1 | # |
---|
2 | #----------------------------------------------------------------------- |
---|
3 | # run control parameters: |
---|
4 | #------------------------------ |
---|
5 | |
---|
6 | # planet type |
---|
7 | planet_type = generic |
---|
8 | |
---|
9 | # Number of days to run model for |
---|
10 | nday=9999 |
---|
11 | |
---|
12 | # ndynstep (overrides nday): number of dynamical steps to run for |
---|
13 | # ndynstep=20 |
---|
14 | |
---|
15 | # Number of dynamical steps per day (must be a multiple of iperiod) |
---|
16 | day_step = 960 |
---|
17 | |
---|
18 | # Apply a Matsuno step every iperiod dynamical step |
---|
19 | iperiod=5 |
---|
20 | |
---|
21 | # Control output information in the dynamics every iconser dynamical steps |
---|
22 | iconser=120 |
---|
23 | |
---|
24 | # Apply dissipation every idissip dynamical steps |
---|
25 | idissip=5 |
---|
26 | |
---|
27 | # dissipation operator to use (star or non-star) |
---|
28 | lstardis=.true. |
---|
29 | |
---|
30 | # use hybrid vertical coordinate (else will use sigma levels) |
---|
31 | hybrid=.true. |
---|
32 | |
---|
33 | # iterate lateral dissipation operator gradiv nitergdiv times |
---|
34 | nitergdiv=1 |
---|
35 | |
---|
36 | # iterate lateral dissipation operator nxgradrot nitergrot times |
---|
37 | nitergrot=2 |
---|
38 | |
---|
39 | # iterate lateral dissipation operator divgrad niterh times |
---|
40 | niterh=2 |
---|
41 | |
---|
42 | # time scale (s) for shortest wavelengths for u,v (gradiv) |
---|
43 | tetagdiv= 4000. |
---|
44 | |
---|
45 | # time scale (s) for shortest wavelengths for u,v (nxgradrot) |
---|
46 | tetagrot=5000. |
---|
47 | |
---|
48 | # time scale (s) for shortest wavelengths for h (divgrad) |
---|
49 | tetatemp=5000. |
---|
50 | |
---|
51 | # multiplicative constants for dissipation with altitude: |
---|
52 | # coefficient for middle atmosphere |
---|
53 | dissip_fac_mid = 2 |
---|
54 | # coefficient for upper atmosphere |
---|
55 | dissip_fac_up = 10 |
---|
56 | |
---|
57 | # coefficient for gamdissip |
---|
58 | coefdis=0. |
---|
59 | |
---|
60 | # time marching scheme (Matsuno if purmats is true, else Matsuno-Leapfrog) |
---|
61 | purmats=.false. |
---|
62 | |
---|
63 | # run with (true) or without (false) physics |
---|
64 | physic=.true. |
---|
65 | |
---|
66 | # call physics every iphysiq dynamical steps |
---|
67 | iphysiq=20 |
---|
68 | |
---|
69 | # Use a regular grid |
---|
70 | grireg=.true. |
---|
71 | |
---|
72 | # Output in diagfi file every ecritphy dynamical steps |
---|
73 | ecritphy=240 |
---|
74 | |
---|
75 | # longitude (degrees) of zoom center |
---|
76 | clon=63. |
---|
77 | |
---|
78 | # latitude (degrees) of zoom center |
---|
79 | clat=0. |
---|
80 | |
---|
81 | # enhancement factor of zoom, along longitudes |
---|
82 | grossismx=1. |
---|
83 | |
---|
84 | # enhancement factor of zoom, along latitudes |
---|
85 | grossismy=1. |
---|
86 | |
---|
87 | # Use an hyperbolic function f(y) if .true., else use a sine |
---|
88 | fxyhypb=.false. |
---|
89 | |
---|
90 | # extention along longitudes of zoom region (fraction of global domain) |
---|
91 | dzoomx= 0. |
---|
92 | |
---|
93 | # extention along latitudes of zoom region (fraction of global domain) |
---|
94 | dzoomy=0. |
---|
95 | |
---|
96 | # zoom stiffness along longitudes |
---|
97 | taux=2. |
---|
98 | |
---|
99 | # Function f(y) as y = Sin(latitude) if = .true. , else y = latitude |
---|
100 | ysinus= .false. |
---|
101 | |
---|
102 | # Use a sponge layer |
---|
103 | callsponge = .true. |
---|
104 | |
---|
105 | # Sponge layer extends over topmost nsponge layers |
---|
106 | nsponge = 3 |
---|
107 | |
---|
108 | # Sponge: relaxed towards teta=teta_ave |
---|
109 | # and mode0(u=v=0), mode1(u=u_ave,v=0), mode2(u=u_ave,v=v_ave) |
---|
110 | mode_sponge= 2 |
---|
111 | |
---|
112 | # Sponge layer time scale (s): tetasponge |
---|
113 | tetasponge = 50000 |
---|
114 | |
---|
115 | # some definitions for the physics, in file 'callphys.def' |
---|
116 | INCLUDEDEF=callphys.def |
---|