1 | MODULE soil_thermalproperties_mod |
---|
2 | |
---|
3 | implicit none |
---|
4 | |
---|
5 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
6 | !!! |
---|
7 | !!! Purpose: Compute the soil thermal properties |
---|
8 | !!! Author: LL, 04/2023 |
---|
9 | !!! |
---|
10 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
11 | |
---|
12 | !======================================================================= |
---|
13 | contains |
---|
14 | !======================================================================= |
---|
15 | |
---|
16 | SUBROUTINE ice_thermal_properties(ispureice,pore_filling,surf_thermalinertia,ice_thermalinertia) |
---|
17 | !======================================================================= |
---|
18 | ! subject: Compute ice thermal properties |
---|
19 | ! -------- |
---|
20 | ! |
---|
21 | ! author: LL, 04/2023 |
---|
22 | ! ------- |
---|
23 | ! |
---|
24 | !======================================================================= |
---|
25 | |
---|
26 | use constants_marspem_mod, only: porosity |
---|
27 | |
---|
28 | implicit none |
---|
29 | |
---|
30 | !----------------------------------------------------------------------- |
---|
31 | !======================================================================= |
---|
32 | ! Declarations : |
---|
33 | !======================================================================= |
---|
34 | ! |
---|
35 | ! Input/Output |
---|
36 | ! ------------ |
---|
37 | logical, intent(in) :: ispureice ! Boolean to check if ice is massive or just pore filling |
---|
38 | real, intent(in) :: pore_filling ! ice pore filling in each layer (1) |
---|
39 | real, intent(in) :: surf_thermalinertia ! surface thermal inertia (J/m^2/K/s^1/2) |
---|
40 | real, intent(out) :: ice_thermalinertia ! Thermal inertia of ice when present in the pore (J/m^2/K/s^1/2) |
---|
41 | |
---|
42 | ! Local Variables |
---|
43 | ! -------------- |
---|
44 | REAL :: inertie_purewaterice = 2100 ! 2050 is better according to my computations with the formula from Siegler et al., 2012, but let's follow Mellon et al. (2004) |
---|
45 | !======================================================================= |
---|
46 | ! Beginning of the code |
---|
47 | !======================================================================= |
---|
48 | |
---|
49 | if (ispureice) then |
---|
50 | ice_thermalinertia = inertie_purewaterice |
---|
51 | else |
---|
52 | ice_thermalinertia = sqrt(surf_thermalinertia**2 + porosity*pore_filling*inertie_purewaterice**2) ! Siegler et al., 2012 |
---|
53 | endif |
---|
54 | |
---|
55 | END SUBROUTINE |
---|
56 | !======================================================================= |
---|
57 | |
---|
58 | SUBROUTINE update_soil_thermalproperties(ngrid,nslope,nsoil_PEM,tendencies_waterice,waterice,p_avg_new,ice_depth,ice_thickness,TI_PEM) |
---|
59 | |
---|
60 | use comsoil_h, only: volcapa |
---|
61 | use comsoil_h_PEM, only: layer_PEM, inertiedat_PEM, depth_breccia, depth_bedrock, index_breccia, index_bedrock, reg_thprop_dependp |
---|
62 | use constants_marspem_mod, only: TI_breccia, TI_bedrock, TI_regolith_avg |
---|
63 | |
---|
64 | implicit none |
---|
65 | |
---|
66 | ! Input: |
---|
67 | integer, intent(in) :: ngrid, nslope, nsoil_PEM ! Shape of the arrays: physical grid, number of sub-grid slopes, number of layer in the soil |
---|
68 | real, intent(in) :: p_avg_new ! Global average surface pressure [Pa] |
---|
69 | real, dimension(ngrid,nslope), intent(in) :: tendencies_waterice ! Tendencies on the water ice [kg/m^2/year] |
---|
70 | real, dimension(ngrid,nslope), intent(in) :: waterice ! Surface Water ice [kg/m^2] |
---|
71 | real, dimension(ngrid,nslope), intent(in) :: ice_depth ! Ice table depth [m] |
---|
72 | real, dimension(ngrid,nslope), intent(in) :: ice_thickness ! Ice table thickness [m] |
---|
73 | |
---|
74 | ! Outputs: |
---|
75 | real, dimension(ngrid,nsoil_PEM,nslope), intent(inout) :: TI_PEM ! Soil Thermal Inertia [J/m^2/K/s^1/2] |
---|
76 | |
---|
77 | ! Constants: |
---|
78 | real :: reg_inertie_thresold = 370. ! Above this thermal inertia, the regolith has too much cementation to be dependant on the pressure [J/m^2/K/s^1/2] |
---|
79 | real :: reg_inertie_minvalue = 50. ! Minimum value of the Thermal Inertia at low pressure (Piqueux & Christensen 2009) [J/m^2/K/s^1/2] |
---|
80 | real :: reg_inertie_maxvalue = 370. ! Maximum value of the Thermal Inertia at low pressure (Piqueux & Christensen 2009) [J/m^2/K/s^1/2] |
---|
81 | real :: ice_inertia ! Inertia of water ice [SI] |
---|
82 | real :: P610 = 610.0 ! current average pressure on Mars [Pa] |
---|
83 | real :: C = 0.0015 ! Constant to derive TI as a function of P, from Presley and Christensen 1997 [uniteless] |
---|
84 | real :: K = 8.1*1e4 ! Constant to derive TI as a function of P, from Presley and Christensen 1997 [tor, or 133.3Pa] |
---|
85 | real :: Pa2Tor = 1./133.3 ! Conversion from Pa to tor [Pa/tor] |
---|
86 | |
---|
87 | ! Local variables: |
---|
88 | integer :: ig, islope, isoil, iref, iend ! Loop variables |
---|
89 | real, dimension(ngrid,nslope) :: regolith_inertia ! Thermal inertia of the regolith (first layer in the GCM) [J/m^2/K/s^1/2] |
---|
90 | real :: delta ! Difference of depth to compute the thermal inertia in a mixed layer [m] |
---|
91 | real :: ice_bottom_depth ! Bottom depth of the subsurface ice [m] |
---|
92 | real :: d_part ! Regolith particle size [micrometer] |
---|
93 | |
---|
94 | write(*,*) "Update soil properties" |
---|
95 | |
---|
96 | ! 1. Modification of the regolith thermal inertia. |
---|
97 | do islope = 1,nslope |
---|
98 | regolith_inertia(:,islope) = inertiedat_PEM(:,1) |
---|
99 | do ig = 1,ngrid |
---|
100 | if (tendencies_waterice(ig,islope) < -1.e-5 .and. waterice(ig,islope) == 0) regolith_inertia(ig,islope) = TI_regolith_avg |
---|
101 | if (reg_thprop_dependp) then |
---|
102 | if (TI_PEM(ig,1,islope) < reg_inertie_thresold) then |
---|
103 | d_part = (regolith_inertia(ig,islope)**2/(volcapa*C*(P610*Pa2Tor)**(0.6)))**(-1./(0.11*log10(P610*Pa2Tor/K))) ! compute particle size, in micrometer |
---|
104 | regolith_inertia(ig,islope) = sqrt(volcapa*C*(p_avg_new*Pa2Tor)**(0.6)*d_part**(-0.11*log10(p_avg_new*Pa2Tor/K))) |
---|
105 | if (regolith_inertia(ig,islope) > reg_inertie_maxvalue) regolith_inertia(ig,islope) = reg_inertie_maxvalue |
---|
106 | if (regolith_inertia(ig,islope) < reg_inertie_minvalue) regolith_inertia(ig,islope) = reg_inertie_minvalue |
---|
107 | endif |
---|
108 | endif |
---|
109 | enddo |
---|
110 | enddo |
---|
111 | |
---|
112 | ! 2. Build new Thermal Inertia |
---|
113 | do islope = 1,nslope |
---|
114 | do ig = 1,ngrid |
---|
115 | do isoil = 1,index_breccia |
---|
116 | TI_PEM(ig,isoil,islope) = regolith_inertia(ig,islope) |
---|
117 | enddo |
---|
118 | if (regolith_inertia(ig,islope) < TI_breccia) then |
---|
119 | !!! transition |
---|
120 | delta = depth_breccia |
---|
121 | TI_PEM(ig,index_breccia + 1,islope) = sqrt((layer_PEM(index_breccia + 1) - layer_PEM(index_breccia))/ & |
---|
122 | (((delta - layer_PEM(index_breccia))/(TI_PEM(ig,index_breccia,islope)**2)) + & |
---|
123 | ((layer_PEM(index_breccia + 1) - delta)/(TI_breccia**2)))) |
---|
124 | do isoil = index_breccia + 2,index_bedrock |
---|
125 | TI_PEM(ig,isoil,islope) = TI_breccia |
---|
126 | enddo |
---|
127 | else ! we keep the high ti values |
---|
128 | do isoil = index_breccia + 1,index_bedrock |
---|
129 | TI_PEM(ig,isoil,islope) = TI_PEM(ig,index_breccia,islope) |
---|
130 | enddo |
---|
131 | endif ! TI PEM and breccia comparison |
---|
132 | !!! transition |
---|
133 | delta = depth_bedrock |
---|
134 | TI_PEM(ig,index_bedrock + 1,islope) = sqrt((layer_PEM(index_bedrock + 1) - layer_PEM(index_bedrock))/ & |
---|
135 | (((delta - layer_PEM(index_bedrock))/(TI_PEM(ig,index_bedrock,islope)**2)) + & |
---|
136 | ((layer_PEM(index_bedrock + 1) - delta)/(TI_bedrock**2)))) |
---|
137 | do isoil = index_bedrock + 2,nsoil_PEM |
---|
138 | TI_PEM(ig,isoil,islope) = TI_bedrock |
---|
139 | enddo |
---|
140 | enddo ! ig |
---|
141 | enddo ! islope |
---|
142 | |
---|
143 | ! 3. Build new TI in case of ice table |
---|
144 | do ig = 1,ngrid |
---|
145 | do islope = 1,nslope |
---|
146 | if (ice_depth(ig,islope) > -1.e-6) then |
---|
147 | ! 3.0 Case where it is perennial ice |
---|
148 | if (ice_depth(ig,islope) < 1.e-10) then |
---|
149 | call ice_thermal_properties(.true.,1.,0.,ice_inertia) |
---|
150 | do isoil = 1,nsoil_PEM |
---|
151 | TI_PEM(ig,isoil,islope) = ice_inertia |
---|
152 | enddo |
---|
153 | else |
---|
154 | call ice_thermal_properties(.false.,1.,regolith_inertia(ig,islope),ice_inertia) |
---|
155 | ! 3.1.1 find the index of the mixed layer |
---|
156 | iref = 0 ! initialize iref |
---|
157 | do isoil = 1,nsoil_PEM ! loop on layers to find the beginning of the ice table |
---|
158 | if (ice_depth(ig,islope) >= layer_PEM(isoil)) then |
---|
159 | iref = isoil ! pure regolith layer up to here |
---|
160 | else |
---|
161 | exit ! correct iref was obtained in previous cycle |
---|
162 | endif |
---|
163 | enddo |
---|
164 | ! 3.1.2 find the index of the end of the ice table |
---|
165 | iend = 0 ! initialize iend |
---|
166 | ice_bottom_depth = ice_depth(ig,islope) + ice_thickness(ig,islope) |
---|
167 | do isoil = 1,nsoil_PEM ! loop on layers to find the end of the ice table |
---|
168 | if (ice_bottom_depth >= layer_PEM(isoil)) then |
---|
169 | iend = isoil ! pure regolith layer up to here |
---|
170 | else |
---|
171 | exit ! correct iref was obtained in previous cycle |
---|
172 | endif |
---|
173 | enddo |
---|
174 | ! 3.2 Build the new ti |
---|
175 | if (iref < nsoil_PEM) then |
---|
176 | if (iref == iend) then |
---|
177 | ! Ice table begins and end in the same mixture Mixtures with three components |
---|
178 | if (iref /= 0) then ! mixed layer |
---|
179 | TI_PEM(ig,iref + 1,islope) = sqrt((layer_PEM(iref + 1) - layer_PEM(iref))/ & |
---|
180 | (((ice_depth(ig,islope) - layer_PEM(iref))/(TI_PEM(ig,iref,islope)**2)) + & |
---|
181 | ((ice_bottom_depth - ice_depth(ig,islope))/(ice_inertia**2)) + & |
---|
182 | ((layer_PEM(iref + 1) - ice_bottom_depth)/(TI_PEM(ig,iref + 1,islope)**2)))) |
---|
183 | else ! first layer is already a mixed layer |
---|
184 | ! (ie: take layer(iref=0)=0) |
---|
185 | TI_PEM(ig,1,islope) = sqrt((layer_PEM(1))/ & |
---|
186 | (((ice_depth(ig,islope))/(TI_PEM(ig,1,islope)**2)) + & |
---|
187 | ((ice_bottom_depth - ice_depth(ig,islope))/(ice_inertia**2)) + & |
---|
188 | ((layer_PEM(2) - ice_bottom_depth)/(TI_PEM(ig,2,islope)**2)))) |
---|
189 | endif ! of if (iref /= 0) |
---|
190 | else |
---|
191 | if (iref /= 0) then ! mixed layer |
---|
192 | TI_PEM(ig,iref + 1,islope) = sqrt((layer_PEM(iref + 1) - layer_PEM(iref))/ & |
---|
193 | (((ice_depth(ig,islope) - layer_PEM(iref))/(TI_PEM(ig,iref,islope)**2)) + & |
---|
194 | ((layer_PEM(iref + 1) - ice_depth(ig,islope))/(ice_inertia**2)))) |
---|
195 | else ! first layer is already a mixed layer |
---|
196 | ! (ie: take layer(iref=0)=0) |
---|
197 | TI_PEM(ig,1,islope) = sqrt((layer_PEM(1))/ & |
---|
198 | (((ice_depth(ig,islope))/(TI_PEM(ig,1,islope)**2)) + & |
---|
199 | ((layer_PEM(1) - ice_depth(ig,islope))/(ice_inertia**2)))) |
---|
200 | endif ! of if (iref /= 0) |
---|
201 | endif ! iref == iend |
---|
202 | ! 3.3 Build the new ti |
---|
203 | do isoil = iref + 2,iend |
---|
204 | TI_PEM(ig,isoil,islope) = ice_inertia |
---|
205 | enddo |
---|
206 | if (iend < nsoil_PEM) then |
---|
207 | TI_PEM(ig,iend + 1,islope) = sqrt((layer_PEM(iend + 1) - layer_PEM(iend))/ & |
---|
208 | (((ice_bottom_depth - layer_PEM(iend))/(TI_PEM(ig,iend,islope)**2)) + & |
---|
209 | ((layer_PEM(iend + 1) - ice_bottom_depth)/(ice_inertia**2)))) |
---|
210 | endif |
---|
211 | endif ! of if (iref < nsoilmx) |
---|
212 | endif ! permanent glaciers |
---|
213 | endif ! ice_depth(ig,islope) > 0. |
---|
214 | ! write(*,*) 'TI=', TI_PEM(ig,:,islope) |
---|
215 | enddo !islope |
---|
216 | enddo !ig |
---|
217 | |
---|
218 | END SUBROUTINE update_soil_thermalproperties |
---|
219 | |
---|
220 | END MODULE soil_thermalproperties_mod |
---|