[2835] | 1 | subroutine soil_pem_routine(ngrid,nsoil,firstcall, & |
---|
[2794] | 2 | therm_i, & |
---|
| 3 | timestep,tsurf,tsoil,alph_PEM,beta_PEM) |
---|
| 4 | |
---|
| 5 | |
---|
| 6 | use comsoil_h_PEM, only: layer_PEM, mlayer_PEM, & |
---|
| 7 | mthermdiff_PEM, thermdiff_PEM, coefq_PEM, & |
---|
| 8 | coefd_PEM, mu_PEM,fluxgeo |
---|
| 9 | use comsoil_h,only: volcapa |
---|
| 10 | implicit none |
---|
| 11 | |
---|
| 12 | !----------------------------------------------------------------------- |
---|
| 13 | ! Author: LL |
---|
| 14 | ! Purpose: Compute soil temperature using an implict 1st order scheme |
---|
| 15 | ! |
---|
| 16 | ! Note: depths of layers and mid-layers, soil thermal inertia and |
---|
| 17 | ! heat capacity are commons in comsoil_PEM.h |
---|
| 18 | ! A convergence loop is added until equilibrium |
---|
| 19 | !----------------------------------------------------------------------- |
---|
| 20 | |
---|
| 21 | #include "dimensions.h" |
---|
| 22 | |
---|
| 23 | !----------------------------------------------------------------------- |
---|
| 24 | ! arguments |
---|
| 25 | ! --------- |
---|
| 26 | ! inputs: |
---|
[2855] | 27 | integer,intent(in) :: ngrid ! number of (horizontal) grid-points |
---|
| 28 | integer,intent(in) :: nsoil ! number of soil layers |
---|
| 29 | logical,intent(in) :: firstcall ! identifier for initialization call |
---|
| 30 | real,intent(in) :: therm_i(ngrid,nsoil) ! thermal inertia [SI] |
---|
| 31 | real,intent(in) :: timestep ! time step [s] |
---|
| 32 | real,intent(in) :: tsurf(ngrid) ! surface temperature [K] |
---|
[2794] | 33 | |
---|
| 34 | ! outputs: |
---|
[2855] | 35 | real,intent(inout) :: tsoil(ngrid,nsoil) ! soil (mid-layer) temperature [K] |
---|
| 36 | real,intent(inout) :: alph_PEM(ngrid,nsoil-1) ! intermediate for computations [1] |
---|
| 37 | real,intent(inout) :: beta_PEM(ngrid,nsoil-1) ! intermediate for computations [K] |
---|
[2794] | 38 | |
---|
| 39 | ! local variables: |
---|
[2835] | 40 | integer ig,ik |
---|
[2794] | 41 | |
---|
| 42 | ! 0. Initialisations and preprocessing step |
---|
| 43 | if (firstcall) then |
---|
| 44 | |
---|
| 45 | ! 0.1 Build mthermdiff_PEM(:), the mid-layer thermal diffusivities |
---|
| 46 | do ig=1,ngrid |
---|
| 47 | do ik=0,nsoil-1 |
---|
[2835] | 48 | mthermdiff_PEM(ig,ik)=therm_i(ig,ik+1)*therm_i(ig,ik+1)/volcapa |
---|
[2794] | 49 | enddo |
---|
| 50 | enddo |
---|
| 51 | |
---|
| 52 | ! 0.2 Build thermdiff(:), the "interlayer" thermal diffusivities |
---|
| 53 | do ig=1,ngrid |
---|
| 54 | do ik=1,nsoil-1 |
---|
| 55 | thermdiff_PEM(ig,ik)=((layer_PEM(ik)-mlayer_PEM(ik-1))*mthermdiff_PEM(ig,ik) & |
---|
| 56 | +(mlayer_PEM(ik)-layer_PEM(ik))*mthermdiff_PEM(ig,ik-1)) & |
---|
| 57 | /(mlayer_PEM(ik)-mlayer_PEM(ik-1)) |
---|
| 58 | enddo |
---|
| 59 | enddo |
---|
| 60 | |
---|
| 61 | ! 0.3 Build coefficients mu_PEM, q_{k+1/2}, d_k, alph_PEMa_k and capcal |
---|
| 62 | ! mu_PEM |
---|
| 63 | mu_PEM=mlayer_PEM(0)/(mlayer_PEM(1)-mlayer_PEM(0)) |
---|
| 64 | |
---|
| 65 | ! q_{1/2} |
---|
| 66 | coefq_PEM(0)=volcapa*layer_PEM(1)/timestep |
---|
| 67 | ! q_{k+1/2} |
---|
| 68 | do ik=1,nsoil-1 |
---|
| 69 | coefq_PEM(ik)=volcapa*(layer_PEM(ik+1)-layer_PEM(ik)) & |
---|
| 70 | /timestep |
---|
| 71 | enddo |
---|
| 72 | |
---|
| 73 | do ig=1,ngrid |
---|
| 74 | ! d_k |
---|
| 75 | do ik=1,nsoil-1 |
---|
| 76 | coefd_PEM(ig,ik)=thermdiff_PEM(ig,ik)/(mlayer_PEM(ik)-mlayer_PEM(ik-1)) |
---|
| 77 | enddo |
---|
| 78 | |
---|
| 79 | ! alph_PEM_{N-1} |
---|
| 80 | alph_PEM(ig,nsoil-1)=coefd_PEM(ig,nsoil-1)/ & |
---|
| 81 | (coefq_PEM(nsoil-1)+coefd_PEM(ig,nsoil-1)) |
---|
| 82 | ! alph_PEM_k |
---|
| 83 | do ik=nsoil-2,1,-1 |
---|
| 84 | alph_PEM(ig,ik)=coefd_PEM(ig,ik)/(coefq_PEM(ik)+coefd_PEM(ig,ik+1)* & |
---|
| 85 | (1.-alph_PEM(ig,ik+1))+coefd_PEM(ig,ik)) |
---|
| 86 | enddo |
---|
| 87 | |
---|
| 88 | enddo ! of do ig=1,ngrid |
---|
| 89 | |
---|
| 90 | endif ! of if (firstcall) |
---|
| 91 | |
---|
| 92 | IF (.not.firstcall) THEN |
---|
| 93 | ! 2. Compute soil temperatures |
---|
| 94 | ! First layer: |
---|
[2835] | 95 | do ig=1,ngrid |
---|
| 96 | tsoil(ig,1)=(tsurf(ig)+mu_PEM*beta_PEM(ig,1)* & |
---|
[2794] | 97 | thermdiff_PEM(ig,1)/mthermdiff_PEM(ig,0))/ & |
---|
| 98 | (1.+mu_PEM*(1.0-alph_PEM(ig,1))*& |
---|
| 99 | thermdiff_PEM(ig,1)/mthermdiff_PEM(ig,0)) |
---|
| 100 | |
---|
| 101 | ! Other layers: |
---|
[2835] | 102 | do ik=1,nsoil-1 |
---|
| 103 | tsoil(ig,ik+1)=alph_PEM(ig,ik)*tsoil(ig,ik)+beta_PEM(ig,ik) |
---|
| 104 | enddo |
---|
| 105 | enddo |
---|
| 106 | ENDIF |
---|
[2794] | 107 | |
---|
| 108 | ! 2. Compute beta_PEM coefficients (preprocessing for next time step) |
---|
| 109 | ! Bottom layer, beta_PEM_{N-1} |
---|
| 110 | do ig=1,ngrid |
---|
| 111 | beta_PEM(ig,nsoil-1)=coefq_PEM(nsoil-1)*tsoil(ig,nsoil) & |
---|
| 112 | /(coefq_PEM(nsoil-1)+coefd_PEM(ig,nsoil-1)) & |
---|
| 113 | + fluxgeo/(coefq_PEM(nsoil-1)+coefd_PEM(ig,nsoil-1)) |
---|
| 114 | enddo |
---|
| 115 | ! Other layers |
---|
| 116 | do ik=nsoil-2,1,-1 |
---|
| 117 | do ig=1,ngrid |
---|
| 118 | beta_PEM(ig,ik)=(coefq_PEM(ik)*tsoil(ig,ik+1)+ & |
---|
| 119 | coefd_PEM(ig,ik+1)*beta_PEM(ig,ik+1))/ & |
---|
| 120 | (coefq_PEM(ik)+coefd_PEM(ig,ik+1)*(1.0-alph_PEM(ig,ik+1)) & |
---|
| 121 | +coefd_PEM(ig,ik)) |
---|
| 122 | enddo |
---|
| 123 | enddo |
---|
| 124 | |
---|
| 125 | end |
---|
| 126 | |
---|