source: trunk/LMDZ.COMMON/libf/evolution/soil_pem.F90 @ 2794

Last change on this file since 2794 was 2794, checked in by llange, 2 years ago

MARS PEM:

  • Add a PEMETAT0 that read "startfi_pem.nc"
  • Add the soil in the model: soil temperature, thermal properties, ice table
  • Add a routine that compute CO2 + H2O adsorption
  • Minor corrections in PEM.F90

LL

File size: 4.3 KB
Line 
1      subroutine soil_pem(ngrid,nsoil,firstcall, &
2               therm_i,                          &
3               timestep,tsurf,tsoil,alph_PEM,beta_PEM)
4
5
6      use comsoil_h_PEM, only: layer_PEM, mlayer_PEM,  &
7                          mthermdiff_PEM, thermdiff_PEM, coefq_PEM, &
8                          coefd_PEM, mu_PEM,fluxgeo
9      use comsoil_h,only: volcapa
10      implicit none
11
12!-----------------------------------------------------------------------
13!  Author: LL
14!  Purpose: Compute soil temperature using an implict 1st order scheme
15
16!  Note: depths of layers and mid-layers, soil thermal inertia and
17!        heat capacity are commons in comsoil_PEM.h
18!        A convergence loop is added until equilibrium
19!-----------------------------------------------------------------------
20
21#include "dimensions.h"
22!#include "dimphys.h"
23
24!#include"comsoil.h"
25
26
27!-----------------------------------------------------------------------
28!  arguments
29!  ---------
30!  inputs:
31      integer,intent(in) :: ngrid       ! number of (horizontal) grid-points
32      integer,intent(in) :: nsoil       ! number of soil layers 
33      logical,intent(in) :: firstcall ! identifier for initialization call
34      real,intent(in) :: therm_i(ngrid,nsoil) ! thermal inertia
35      real,intent(in) :: timestep           ! time step
36      real,intent(in) :: tsurf(ngrid)   ! surface temperature
37 
38! outputs:
39      real,intent(inout) :: tsoil(ngrid,nsoil) ! soil (mid-layer) temperature
40      real,intent(inout) :: alph_PEM(ngrid,nsoil-1)
41      real,intent(inout) :: beta_PEM(ngrid,nsoil-1)
42
43
44
45
46     
47! local variables:
48      integer ig,ik
49
50
51     
52
53! 0. Initialisations and preprocessing step
54 if (firstcall) then
55   
56! 0.1 Build mthermdiff_PEM(:), the mid-layer thermal diffusivities
57      do ig=1,ngrid
58        do ik=0,nsoil-1
59          mthermdiff_PEM(ig,ik)=therm_i(ig,ik+1)*therm_i(ig,ik+1)/volcapa
60   
61        enddo
62      enddo
63
64
65! 0.2 Build thermdiff(:), the "interlayer" thermal diffusivities
66      do ig=1,ngrid
67        do ik=1,nsoil-1
68      thermdiff_PEM(ig,ik)=((layer_PEM(ik)-mlayer_PEM(ik-1))*mthermdiff_PEM(ig,ik) &
69                     +(mlayer_PEM(ik)-layer_PEM(ik))*mthermdiff_PEM(ig,ik-1))  &
70                         /(mlayer_PEM(ik)-mlayer_PEM(ik-1))
71
72        enddo
73      enddo
74
75! 0.3 Build coefficients mu_PEM, q_{k+1/2}, d_k, alph_PEMa_k and capcal
76      ! mu_PEM
77      mu_PEM=mlayer_PEM(0)/(mlayer_PEM(1)-mlayer_PEM(0))
78
79      ! q_{1/2}
80      coefq_PEM(0)=volcapa*layer_PEM(1)/timestep
81        ! q_{k+1/2}
82        do ik=1,nsoil-1
83          coefq_PEM(ik)=volcapa*(layer_PEM(ik+1)-layer_PEM(ik))                  &
84                      /timestep
85        enddo
86
87      do ig=1,ngrid
88        ! d_k
89        do ik=1,nsoil-1
90          coefd_PEM(ig,ik)=thermdiff_PEM(ig,ik)/(mlayer_PEM(ik)-mlayer_PEM(ik-1))
91        enddo
92       
93        ! alph_PEM_{N-1}
94        alph_PEM(ig,nsoil-1)=coefd_PEM(ig,nsoil-1)/                      &
95                       (coefq_PEM(nsoil-1)+coefd_PEM(ig,nsoil-1))
96        ! alph_PEM_k
97        do ik=nsoil-2,1,-1
98          alph_PEM(ig,ik)=coefd_PEM(ig,ik)/(coefq_PEM(ik)+coefd_PEM(ig,ik+1)*    &
99                                   (1.-alph_PEM(ig,ik+1))+coefd_PEM(ig,ik))
100        enddo
101
102
103      enddo ! of do ig=1,ngrid
104
105     
106 
107endif ! of if (firstcall)
108
109
110
111      IF (.not.firstcall) THEN
112!  2. Compute soil temperatures
113! First layer:
114
115
116
117
118      do ig=1,ngrid
119        tsoil(ig,1)=(tsurf(ig)+mu_PEM*beta_PEM(ig,1)* & 
120                                  thermdiff_PEM(ig,1)/mthermdiff_PEM(ig,0))/ &
121                   (1.+mu_PEM*(1.0-alph_PEM(ig,1))*&
122                    thermdiff_PEM(ig,1)/mthermdiff_PEM(ig,0))
123     
124
125 
126
127
128! Other layers:
129      do ik=1,nsoil-1
130
131          tsoil(ig,ik+1)=alph_PEM(ig,ik)*tsoil(ig,ik)+beta_PEM(ig,ik)
132
133 
134       enddo
135     
136     enddo
137          ENDIF
138
139
140
141
142!  2. Compute beta_PEM coefficients (preprocessing for next time step)
143! Bottom layer, beta_PEM_{N-1}
144      do ig=1,ngrid
145        beta_PEM(ig,nsoil-1)=coefq_PEM(nsoil-1)*tsoil(ig,nsoil)          &
146                        /(coefq_PEM(nsoil-1)+coefd_PEM(ig,nsoil-1)) &
147                 +  fluxgeo/(coefq_PEM(nsoil-1)+coefd_PEM(ig,nsoil-1))
148      enddo
149! Other layers
150      do ik=nsoil-2,1,-1
151        do ig=1,ngrid
152          beta_PEM(ig,ik)=(coefq_PEM(ik)*tsoil(ig,ik+1)+                 &
153                      coefd_PEM(ig,ik+1)*beta_PEM(ig,ik+1))/             &
154                      (coefq_PEM(ik)+coefd_PEM(ig,ik+1)*(1.0-alph_PEM(ig,ik+1)) &
155                       +coefd_PEM(ig,ik))
156        enddo
157      enddo
158
159
160
161      end
162
Note: See TracBrowser for help on using the repository browser.