1 | SUBROUTINE update_soil(ngrid,nslope,nsoil_PEM,tend_h2oglaciers,tend_co2glaciers,co2ice,waterice,p_avg_new,& |
---|
2 | ice_depth,TI_PEM) |
---|
3 | #ifndef CPP_STD |
---|
4 | USE comsoil_h, only: inertiedat, volcapa |
---|
5 | USE comsoil_h_PEM, only: layer_PEM,n_1km,inertiedat_PEM |
---|
6 | USE vertical_layers_mod, ONLY: ap,bp |
---|
7 | implicit none |
---|
8 | ! Input: |
---|
9 | INTEGER,INTENT(IN) :: ngrid, nslope, nsoil_PEM |
---|
10 | REAL,INTENT(IN) :: tend_h2oglaciers(ngrid,nslope),tend_co2glaciers(ngrid,nslope) |
---|
11 | REAL,INTENT(IN) :: p_avg_new |
---|
12 | REAL,INTENT(IN) :: co2ice(ngrid,nslope) |
---|
13 | REAL,INTENT(IN) :: waterice(ngrid,nslope) |
---|
14 | REAL,INTENT(in) :: ice_depth(ngrid,nslope) |
---|
15 | |
---|
16 | ! Outputs: |
---|
17 | |
---|
18 | REAL,INTENT(INOUT) :: TI_PEM(ngrid,nsoil_PEM,nslope) |
---|
19 | |
---|
20 | ! Constants: |
---|
21 | |
---|
22 | REAL :: alpha = 0.2 |
---|
23 | REAL :: beta = 1.08e7 |
---|
24 | REAL :: To = 273.15 |
---|
25 | REAL :: R = 8.314 |
---|
26 | REAL :: L = 51058. |
---|
27 | REAL :: inertie_thresold = 800. ! look for ice |
---|
28 | REAL :: inertie_averaged = 250 ! Mellon et al. 2000 |
---|
29 | REAL :: ice_inertia = 1200 ! Inertia of ice |
---|
30 | REAL :: P610 = 610.0 |
---|
31 | REAL :: m_h2o = 18.01528E-3 |
---|
32 | REAL :: m_co2 = 44.01E-3 ! CO2 molecular mass (kg/mol) |
---|
33 | REAL :: m_noco2 = 33.37E-3 ! Non condensible mol mass (kg/mol) |
---|
34 | REAL :: A,B,mmean |
---|
35 | |
---|
36 | ! Local variables: |
---|
37 | |
---|
38 | INTEGER :: ig,islope,iloop,iref,k |
---|
39 | REAL :: regolith_inertia(ngrid,nslope) ! TI of the regolith |
---|
40 | REAL :: d(ngrid,nsoil_PEM,nslope) |
---|
41 | REAL :: Total_surface |
---|
42 | INTEGER :: ispermanent_co2glaciers(ngrid,nslope) |
---|
43 | INTEGER :: ispermanent_h2oglaciers(ngrid,nslope) |
---|
44 | |
---|
45 | ! 0. Initialisation |
---|
46 | |
---|
47 | ! do ig = 1,ngrid |
---|
48 | ! do islope = 1,nslope |
---|
49 | ! if((abs(tend_h2oglaciers(ig,islope)).lt.1e-5).and.(abs(waterice(ig,islope)).gt.(1.e-4))) then |
---|
50 | ! ispermanent_h2oglaciers(ig,islope) = 1 |
---|
51 | ! else |
---|
52 | ! ispermanent_h2oglaciers(ig,islope) = 0 |
---|
53 | ! endif |
---|
54 | ! |
---|
55 | ! if((abs(tend_co2glaciers(ig,islope)).lt.1e-5).and.(abs(co2ice(ig,islope)).gt.(1.e-4))) then |
---|
56 | ! ispermanent_co2glaciers(ig,islope) = 1 |
---|
57 | ! else |
---|
58 | ! ispermanent_co2glaciers(ig,islope) = 0 |
---|
59 | ! endif |
---|
60 | ! enddo |
---|
61 | ! enddo |
---|
62 | |
---|
63 | |
---|
64 | |
---|
65 | ! 1.Ice TI feedback |
---|
66 | |
---|
67 | ! do islope = 1,nslope |
---|
68 | ! call soil_TIfeedback_PEM(ngrid,nsoil_PEM,waterice(:,islope), TI_PEM(:,:,islope)) |
---|
69 | ! enddo |
---|
70 | |
---|
71 | ! 2. Modification of the regolith thermal inertia. |
---|
72 | |
---|
73 | do ig=1,ngrid |
---|
74 | do islope=1,nslope |
---|
75 | do iloop =1,n_1km |
---|
76 | d(ig,iloop,islope) = ((inertiedat_PEM(ig,iloop)*inertiedat_PEM(ig,iloop))/(volcapa*alpha*P610**0.6))**(-1/(0.11*log10(P610/beta))) |
---|
77 | if(TI_PEM(ig,iloop,islope).lt.inertie_thresold) then ! we are modifying the regolith properties, not ice |
---|
78 | TI_PEM(ig,iloop,islope) = sqrt(volcapa*alpha*(p_avg_new**0.6)* d(ig,iloop,islope)**(-0.11*log10(p_avg_new/beta))) |
---|
79 | |
---|
80 | endif |
---|
81 | enddo |
---|
82 | enddo |
---|
83 | enddo |
---|
84 | |
---|
85 | ! 3. Build new TI for the PEM |
---|
86 | ! a) For the regolith |
---|
87 | do ig=1,ngrid |
---|
88 | do islope=1,nslope |
---|
89 | |
---|
90 | if (ice_depth(ig,islope).gt. -1.e-10) then |
---|
91 | ! 3.0 FIrst if permanent ice |
---|
92 | if (ice_depth(ig,islope).lt. 1e-10) then |
---|
93 | do iloop = 1,nsoil_PEM |
---|
94 | TI_PEM(ig,iloop,islope)=max(ice_inertia,inertiedat_PEM(ig,iloop)) |
---|
95 | enddo |
---|
96 | else |
---|
97 | ! 4.1 find the index of the mixed layer |
---|
98 | iref=0 ! initialize iref |
---|
99 | do k=1,nsoil_PEM ! loop on layers |
---|
100 | if (ice_depth(ig,islope).ge.layer_PEM(k)) then |
---|
101 | iref=k ! pure regolith layer up to here |
---|
102 | else |
---|
103 | ! correct iref was obtained in previous cycle |
---|
104 | exit |
---|
105 | endif |
---|
106 | enddo |
---|
107 | |
---|
108 | ! 4.2 Build the new ti |
---|
109 | do iloop=1,iref |
---|
110 | TI_PEM(ig,iloop,islope) =TI_PEM(ig,iloop,islope) |
---|
111 | enddo |
---|
112 | if (iref.lt.nsoil_PEM) then |
---|
113 | if (iref.ne.0) then |
---|
114 | ! mixed layer |
---|
115 | TI_PEM(ig,iref+1,islope)=sqrt((layer_PEM(iref+1)-layer_PEM(iref))/ & |
---|
116 | (((ice_depth(ig,islope)-layer_PEM(iref))/(TI_PEM(ig,iref,islope)**2))+ & |
---|
117 | ((layer_PEM(iref+1)-ice_depth(ig,islope))/(ice_inertia**2)))) |
---|
118 | else ! first layer is already a mixed layer |
---|
119 | ! (ie: take layer(iref=0)=0) |
---|
120 | TI_PEM(ig,1,islope)=sqrt((layer_PEM(1))/ & |
---|
121 | (((ice_depth(ig,islope))/(TI_PEM(ig,1,islope)**2))+ & |
---|
122 | ((layer_PEM(1)-ice_depth(ig,islope))/(ice_inertia**2)))) |
---|
123 | endif ! of if (iref.ne.0) |
---|
124 | ! lower layers of pure ice |
---|
125 | do iloop=iref+2,nsoil_PEM |
---|
126 | TI_PEM(ig,iloop,islope)=ice_inertia |
---|
127 | enddo |
---|
128 | endif ! of if (iref.lt.(nsoilmx)) |
---|
129 | endif ! permanent glaciers |
---|
130 | endif ! depth > 0 |
---|
131 | enddo !islope |
---|
132 | enddo !ig |
---|
133 | |
---|
134 | !======================================================================= |
---|
135 | RETURN |
---|
136 | #endif |
---|
137 | END |
---|