| 1 | MODULE sorption |
|---|
| 2 | !----------------------------------------------------------------------- |
|---|
| 3 | ! NAME |
|---|
| 4 | ! sorption |
|---|
| 5 | ! |
|---|
| 6 | ! DESCRIPTION |
|---|
| 7 | ! CO2 and H2O adsorption/desorption in regolith following Zent & Quinn |
|---|
| 8 | ! (1995) and Jackosky et al. (1997). |
|---|
| 9 | ! |
|---|
| 10 | ! AUTHORS & DATE |
|---|
| 11 | ! L. Lange, 2023 |
|---|
| 12 | ! JB Clement, 2025 |
|---|
| 13 | ! |
|---|
| 14 | ! NOTES |
|---|
| 15 | ! |
|---|
| 16 | !----------------------------------------------------------------------- |
|---|
| 17 | |
|---|
| 18 | ! DECLARATION |
|---|
| 19 | ! ----------- |
|---|
| 20 | implicit none |
|---|
| 21 | |
|---|
| 22 | ! MODULE VARIABLES |
|---|
| 23 | ! ---------------- |
|---|
| 24 | logical :: do_sorption ! Flag to compute adsorption/desorption |
|---|
| 25 | real, allocatable, dimension(:,:,:) :: co2_adsorbed_phys ! co2 that is in the regolith [kg/m^2] |
|---|
| 26 | real, allocatable, dimension(:,:,:) :: h2o_adsorbed_phys ! h2o that is in the regolith [kg/m^2] |
|---|
| 27 | |
|---|
| 28 | contains |
|---|
| 29 | !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
|---|
| 30 | |
|---|
| 31 | !======================================================================= |
|---|
| 32 | SUBROUTINE ini_adsorption_h_PEM(ngrid,nslope,nsoilmx_PEM) |
|---|
| 33 | !----------------------------------------------------------------------- |
|---|
| 34 | ! NAME |
|---|
| 35 | ! ini_adsorption_h_PEM |
|---|
| 36 | ! |
|---|
| 37 | ! DESCRIPTION |
|---|
| 38 | ! Allocate CO2 and H2O adsorption arrays. |
|---|
| 39 | ! |
|---|
| 40 | ! AUTHORS & DATE |
|---|
| 41 | ! L. Lange, 2023 |
|---|
| 42 | ! JB Clement, 2025 |
|---|
| 43 | ! |
|---|
| 44 | ! NOTES |
|---|
| 45 | ! |
|---|
| 46 | !----------------------------------------------------------------------- |
|---|
| 47 | |
|---|
| 48 | ! DECLARATION |
|---|
| 49 | ! ----------- |
|---|
| 50 | implicit none |
|---|
| 51 | |
|---|
| 52 | ! ARGUMENTS |
|---|
| 53 | ! --------- |
|---|
| 54 | integer, intent(in) :: ngrid ! number of atmospheric columns |
|---|
| 55 | integer, intent(in) :: nslope ! number of slope within a mesh |
|---|
| 56 | integer, intent(in) :: nsoilmx_PEM ! number of soil layer in the PEM |
|---|
| 57 | |
|---|
| 58 | ! CODE |
|---|
| 59 | ! ---- |
|---|
| 60 | allocate(co2_adsorbed_phys(ngrid,nsoilmx_PEM,nslope)) |
|---|
| 61 | allocate(h2o_adsorbed_phys(ngrid,nsoilmx_PEM,nslope)) |
|---|
| 62 | |
|---|
| 63 | END SUBROUTINE ini_adsorption_h_PEM |
|---|
| 64 | !======================================================================= |
|---|
| 65 | |
|---|
| 66 | !======================================================================= |
|---|
| 67 | SUBROUTINE end_adsorption_h_PEM |
|---|
| 68 | !----------------------------------------------------------------------- |
|---|
| 69 | ! NAME |
|---|
| 70 | ! end_adsorption_h_PEM |
|---|
| 71 | ! |
|---|
| 72 | ! DESCRIPTION |
|---|
| 73 | ! Deallocate adsorption arrays. |
|---|
| 74 | ! |
|---|
| 75 | ! AUTHORS & DATE |
|---|
| 76 | ! L. Lange, 2023 |
|---|
| 77 | ! JB Clement, 2025 |
|---|
| 78 | ! |
|---|
| 79 | ! NOTES |
|---|
| 80 | ! |
|---|
| 81 | !----------------------------------------------------------------------- |
|---|
| 82 | |
|---|
| 83 | ! DECLARATION |
|---|
| 84 | ! ----------- |
|---|
| 85 | implicit none |
|---|
| 86 | |
|---|
| 87 | ! CODE |
|---|
| 88 | ! ---- |
|---|
| 89 | if (allocated(co2_adsorbed_phys)) deallocate(co2_adsorbed_phys) |
|---|
| 90 | if (allocated(h2o_adsorbed_phys)) deallocate(h2o_adsorbed_phys) |
|---|
| 91 | |
|---|
| 92 | END SUBROUTINE end_adsorption_h_PEM |
|---|
| 93 | !======================================================================= |
|---|
| 94 | |
|---|
| 95 | !======================================================================= |
|---|
| 96 | SUBROUTINE regolith_adsorption(ngrid,nslope,nsoil_PEM,timelen,d_h2oglaciers,d_co2glaciers,waterice,co2ice,tsoil_PEM,TI_PEM,ps,q_co2,q_h2o, & |
|---|
| 97 | m_h2o_completesoil,delta_mh2oreg, m_co2_completesoil,delta_mco2reg) |
|---|
| 98 | !----------------------------------------------------------------------- |
|---|
| 99 | ! NAME |
|---|
| 100 | ! regolith_adsorption |
|---|
| 101 | ! |
|---|
| 102 | ! DESCRIPTION |
|---|
| 103 | ! Compute both H2O and CO2 adsorption in regolith. |
|---|
| 104 | ! |
|---|
| 105 | ! AUTHORS & DATE |
|---|
| 106 | ! L. Lange, 2023 |
|---|
| 107 | ! JB Clement, 2025 |
|---|
| 108 | ! |
|---|
| 109 | ! NOTES |
|---|
| 110 | ! |
|---|
| 111 | !----------------------------------------------------------------------- |
|---|
| 112 | |
|---|
| 113 | ! DECLARATION |
|---|
| 114 | ! ----------- |
|---|
| 115 | implicit none |
|---|
| 116 | |
|---|
| 117 | ! ARGUMENTS |
|---|
| 118 | ! --------- |
|---|
| 119 | integer, intent(in) :: ngrid, nslope, nsoil_PEM, timelen ! size dimension: physics x subslope x soil x timeseries |
|---|
| 120 | real, dimension(ngrid,nslope), intent(in) :: d_h2oglaciers, d_co2glaciers ! tendancies on the glaciers [1] |
|---|
| 121 | real, dimension(ngrid,nslope), intent(in) :: waterice ! water ice at the surface [kg/m^2] |
|---|
| 122 | real, dimension(ngrid,nslope), intent(in) :: co2ice ! co2 ice at the surface [kg/m^2] |
|---|
| 123 | real, dimension(ngrid,nsoil_PEM,nslope), intent(in) :: TI_PEM ! Soil Thermal inertia (J/K/^2/s^1/2) |
|---|
| 124 | real, dimension(ngrid,nsoil_PEM,nslope), intent(in) :: tsoil_PEM ! Soil temperature (K) |
|---|
| 125 | real, dimension(ngrid,timelen), intent(in) :: ps ! Average surface pressure [Pa] |
|---|
| 126 | real, dimension(ngrid,timelen), intent(in) :: q_co2 ! Mass mixing ratio of co2 in the first layer (kg/kg) |
|---|
| 127 | real, dimension(ngrid,timelen), intent(in) :: q_h2o ! Mass mixing ratio of H2o in the first layer (kg/kg) |
|---|
| 128 | real, dimension(ngrid), intent(out) :: delta_mh2oreg ! Difference density of h2o adsorbed (kg/m^3) |
|---|
| 129 | real, dimension(ngrid), intent(out) :: delta_mco2reg ! Difference density of co2 adsorbed (kg/m^3) |
|---|
| 130 | real, dimension(ngrid,nsoil_PEM,nslope), intent(inout) :: m_co2_completesoil ! Density of co2 adsorbed (kg/m^3) |
|---|
| 131 | real, dimension(ngrid,nsoil_PEM,nslope), intent(inout) :: m_h2o_completesoil ! Density of h2o adsorbed (kg/m^3) |
|---|
| 132 | |
|---|
| 133 | ! LOCAL VARIABLES |
|---|
| 134 | ! --------------- |
|---|
| 135 | real, dimension(ngrid,nsoil_PEM,nslope) :: theta_h2o_adsorbed ! Fraction of the pores occupied by H2O molecules |
|---|
| 136 | |
|---|
| 137 | ! CODE |
|---|
| 138 | ! ---- |
|---|
| 139 | call regolith_h2oadsorption(ngrid,nslope,nsoil_PEM,timelen,d_h2oglaciers,d_co2glaciers,waterice,co2ice,ps,q_co2,q_h2o,tsoil_PEM,TI_PEM, & |
|---|
| 140 | theta_h2o_adsorbed,m_h2o_completesoil,delta_mh2oreg) |
|---|
| 141 | call regolith_co2adsorption(ngrid,nslope,nsoil_PEM,timelen,d_h2oglaciers,d_co2glaciers,waterice,co2ice,ps,q_co2,q_h2o, & |
|---|
| 142 | tsoil_PEM,TI_PEM,m_co2_completesoil,delta_mco2reg) |
|---|
| 143 | |
|---|
| 144 | END SUBROUTINE regolith_adsorption |
|---|
| 145 | !======================================================================= |
|---|
| 146 | |
|---|
| 147 | !======================================================================= |
|---|
| 148 | SUBROUTINE regolith_h2oadsorption(ngrid,nslope,nsoil_PEM,timelen,d_h2oglaciers,d_co2glaciers,waterice,co2ice,ps,q_co2,q_h2o,tsoil_PEM,TI_PEM, & |
|---|
| 149 | theta_h2o_adsorbed,m_h2o_completesoil,delta_mreg) |
|---|
| 150 | !----------------------------------------------------------------------- |
|---|
| 151 | ! NAME |
|---|
| 152 | ! regolith_h2oadsorption |
|---|
| 153 | ! |
|---|
| 154 | ! DESCRIPTION |
|---|
| 155 | ! Compute H2O adsorption in regolith following Jackosky et al. (1997). |
|---|
| 156 | ! |
|---|
| 157 | ! AUTHORS & DATE |
|---|
| 158 | ! L. Lange, 2023 |
|---|
| 159 | ! JB Clement, 2025 |
|---|
| 160 | ! |
|---|
| 161 | ! NOTES |
|---|
| 162 | ! |
|---|
| 163 | !----------------------------------------------------------------------- |
|---|
| 164 | |
|---|
| 165 | ! DEPENDENCIES |
|---|
| 166 | ! ------------ |
|---|
| 167 | use soil, only: layer_PEM, index_breccia |
|---|
| 168 | use comslope_mod, only: subslope_dist, def_slope_mean |
|---|
| 169 | use vertical_layers_mod, only: ap, bp |
|---|
| 170 | use constants_marspem_mod, only: alpha_clap_h2o, beta_clap_h2o, m_h2o, m_co2,m_noco2, rho_regolith |
|---|
| 171 | use phys_constants, only: pi |
|---|
| 172 | |
|---|
| 173 | ! DECLARATION |
|---|
| 174 | ! ----------- |
|---|
| 175 | implicit none |
|---|
| 176 | |
|---|
| 177 | ! ARGUMENTS |
|---|
| 178 | ! --------- |
|---|
| 179 | integer, intent(in) :: ngrid, nslope, nsoil_PEM,timelen ! Size dimension |
|---|
| 180 | real, dimension(ngrid,nslope), intent(in) :: d_h2oglaciers, d_co2glaciers ! Tendencies on the glaciers () |
|---|
| 181 | real, dimension(ngrid,nslope), intent(in) :: waterice ! Water ice at the surface [kg/m^2] |
|---|
| 182 | real, dimension(ngrid,nslope), intent(in) :: co2ice ! CO2 ice at the surface [kg/m^2] |
|---|
| 183 | real, dimension(ngrid,timelen), intent(in) :: ps ! Surface pressure (Pa) |
|---|
| 184 | real, dimension(ngrid,timelen), intent(in) :: q_co2 ! Mass mixing ratio of co2 in the first layer (kg/kg) |
|---|
| 185 | real, dimension(ngrid,timelen), intent(in) :: q_h2o ! Mass mixing ratio of H2o in the first layer (kg/kg) |
|---|
| 186 | real, dimension(ngrid,nsoil_PEM,nslope), intent(in) :: TI_PEM ! Soil Thermal inertia (J/K/^2/s^1/2) |
|---|
| 187 | real, dimension(ngrid,nsoil_PEM,nslope), intent(in) :: tsoil_PEM ! Soil temperature (K) |
|---|
| 188 | real, dimension(ngrid,nsoil_PEM,nslope), intent(inout) :: m_h2o_completesoil ! Density of h2o adsorbed (kg/m^3)(ngrid,nsoil_PEM,nslope) |
|---|
| 189 | real, dimension(ngrid,nsoil_PEM,nslope), intent(out) :: theta_h2o_adsorbed ! Fraction of the pores occupied by H2O molecules |
|---|
| 190 | real, dimension(ngrid), intent(out) :: delta_mreg ! Difference density of h2o adsorbed (kg/m^3) |
|---|
| 191 | |
|---|
| 192 | ! LOCAL VARIABLES |
|---|
| 193 | ! --------------- |
|---|
| 194 | ! Constants: |
|---|
| 195 | real :: Ko = 1.57e-8 ! Jackosky et al. 1997 |
|---|
| 196 | real :: e = 2573.9 ! Jackosky et al. 1997 |
|---|
| 197 | real :: mu = 0.48 ! Jackosky et al. 1997 |
|---|
| 198 | real :: m_theta = 2.84e-7 ! Mass of h2o per m^2 absorbed Jackosky et al. 1997 |
|---|
| 199 | ! real :: as = 18.9e3 ! Specific area, Buhler & Piqueux 2021 |
|---|
| 200 | real :: as = 9.48e4 ! Specific area, Zent |
|---|
| 201 | real :: inertie_thresold = 800. ! TI > 800 means cementation |
|---|
| 202 | real, dimension(ngrid,index_breccia,nslope) :: deltam_reg_complete ! Difference in the mass per slope and soil layer (kg/m^3) |
|---|
| 203 | real :: K ! Used to compute theta |
|---|
| 204 | integer :: ig, iloop, islope, it ! For loops |
|---|
| 205 | logical, dimension(ngrid,nslope) :: ispermanent_co2glaciers ! Check if the co2 glacier is permanent |
|---|
| 206 | logical, dimension(ngrid,nslope) :: ispermanent_h2oglaciers ! Check if the h2o glacier is permanent |
|---|
| 207 | real, dimension(ngrid,nslope) :: deltam_reg_slope ! Difference density of h2o adsorbed per slope (kg/m^3) |
|---|
| 208 | real, dimension(ngrid,nsoil_PEM,nslope) :: dm_h2o_regolith_slope ! Elementary h2o mass adsorded per mesh per slope |
|---|
| 209 | real :: A, B ! Used to compute the mean mass above the surface |
|---|
| 210 | real :: p_sat ! Saturated vapor pressure of ice |
|---|
| 211 | real, dimension(:,:), allocatable :: mass_mean ! Mean mass above the surface |
|---|
| 212 | real, dimension(:,:), allocatable :: zplev_mean ! Pressure above the surface |
|---|
| 213 | real, dimension(:,:), allocatable :: pvapor ! Partial pressure above the surface |
|---|
| 214 | real, dimension(:) , allocatable :: pvapor_avg ! Yearly averaged |
|---|
| 215 | |
|---|
| 216 | ! CODE |
|---|
| 217 | ! ---- |
|---|
| 218 | ! 0. Some initializations |
|---|
| 219 | allocate(mass_mean(ngrid,timelen),zplev_mean(ngrid,timelen),pvapor(ngrid,timelen),pvapor_avg(ngrid)) |
|---|
| 220 | A = 1./m_co2 - 1./m_noco2 |
|---|
| 221 | B = 1./m_noco2 |
|---|
| 222 | theta_h2o_adsorbed = 0. |
|---|
| 223 | dm_h2o_regolith_slope = 0. |
|---|
| 224 | ispermanent_h2oglaciers = .false. |
|---|
| 225 | ispermanent_co2glaciers = .false. |
|---|
| 226 | |
|---|
| 227 | ! 0.1 Look at perennial ice |
|---|
| 228 | do ig = 1,ngrid |
|---|
| 229 | do islope = 1,nslope |
|---|
| 230 | if (abs(d_h2oglaciers(ig,islope)) > 1.e-5 .and. abs(waterice(ig,islope)) > 0.) ispermanent_h2oglaciers(ig,islope) = .true. |
|---|
| 231 | if (abs(d_co2glaciers(ig,islope)) > 1.e-5 .and. abs(co2ice(ig,islope)) > 0.) ispermanent_co2glaciers(ig,islope) = .true. |
|---|
| 232 | enddo |
|---|
| 233 | enddo |
|---|
| 234 | |
|---|
| 235 | ! 0.2 Compute the partial pressure of vapor |
|---|
| 236 | ! a. the molecular mass into the column |
|---|
| 237 | do ig = 1,ngrid |
|---|
| 238 | mass_mean(ig,:) = 1/(A*q_co2(ig,:) + B) |
|---|
| 239 | enddo |
|---|
| 240 | |
|---|
| 241 | ! b. pressure level |
|---|
| 242 | do it = 1,timelen |
|---|
| 243 | do ig = 1,ngrid |
|---|
| 244 | zplev_mean(ig,it) = ap(1) + bp(1)*ps(ig,it) |
|---|
| 245 | enddo |
|---|
| 246 | enddo |
|---|
| 247 | |
|---|
| 248 | ! c. Vapor pressure |
|---|
| 249 | pvapor = mass_mean/m_h2o*q_h2o*zplev_mean |
|---|
| 250 | pvapor_avg = sum(pvapor,2)/timelen |
|---|
| 251 | deallocate(pvapor,zplev_mean,mass_mean) |
|---|
| 252 | |
|---|
| 253 | ! 1. we compute the mass of H2O adsorded in each layer of the meshes |
|---|
| 254 | do ig = 1,ngrid |
|---|
| 255 | do islope = 1,nslope |
|---|
| 256 | do iloop = 1,index_breccia |
|---|
| 257 | K = Ko*exp(e/tsoil_PEM(ig,iloop,islope)) |
|---|
| 258 | if (TI_PEM(ig,iloop,islope) < inertie_thresold) then |
|---|
| 259 | theta_h2o_adsorbed(ig,iloop,islope) = (K*pvapor_avg(ig)/(1. + K*pvapor_avg(ig)))**mu |
|---|
| 260 | else |
|---|
| 261 | p_sat = exp(beta_clap_h2o/tsoil_PEM(ig,iloop,islope) + alpha_clap_h2o) ! we assume fixed temperature in the ice ... not really good but ... |
|---|
| 262 | theta_h2o_adsorbed(ig,iloop,islope) = (K*p_sat/(1. + K*p_sat))**mu |
|---|
| 263 | endif |
|---|
| 264 | dm_h2o_regolith_slope(ig,iloop,islope) = as*theta_h2o_adsorbed(ig,iloop,islope)*m_theta*rho_regolith |
|---|
| 265 | enddo |
|---|
| 266 | enddo |
|---|
| 267 | enddo |
|---|
| 268 | |
|---|
| 269 | ! 2. Check the exchange between the atmosphere and the regolith |
|---|
| 270 | do ig = 1,ngrid |
|---|
| 271 | delta_mreg(ig) = 0. |
|---|
| 272 | do islope = 1,nslope |
|---|
| 273 | deltam_reg_slope(ig,islope) = 0. |
|---|
| 274 | do iloop = 1,index_breccia |
|---|
| 275 | if (TI_PEM(ig,iloop,islope) < inertie_thresold .and. .not. ispermanent_h2oglaciers(ig,islope) .and. .not. ispermanent_co2glaciers(ig,islope)) then |
|---|
| 276 | if (iloop == 1) then |
|---|
| 277 | deltam_reg_complete(ig,iloop,islope) = (dm_h2o_regolith_slope(ig,iloop,islope) - m_h2o_completesoil(ig,iloop,islope))*(layer_PEM(iloop)) |
|---|
| 278 | else |
|---|
| 279 | deltam_reg_complete(ig,iloop,islope) = (dm_h2o_regolith_slope(ig,iloop,islope) - m_h2o_completesoil(ig,iloop,islope))*(layer_PEM(iloop) - layer_PEM(iloop - 1)) |
|---|
| 280 | endif |
|---|
| 281 | else ! NO EXCHANGE AS ICE BLOCK THE DYNAMIC! |
|---|
| 282 | deltam_reg_complete(ig,iloop,islope) = 0. |
|---|
| 283 | endif |
|---|
| 284 | deltam_reg_slope(ig,islope) = deltam_reg_slope(ig,islope) + deltam_reg_complete(ig,iloop,islope) |
|---|
| 285 | enddo |
|---|
| 286 | delta_mreg(ig) = delta_mreg(ig) + deltam_reg_slope(ig,islope)*subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.) |
|---|
| 287 | enddo |
|---|
| 288 | enddo |
|---|
| 289 | m_h2o_completesoil = dm_h2o_regolith_slope |
|---|
| 290 | |
|---|
| 291 | END SUBROUTINE regolith_h2oadsorption |
|---|
| 292 | !======================================================================= |
|---|
| 293 | |
|---|
| 294 | !======================================================================= |
|---|
| 295 | SUBROUTINE regolith_co2adsorption(ngrid,nslope,nsoil_PEM,timelen,d_h2oglaciers,d_co2glaciers,waterice,co2ice,ps,q_co2,q_h2o,tsoil_PEM,TI_PEM,m_co2_completesoil,delta_mreg) |
|---|
| 296 | |
|---|
| 297 | !----------------------------------------------------------------------- |
|---|
| 298 | ! NAME |
|---|
| 299 | ! regolith_co2adsorption |
|---|
| 300 | ! |
|---|
| 301 | ! DESCRIPTION |
|---|
| 302 | ! Compute CO2 adsorption in regolith following Zent & Quinn (1995). |
|---|
| 303 | ! |
|---|
| 304 | ! AUTHORS & DATE |
|---|
| 305 | ! L. Lange, 2023 |
|---|
| 306 | ! JB Clement, 2025 |
|---|
| 307 | ! |
|---|
| 308 | ! NOTES |
|---|
| 309 | ! |
|---|
| 310 | !----------------------------------------------------------------------- |
|---|
| 311 | |
|---|
| 312 | ! DEPENDENCIES |
|---|
| 313 | ! ------------ |
|---|
| 314 | use soil, only: layer_PEM, index_breccia |
|---|
| 315 | use comslope_mod, only: subslope_dist, def_slope_mean |
|---|
| 316 | use vertical_layers_mod, only: ap, bp |
|---|
| 317 | use constants_marspem_mod, only: m_co2, m_noco2, rho_regolith |
|---|
| 318 | use phys_constants, only: pi |
|---|
| 319 | |
|---|
| 320 | ! DECLARATION |
|---|
| 321 | ! ----------- |
|---|
| 322 | implicit none |
|---|
| 323 | |
|---|
| 324 | ! ARGUMENTS |
|---|
| 325 | ! --------- |
|---|
| 326 | integer, intent(in) :: ngrid, nslope, nsoil_PEM,timelen ! Size dimension |
|---|
| 327 | real, dimension(ngrid,timelen), intent(in) :: ps ! Average surface pressure [Pa] |
|---|
| 328 | real, dimension(ngrid,nsoil_PEM,nslope), intent(in) :: tsoil_PEM ! Mean Soil Temperature [K] |
|---|
| 329 | real, dimension(ngrid,nsoil_PEM,nslope), intent(in) :: TI_PEM ! Mean Thermal Inertia [USI] |
|---|
| 330 | real, dimension(ngrid,nslope), intent(in) :: d_h2oglaciers, d_co2glaciers ! Tendencies on the glaciers () |
|---|
| 331 | real, dimension(ngrid,timelen), intent(in) :: q_co2, q_h2o ! Mass mixing ratio of co2 and h2o in the first layer (kg/kg) |
|---|
| 332 | real, dimension(ngrid,nslope), intent(in) :: waterice ! Water ice at the surface [kg/m^2] |
|---|
| 333 | real, dimension(ngrid,nslope), intent(in) :: co2ice ! CO2 ice at the surface [kg/m^2] |
|---|
| 334 | real, dimension(ngrid,nsoil_PEM,nslope), intent(inout) :: m_co2_completesoil ! Density of co2 adsorbed (kg/m^3) |
|---|
| 335 | real, dimension(ngrid), intent(out) :: delta_mreg ! Difference density of co2 adsorbed (kg/m^3) |
|---|
| 336 | |
|---|
| 337 | ! LOCAL VARIABLES |
|---|
| 338 | ! --------------- |
|---|
| 339 | ! Constants: |
|---|
| 340 | real :: alpha = 7.512e-6 ! Zent & Quinn 1995 |
|---|
| 341 | real :: beta = -1541.5 ! Zent & Quinn 1995 |
|---|
| 342 | real :: inertie_thresold = 800. ! TI > 800 means cementation |
|---|
| 343 | real :: m_theta = 4.27e-7 ! Mass of co2 per m^2 absorbed |
|---|
| 344 | ! real :: as = 18.9e3 ! Specific area, Buhler & Piqueux 2021 |
|---|
| 345 | real :: as = 9.48e4 ! Same as previous but from zent |
|---|
| 346 | real :: A, B ! Used to compute the mean mass above the surface |
|---|
| 347 | integer :: ig, islope, iloop, it ! For loops |
|---|
| 348 | real, dimension(ngrid,nsoil_PEM,nslope) :: dm_co2_regolith_slope ! Elementary mass adsorded per mesh per slope |
|---|
| 349 | logical, dimension(ngrid,nslope) :: ispermanent_co2glaciers ! Check if the co2 glacier is permanent |
|---|
| 350 | logical, dimension(ngrid,nslope) :: ispermanent_h2oglaciers ! Check if the h2o glacier is permanent |
|---|
| 351 | real, dimension(ngrid,index_breccia,nslope) :: deltam_reg_complete ! Difference in the mass per slope and soil layer (kg/m^3) |
|---|
| 352 | real, dimension(ngrid,nslope) :: deltam_reg_slope ! Difference in the mass per slope (kg/m^3) |
|---|
| 353 | real, dimension(ngrid,nsoil_PEM,nslope) :: m_h2o_adsorbed ! Density of CO2 adsorbed (kg/m^3) |
|---|
| 354 | real, dimension(ngrid,nsoil_PEM,nslope) :: theta_h2o_adsorbed ! Fraction of the pores occupied by H2O molecules |
|---|
| 355 | real, dimension(ngrid) :: delta_mh2o ! Difference density of h2o adsorbed (kg/m^3) |
|---|
| 356 | ! timelen array are allocated because heavy... |
|---|
| 357 | real, dimension(:,:), allocatable :: mass_mean ! Mean mass above the surface |
|---|
| 358 | real, dimension(:,:), allocatable :: zplev_mean ! Pressure above the surface |
|---|
| 359 | real, dimension(:,:), allocatable :: pco2 ! Partial pressure above the surface |
|---|
| 360 | real, dimension(:), allocatable :: pco2_avg ! Yearly averaged |
|---|
| 361 | |
|---|
| 362 | ! CODE |
|---|
| 363 | ! ---- |
|---|
| 364 | ! 0. Some initializations |
|---|
| 365 | allocate(mass_mean(ngrid,timelen),zplev_mean(ngrid,timelen),pco2(ngrid,timelen),pco2_avg(ngrid)) |
|---|
| 366 | m_h2o_adsorbed = 0. |
|---|
| 367 | A = 1./m_co2 - 1./m_noco2 |
|---|
| 368 | B = 1./m_noco2 |
|---|
| 369 | dm_co2_regolith_slope = 0. |
|---|
| 370 | delta_mreg = 0. |
|---|
| 371 | ispermanent_h2oglaciers = .false. |
|---|
| 372 | ispermanent_co2glaciers = .false. |
|---|
| 373 | |
|---|
| 374 | ! 0.1 Look at perennial ice |
|---|
| 375 | do ig = 1,ngrid |
|---|
| 376 | do islope = 1,nslope |
|---|
| 377 | if (abs(d_h2oglaciers(ig,islope)) > 1.e-5 .and. abs(waterice(ig,islope)) > 0.) ispermanent_h2oglaciers(ig,islope) = .true. |
|---|
| 378 | if (abs(d_co2glaciers(ig,islope)) > 1.e-5 .and. abs(co2ice(ig,islope)) > 0.) ispermanent_co2glaciers(ig,islope) = .true. |
|---|
| 379 | enddo |
|---|
| 380 | enddo |
|---|
| 381 | |
|---|
| 382 | ! 0.2 Compute the partial pressure of CO2 |
|---|
| 383 | ! a. the molecular mass into the column |
|---|
| 384 | do ig = 1,ngrid |
|---|
| 385 | mass_mean(ig,:) = 1./(A*q_co2(ig,:) + B) |
|---|
| 386 | enddo |
|---|
| 387 | |
|---|
| 388 | ! b. pressure level |
|---|
| 389 | do it = 1,timelen |
|---|
| 390 | do ig = 1,ngrid |
|---|
| 391 | zplev_mean(ig,it) = ap(1) + bp(1)*ps(ig,it) |
|---|
| 392 | enddo |
|---|
| 393 | enddo |
|---|
| 394 | |
|---|
| 395 | ! c. Vapor pressure |
|---|
| 396 | pco2 = mass_mean/m_co2*q_co2*zplev_mean |
|---|
| 397 | pco2_avg(:) = sum(pco2(:,:),2)/timelen |
|---|
| 398 | |
|---|
| 399 | deallocate(zplev_mean,mass_mean,pco2) |
|---|
| 400 | |
|---|
| 401 | ! 1. Compute the fraction of the pores occupied by H2O |
|---|
| 402 | call regolith_h2oadsorption(ngrid,nslope,nsoil_PEM,timelen,d_h2oglaciers,d_co2glaciers,waterice,co2ice,ps,q_co2,q_h2o,tsoil_PEM,TI_PEM, & |
|---|
| 403 | theta_h2o_adsorbed, m_h2o_adsorbed,delta_mh2o) |
|---|
| 404 | |
|---|
| 405 | ! 2. we compute the mass of co2 adsorded in each layer of the meshes |
|---|
| 406 | do ig = 1,ngrid |
|---|
| 407 | do islope = 1,nslope |
|---|
| 408 | do iloop = 1,index_breccia |
|---|
| 409 | if (TI_PEM(ig,iloop,islope) < inertie_thresold .and. .not. ispermanent_h2oglaciers(ig,islope) .and. .not. ispermanent_co2glaciers(ig,islope)) then |
|---|
| 410 | dm_co2_regolith_slope(ig,iloop,islope) = as*rho_regolith*m_theta*(1. - theta_h2o_adsorbed(ig,iloop,islope))*alpha*pco2_avg(ig)/ & |
|---|
| 411 | (alpha*pco2_avg(ig) + sqrt(tsoil_PEM(ig,iloop,islope))*exp(beta/tsoil_PEM(ig,iloop,islope))) |
|---|
| 412 | else |
|---|
| 413 | if (abs(m_co2_completesoil(ig,iloop,islope)) < 1.e-10) then !!! we are at first call |
|---|
| 414 | dm_co2_regolith_slope(ig,iloop,islope) = as*rho_regolith*m_theta*(1. - theta_h2o_adsorbed(ig,iloop,islope))*alpha*pco2_avg(ig) & |
|---|
| 415 | /(alpha*pco2_avg(ig)+sqrt(tsoil_PEM(ig,iloop,islope))*exp(beta/tsoil_PEM(ig,iloop,islope))) |
|---|
| 416 | else ! no change: permanent ice stick the atoms of CO2 |
|---|
| 417 | dm_co2_regolith_slope(ig,iloop,islope) = m_co2_completesoil(ig,iloop,islope) |
|---|
| 418 | endif |
|---|
| 419 | endif |
|---|
| 420 | enddo |
|---|
| 421 | enddo |
|---|
| 422 | enddo |
|---|
| 423 | |
|---|
| 424 | ! 3. Check the exchange between the atmosphere and the regolith |
|---|
| 425 | do ig = 1,ngrid |
|---|
| 426 | delta_mreg(ig) = 0. |
|---|
| 427 | do islope = 1,nslope |
|---|
| 428 | deltam_reg_slope(ig,islope) = 0. |
|---|
| 429 | do iloop = 1,index_breccia |
|---|
| 430 | if (TI_PEM(ig,iloop,islope) < inertie_thresold .and. .not. ispermanent_h2oglaciers(ig,islope) .and. .not. ispermanent_co2glaciers(ig,islope)) then |
|---|
| 431 | if (iloop == 1) then |
|---|
| 432 | deltam_reg_complete(ig,iloop,islope) = (dm_co2_regolith_slope(ig,iloop,islope) - m_co2_completesoil(ig,iloop,islope))*(layer_PEM(iloop)) |
|---|
| 433 | else |
|---|
| 434 | deltam_reg_complete(ig,iloop,islope) = (dm_co2_regolith_slope(ig,iloop,islope) - m_co2_completesoil(ig,iloop,islope))*(layer_PEM(iloop) - layer_PEM(iloop - 1)) |
|---|
| 435 | endif |
|---|
| 436 | else ! NO EXCHANGE AS ICE BLOCK THE DYNAMIC! |
|---|
| 437 | deltam_reg_complete(ig,iloop,islope) = 0. |
|---|
| 438 | endif |
|---|
| 439 | deltam_reg_slope(ig,islope) = deltam_reg_slope(ig,islope) + deltam_reg_complete(ig,iloop,islope) |
|---|
| 440 | enddo |
|---|
| 441 | delta_mreg(ig) = delta_mreg(ig) + deltam_reg_slope(ig,islope)*subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.) |
|---|
| 442 | enddo |
|---|
| 443 | enddo |
|---|
| 444 | m_co2_completesoil = dm_co2_regolith_slope |
|---|
| 445 | |
|---|
| 446 | END SUBROUTINE regolith_co2adsorption |
|---|
| 447 | !======================================================================= |
|---|
| 448 | |
|---|
| 449 | END MODULE sorption |
|---|