | iconser=120 |
---|
| 23 | |
---|
[2552] | 24 | # Apply dissipation every idissip dynamical steps |
---|
[253] | 25 | idissip=5 |
---|
| 26 | |
---|
[2552] | 27 | # dissipation operator to use (star or non-star) |
---|
[253] | 28 | lstardis=.true. |
---|
| 29 | |
---|
[2552] | 30 | # use hybrid vertical coordinate (else will use sigma levels) |
---|
[253] | 31 | hybrid=.true. |
---|
| 32 | |
---|
[2552] | 33 | # iterate lateral dissipation operator gradiv nitergdiv times |
---|
[253] | 34 | nitergdiv=1 |
---|
| 35 | |
---|
[2552] | 36 | # iterate lateral dissipation operator nxgradrot nitergrot times |
---|
[253] | 37 | nitergrot=2 |
---|
| 38 | |
---|
[2552] | 39 | # iterate lateral dissipation operator divgrad niterh times |
---|
[253] | 40 | niterh=2 |
---|
| 41 | |
---|
[2552] | 42 | # time scale (s) for shortest wavelengths for u,v (gradiv) |
---|
[253] | 43 | tetagdiv=10000. |
---|
| 44 | |
---|
[2552] | 45 | # time scale (s) for shortest wavelengths for u,v (nxgradrot) |
---|
[253] | 46 | tetagrot=10000. |
---|
| 47 | |
---|
[2552] | 48 | # time scale (s) for shortest wavelengths for h (divgrad) |
---|
[253] | 49 | tetatemp=10000. |
---|
| 50 | |
---|
[2552] | 51 | # multiplicative constants for dissipation with altitude: |
---|
| 52 | # coefficient for middle atmosphere (~20-70km) |
---|
| 53 | dissip_fac_mid = 2 |
---|
| 54 | # coefficient for upper atmosphere (~100km+) |
---|
| 55 | dissip_fac_up = 10 |
---|
| 56 | |
---|
| 57 | # coefficient for gamdissip |
---|
[253] | 58 | coefdis=0. |
---|
| 59 | |
---|
[2552] | 60 | # time marching scheme (Matsuno if purmats is true, else Matsuno-Leapfrog) |
---|
[253] | 61 | purmats=.false. |
---|
| 62 | |
---|
[2552] | 63 | # run with (true) or without (false) physics |
---|
[253] | 64 | physic=.true. |
---|
| 65 | |
---|
[2552] | 66 | # call physics every iphysiq dynamical steps |
---|
[253] | 67 | iphysiq=20 |
---|
| 68 | |
---|
[2552] | 69 | # Use a regular grid |
---|
[253] | 70 | grireg=.true. |
---|
| 71 | |
---|
[2552] | 72 | # Output in diagfi file every ecritphy dynamical steps |
---|
[253] | 73 | ecritphy=1920 |
---|
| 74 | |
---|
[2552] | 75 | # longitude (degrees) of zoom center |
---|
[253] | 76 | clon=63. |
---|
| 77 | |
---|
[2552] | 78 | # latitude (degrees) of zoom center |
---|
[253] | 79 | clat=0. |
---|
| 80 | |
---|
[2552] | 81 | # enhancement factor of zoom, along longitudes |
---|
[253] | 82 | grossismx=1. |
---|
| 83 | |
---|
[2552] | 84 | # enhancement factor of zoom, along latitudes |
---|
[253] | 85 | grossismy=1. |
---|
| 86 | |
---|
[2552] | 87 | # Use an hyperbolic function f(y) if .true., else use a sine |
---|
[253] | 88 | fxyhypb=.false. |
---|
| 89 | |
---|
[2552] | 90 | # extention along longitudes of zoom region (fraction of global domain) |
---|
[253] | 91 | dzoomx= 0. |
---|
| 92 | |
---|
[2552] | 93 | # extention along latitudes of zoom region (fraction of global domain) |
---|
[253] | 94 | dzoomy=0. |
---|
| 95 | |
---|
[2552] | 96 | # zoom stiffness along longitudes |
---|
[253] | 97 | taux=2. |
---|
| 98 | |
---|
[2552] | 99 | # zoom stiffness along latitudes |
---|
[253] | 100 | tauy=2. |
---|
| 101 | |
---|
[2552] | 102 | # Function f(y) as y = Sin(latitude) if = .true. , else y = latitude |
---|
[253] | 103 | ysinus= .false. |
---|
| 104 | |
---|
[2552] | 105 | # Use a sponge layer |
---|
[253] | 106 | callsponge = .true. |
---|
| 107 | |
---|
[2552] | 108 | # Sponge layer extends over topmost nsponge layers |
---|
| 109 | nsponge = 3 |
---|
| 110 | |
---|
| 111 | # Sponge: relaxed towards teta=teta_ave |
---|
| 112 | # and mode0(u=v=0), mode1(u=u_ave,v=0), mode2(u=u_ave,v=v_ave) |
---|
[253] | 113 | mode_sponge= 2 |
---|
| 114 | |
---|
| 115 | # Sponge: tetasponge (secondes) |
---|
| 116 | tetasponge = 50000 |
---|
| 117 | |
---|
| 118 | # some definitions for the physics, in file 'callphys.def' |
---|
| 119 | INCLUDEDEF=callphys.def |
---|