[3206] | 1 | MODULE soil_thermalproperties_mod |
---|
[2962] | 2 | |
---|
[3206] | 3 | implicit none |
---|
[2962] | 4 | |
---|
| 5 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 6 | !!! |
---|
[3327] | 7 | !!! Purpose: Compute the soil thermal properties |
---|
[2962] | 8 | !!! Author: LL, 04/2023 |
---|
| 9 | !!! |
---|
| 10 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 11 | |
---|
[3206] | 12 | !======================================================================= |
---|
| 13 | contains |
---|
| 14 | !======================================================================= |
---|
[2962] | 15 | |
---|
[3206] | 16 | SUBROUTINE ice_thermal_properties(ispureice,pore_filling,surf_thermalinertia,ice_thermalinertia) |
---|
[2962] | 17 | !======================================================================= |
---|
| 18 | ! subject: Compute ice thermal properties |
---|
| 19 | ! -------- |
---|
| 20 | ! |
---|
[3327] | 21 | ! author: LL, 04/2023 |
---|
[3206] | 22 | ! ------- |
---|
[3327] | 23 | ! |
---|
[2962] | 24 | !======================================================================= |
---|
| 25 | |
---|
[3206] | 26 | use constants_marspem_mod, only: porosity |
---|
[2962] | 27 | |
---|
[3206] | 28 | implicit none |
---|
[2962] | 29 | |
---|
| 30 | !----------------------------------------------------------------------- |
---|
| 31 | !======================================================================= |
---|
| 32 | ! Declarations : |
---|
| 33 | !======================================================================= |
---|
| 34 | ! |
---|
| 35 | ! Input/Output |
---|
| 36 | ! ------------ |
---|
[3206] | 37 | logical, intent(in) :: ispureice ! Boolean to check if ice is massive or just pore filling |
---|
| 38 | real, intent(in) :: pore_filling ! ice pore filling in each layer (1) |
---|
[3327] | 39 | real, intent(in) :: surf_thermalinertia ! surface thermal inertia (J/m^2/K/s^1/2) |
---|
[3206] | 40 | real, intent(out) :: ice_thermalinertia ! Thermal inertia of ice when present in the pore (J/m^2/K/s^1/2) |
---|
[2962] | 41 | |
---|
| 42 | ! Local Variables |
---|
| 43 | ! -------------- |
---|
[3327] | 44 | REAL :: inertie_purewaterice = 2100 ! 2050 is better according to my computations with the formula from Siegler et al., 2012, but let's follow Mellon et al. (2004) |
---|
[2962] | 45 | !======================================================================= |
---|
| 46 | ! Beginning of the code |
---|
| 47 | !======================================================================= |
---|
| 48 | |
---|
[3206] | 49 | if (ispureice) then |
---|
| 50 | ice_thermalinertia = inertie_purewaterice |
---|
| 51 | else |
---|
| 52 | ice_thermalinertia = sqrt(surf_thermalinertia**2 + porosity*pore_filling*inertie_purewaterice**2) ! Siegler et al., 2012 |
---|
| 53 | endif |
---|
[2962] | 54 | |
---|
[3327] | 55 | END SUBROUTINE |
---|
[3206] | 56 | !======================================================================= |
---|
[2962] | 57 | |
---|
[3206] | 58 | SUBROUTINE update_soil_thermalproperties(ngrid,nslope,nsoil_PEM,tendencies_waterice,waterice,p_avg_new,ice_depth,ice_thickness,TI_PEM) |
---|
[2985] | 59 | |
---|
[3206] | 60 | use comsoil_h, only: volcapa |
---|
| 61 | use comsoil_h_PEM, only: layer_PEM, inertiedat_PEM, depth_breccia, depth_bedrock, index_breccia, index_bedrock, reg_thprop_dependp |
---|
| 62 | use constants_marspem_mod, only: TI_breccia, TI_bedrock, TI_regolith_avg |
---|
| 63 | |
---|
| 64 | implicit none |
---|
| 65 | |
---|
[3327] | 66 | ! Input: |
---|
| 67 | integer, intent(in) :: ngrid, nslope, nsoil_PEM ! Shape of the arrays: physical grid, number of sub-grid slopes, number of layer in the soil |
---|
| 68 | real, intent(in) :: p_avg_new ! Global average surface pressure [Pa] |
---|
| 69 | real, dimension(ngrid,nslope), intent(in) :: tendencies_waterice ! Tendencies on the water ice [kg/m^2/year] |
---|
| 70 | real, dimension(ngrid,nslope), intent(in) :: waterice ! Surface Water ice [kg/m^2] |
---|
| 71 | real, dimension(ngrid,nslope), intent(in) :: ice_depth ! Ice table depth [m] |
---|
| 72 | real, dimension(ngrid,nslope), intent(in) :: ice_thickness ! Ice table thickness [m] |
---|
| 73 | |
---|
[2962] | 74 | ! Outputs: |
---|
[3327] | 75 | real, dimension(ngrid,nsoil_PEM,nslope), intent(inout) :: TI_PEM ! Soil Thermal Inertia [J/m^2/K/s^1/2] |
---|
[2962] | 76 | |
---|
| 77 | ! Constants: |
---|
[3327] | 78 | real :: reg_inertie_thresold = 370. ! Above this thermal inertia, the regolith has too much cementation to be dependant on the pressure [J/m^2/K/s^1/2] |
---|
| 79 | real :: reg_inertie_minvalue = 50. ! Minimum value of the Thermal Inertia at low pressure (Piqueux & Christensen 2009) [J/m^2/K/s^1/2] |
---|
| 80 | real :: reg_inertie_maxvalue = 370. ! Maximum value of the Thermal Inertia at low pressure (Piqueux & Christensen 2009) [J/m^2/K/s^1/2] |
---|
| 81 | real :: ice_inertia ! Inertia of water ice [SI] |
---|
| 82 | real :: P610 = 610.0 ! current average pressure on Mars [Pa] |
---|
| 83 | real :: C = 0.0015 ! Constant to derive TI as a function of P, from Presley and Christensen 1997 [uniteless] |
---|
| 84 | real :: K = 8.1*1e4 ! Constant to derive TI as a function of P, from Presley and Christensen 1997 [tor, or 133.3Pa] |
---|
| 85 | real :: Pa2Tor = 1./133.3 ! Conversion from Pa to tor [Pa/tor] |
---|
[2962] | 86 | |
---|
| 87 | ! Local variables: |
---|
[3327] | 88 | integer :: ig, islope, isoil, iref, iend ! Loop variables |
---|
| 89 | real, dimension(ngrid,nslope) :: regolith_inertia ! Thermal inertia of the regolith (first layer in the GCM) [J/m^2/K/s^1/2] |
---|
| 90 | real :: delta ! Difference of depth to compute the thermal inertia in a mixed layer [m] |
---|
| 91 | real :: ice_bottom_depth ! Bottom depth of the subsurface ice [m] |
---|
| 92 | real :: d_part ! Regolith particle size [micrometer] |
---|
[2962] | 93 | |
---|
[3327] | 94 | write(*,*) "Update soil properties" |
---|
[2962] | 95 | |
---|
| 96 | ! 1. Modification of the regolith thermal inertia. |
---|
[3327] | 97 | do islope = 1,nslope |
---|
| 98 | regolith_inertia(:,islope) = inertiedat_PEM(:,1) |
---|
| 99 | do ig = 1,ngrid |
---|
| 100 | if (tendencies_waterice(ig,islope) < -1.e-5 .and. waterice(ig,islope) == 0) regolith_inertia(ig,islope) = TI_regolith_avg |
---|
| 101 | if (reg_thprop_dependp) then |
---|
| 102 | if (TI_PEM(ig,1,islope) < reg_inertie_thresold) then |
---|
| 103 | d_part = (regolith_inertia(ig,islope)**2/(volcapa*C*(P610*Pa2Tor)**(0.6)))**(-1./(0.11*log10(P610*Pa2Tor/K))) ! compute particle size, in micrometer |
---|
| 104 | regolith_inertia(ig,islope) = sqrt(volcapa*C*(p_avg_new*Pa2Tor)**(0.6)*d_part**(-0.11*log10(p_avg_new*Pa2Tor/K))) |
---|
| 105 | if (regolith_inertia(ig,islope) > reg_inertie_maxvalue) regolith_inertia(ig,islope) = reg_inertie_maxvalue |
---|
| 106 | if (regolith_inertia(ig,islope) < reg_inertie_minvalue) regolith_inertia(ig,islope) = reg_inertie_minvalue |
---|
| 107 | endif |
---|
| 108 | endif |
---|
| 109 | enddo |
---|
| 110 | enddo |
---|
[2962] | 111 | |
---|
[3327] | 112 | ! 2. Build new Thermal Inertia |
---|
| 113 | do islope = 1,nslope |
---|
| 114 | do ig = 1,ngrid |
---|
| 115 | do isoil = 1,index_breccia |
---|
| 116 | TI_PEM(ig,isoil,islope) = regolith_inertia(ig,islope) |
---|
| 117 | enddo |
---|
| 118 | if (regolith_inertia(ig,islope) < TI_breccia) then |
---|
[2962] | 119 | !!! transition |
---|
[3327] | 120 | delta = depth_breccia |
---|
| 121 | TI_PEM(ig,index_breccia + 1,islope) = sqrt((layer_PEM(index_breccia + 1) - layer_PEM(index_breccia))/ & |
---|
| 122 | (((delta - layer_PEM(index_breccia))/(TI_PEM(ig,index_breccia,islope)**2)) + & |
---|
| 123 | ((layer_PEM(index_breccia + 1) - delta)/(TI_breccia**2)))) |
---|
| 124 | do isoil = index_breccia + 2,index_bedrock |
---|
| 125 | TI_PEM(ig,isoil,islope) = TI_breccia |
---|
| 126 | enddo |
---|
| 127 | else ! we keep the high ti values |
---|
| 128 | do isoil = index_breccia + 1,index_bedrock |
---|
| 129 | TI_PEM(ig,isoil,islope) = TI_PEM(ig,index_breccia,islope) |
---|
| 130 | enddo |
---|
| 131 | endif ! TI PEM and breccia comparison |
---|
| 132 | !!! transition |
---|
| 133 | delta = depth_bedrock |
---|
| 134 | TI_PEM(ig,index_bedrock + 1,islope) = sqrt((layer_PEM(index_bedrock + 1) - layer_PEM(index_bedrock))/ & |
---|
| 135 | (((delta - layer_PEM(index_bedrock))/(TI_PEM(ig,index_bedrock,islope)**2)) + & |
---|
| 136 | ((layer_PEM(index_bedrock + 1) - delta)/(TI_bedrock**2)))) |
---|
| 137 | do isoil = index_bedrock + 2,nsoil_PEM |
---|
[3202] | 138 | TI_PEM(ig,isoil,islope) = TI_bedrock |
---|
[3327] | 139 | enddo |
---|
| 140 | enddo ! ig |
---|
| 141 | enddo ! islope |
---|
[2962] | 142 | |
---|
| 143 | ! 3. Build new TI in case of ice table |
---|
[3327] | 144 | do ig = 1,ngrid |
---|
| 145 | do islope = 1,nslope |
---|
| 146 | if (ice_depth(ig,islope) > -1.e-6) then |
---|
| 147 | ! 3.0 Case where it is perennial ice |
---|
| 148 | if (ice_depth(ig,islope) < 1.e-10) then |
---|
| 149 | call ice_thermal_properties(.true.,1.,0.,ice_inertia) |
---|
| 150 | do isoil = 1,nsoil_PEM |
---|
| 151 | TI_PEM(ig,isoil,islope) = ice_inertia |
---|
| 152 | enddo |
---|
| 153 | else |
---|
| 154 | call ice_thermal_properties(.false.,1.,regolith_inertia(ig,islope),ice_inertia) |
---|
[2962] | 155 | ! 3.1.1 find the index of the mixed layer |
---|
[3327] | 156 | iref = 0 ! initialize iref |
---|
| 157 | do isoil = 1,nsoil_PEM ! loop on layers to find the beginning of the ice table |
---|
| 158 | if (ice_depth(ig,islope) >= layer_PEM(isoil)) then |
---|
| 159 | iref = isoil ! pure regolith layer up to here |
---|
| 160 | else |
---|
| 161 | exit ! correct iref was obtained in previous cycle |
---|
| 162 | endif |
---|
| 163 | enddo |
---|
[2962] | 164 | ! 3.1.2 find the index of the end of the ice table |
---|
[3327] | 165 | iend = 0 ! initialize iend |
---|
| 166 | ice_bottom_depth = ice_depth(ig,islope) + ice_thickness(ig,islope) |
---|
| 167 | do isoil = 1,nsoil_PEM ! loop on layers to find the end of the ice table |
---|
| 168 | if (ice_bottom_depth >= layer_PEM(isoil)) then |
---|
| 169 | iend = isoil ! pure regolith layer up to here |
---|
| 170 | else |
---|
| 171 | exit ! correct iref was obtained in previous cycle |
---|
| 172 | endif |
---|
| 173 | enddo |
---|
| 174 | ! 3.2 Build the new ti |
---|
| 175 | if (iref < nsoil_PEM) then |
---|
| 176 | if (iref == iend) then |
---|
| 177 | ! Ice table begins and end in the same mixture Mixtures with three components |
---|
| 178 | if (iref /= 0) then ! mixed layer |
---|
| 179 | TI_PEM(ig,iref + 1,islope) = sqrt((layer_PEM(iref + 1) - layer_PEM(iref))/ & |
---|
| 180 | (((ice_depth(ig,islope) - layer_PEM(iref))/(TI_PEM(ig,iref,islope)**2)) + & |
---|
| 181 | ((ice_bottom_depth - ice_depth(ig,islope))/(ice_inertia**2)) + & |
---|
| 182 | ((layer_PEM(iref + 1) - ice_bottom_depth)/(TI_PEM(ig,iref + 1,islope)**2)))) |
---|
| 183 | else ! first layer is already a mixed layer |
---|
| 184 | ! (ie: take layer(iref=0)=0) |
---|
| 185 | TI_PEM(ig,1,islope) = sqrt((layer_PEM(1))/ & |
---|
| 186 | (((ice_depth(ig,islope))/(TI_PEM(ig,1,islope)**2)) + & |
---|
| 187 | ((ice_bottom_depth - ice_depth(ig,islope))/(ice_inertia**2)) + & |
---|
| 188 | ((layer_PEM(2) - ice_bottom_depth)/(TI_PEM(ig,2,islope)**2)))) |
---|
| 189 | endif ! of if (iref /= 0) |
---|
| 190 | else |
---|
| 191 | if (iref /= 0) then ! mixed layer |
---|
| 192 | TI_PEM(ig,iref + 1,islope) = sqrt((layer_PEM(iref + 1) - layer_PEM(iref))/ & |
---|
| 193 | (((ice_depth(ig,islope) - layer_PEM(iref))/(TI_PEM(ig,iref,islope)**2)) + & |
---|
| 194 | ((layer_PEM(iref + 1) - ice_depth(ig,islope))/(ice_inertia**2)))) |
---|
| 195 | else ! first layer is already a mixed layer |
---|
| 196 | ! (ie: take layer(iref=0)=0) |
---|
| 197 | TI_PEM(ig,1,islope) = sqrt((layer_PEM(1))/ & |
---|
| 198 | (((ice_depth(ig,islope))/(TI_PEM(ig,1,islope)**2)) + & |
---|
| 199 | ((layer_PEM(1) - ice_depth(ig,islope))/(ice_inertia**2)))) |
---|
| 200 | endif ! of if (iref /= 0) |
---|
| 201 | endif ! iref == iend |
---|
| 202 | ! 3.3 Build the new ti |
---|
| 203 | do isoil = iref + 2,iend |
---|
| 204 | TI_PEM(ig,isoil,islope) = ice_inertia |
---|
| 205 | enddo |
---|
| 206 | if (iend < nsoil_PEM) then |
---|
| 207 | TI_PEM(ig,iend + 1,islope) = sqrt((layer_PEM(iend + 1) - layer_PEM(iend))/ & |
---|
| 208 | (((ice_bottom_depth - layer_PEM(iend))/(TI_PEM(ig,iend,islope)**2)) + & |
---|
| 209 | ((layer_PEM(iend + 1) - ice_bottom_depth)/(ice_inertia**2)))) |
---|
| 210 | endif |
---|
| 211 | endif ! of if (iref < nsoilmx) |
---|
| 212 | endif ! permanent glaciers |
---|
| 213 | endif ! ice_depth(ig,islope) > 0. |
---|
| 214 | ! write(*,*) 'TI=', TI_PEM(ig,:,islope) |
---|
[2962] | 215 | enddo !islope |
---|
[3327] | 216 | enddo !ig |
---|
[2962] | 217 | |
---|
[3206] | 218 | END SUBROUTINE update_soil_thermalproperties |
---|
[2962] | 219 | |
---|
[3206] | 220 | END MODULE soil_thermalproperties_mod |
---|