source: trunk/LMDZ.COMMON/libf/evolution/pem.F90 @ 3974

Last change on this file since 3974 was 3974, checked in by jbclement, 29 hours ago

Mars PCM:
Simplification of the orbital parameters initialization (resolve ticket #109): removing redundant actions in subroutine 'iniorbit' in regard of what is done in "tabfi.F" and moving the subroutine 'lsp2solp' from "tabfi.F" to "planete_h.F90" + some cleanings.
JBC

File size: 60.8 KB
Line 
1!------------------------
2! I   Initialization
3!    I_a Read the "run.def"
4!    I_b Read the "start.nc" and "startfi.nc"
5!    I_c Subslope parametrisation
6!    I_d Read the PCM data and convert them to the physical grid
7!    I_e Initialization of the PEM variable and soil
8!    I_f Compute tendencies
9!    I_g Compute global surface pressure
10!    I_h Read the "startpem.nc"
11!    I_i Compute orbit criterion
12
13! II  Run
14!    II_a Update pressure, ice and tracers
15!    II_b Evolution of ice
16!    II_c Flow of glaciers
17!    II_d Update surface and soil temperatures
18!    II_e Outputs
19!    II_f Update the tendencies
20!    II_g Checking the stopping criterion
21
22! III Output
23!    III_a Update surface values for the PCM start files
24!    III_b Write the "restart.nc" and "restartfi.nc"
25!    III_c Write the "restartpem.nc"
26!------------------------
27
28PROGRAM pem
29
30use phyetat0_mod,               only: phyetat0
31use phyredem,                   only: physdem0, physdem1
32use netcdf,                     only: nf90_open, NF90_NOWRITE, nf90_get_var, nf90_inq_varid, nf90_close
33use turb_mod,                   only: q2, wstar
34use comslope_mod,               only: nslope, def_slope, def_slope_mean, subslope_dist, iflat, ini_comslope_h
35use logic_mod,                  only: iflag_phys
36use mod_const_mpi,              only: COMM_LMDZ
37use infotrac
38use geometry_mod,               only: latitude_deg
39use conf_pem_mod,               only: conf_pem
40use pemredem,                   only: pemdem0, pemdem1
41use glaciers_mod,               only: flow_co2glaciers, flow_h2oglaciers, co2ice_flow, h2oice_flow, inf_h2oice_threshold, &
42                                      metam_h2oice_threshold, metam_co2ice_threshold, metam_h2oice, metam_co2ice, computeTcondCO2
43use stopping_crit_mod,          only: stopping_crit_h2o_ice, stopping_crit_co2, stopping_crit_h2o, stopFlags
44use constants_marspem_mod,      only: alpha_clap_co2, beta_clap_co2, alpha_clap_h2o, beta_clap_h2o, m_co2, m_noco2
45use evol_ice_mod,               only: evol_co2_ice, evol_h2o_ice, balance_h2oice_reservoirs
46use comsoil_h_PEM,              only: soil_pem, ini_comsoil_h_PEM, end_comsoil_h_PEM, nsoilmx_PEM, &
47                                      TI_PEM,               & ! Soil thermal inertia
48                                      tsoil_PEM, layer_PEM, & ! Soil temp, number of subsurface layers, soil mid layer depths
49                                      fluxgeo                 ! Geothermal flux for the PEM and PCM
50use adsorption_mod,             only: regolith_adsorption, adsorption_pem,        & ! Bool to check if adsorption, main subroutine
51                                      ini_adsorption_h_PEM, end_adsorption_h_PEM, & ! Allocate arrays
52                                      co2_adsorbed_phys, h2o_adsorbed_phys          ! Mass of co2 and h2O adsorbed
53use time_evol_mod,              only: dt, evol_orbit_pem, Max_iter_pem, convert_years, year_bp_ini
54use orbit_param_criterion_mod,  only: orbit_param_criterion
55use recomp_orb_param_mod,       only: recomp_orb_param
56use ice_table_mod,              only: icetable_depth, icetable_thickness, end_ice_table, ice_porefilling, &
57                                      ini_ice_table, icetable_equilibrium, icetable_dynamic, computeice_table_equilibrium, compute_massh2o_exchange_ssi
58use soil_thermalproperties_mod, only: update_soil_thermalproperties
59use time_phylmdz_mod,           only: daysec, dtphys
60use abort_pem_mod,              only: abort_pem
61use soil_settings_PEM_mod,      only: soil_settings_PEM
62use compute_tend_mod,           only: compute_tend
63use info_PEM_mod,               only: info_PEM
64use get_timelen_PCM_mod,        only: get_timelen_PCM
65use pemetat0_mod,               only: pemetat0
66use read_data_PCM_mod,          only: read_data_PCM
67use recomp_tend_mod,            only: recomp_tend_co2, recomp_tend_h2o
68use compute_soiltemp_mod,       only: compute_tsoil_pem, shift_tsoil2surf
69use writediagpem_mod,           only: writediagpem, writediagsoilpem
70use co2condens_mod,             only: CO2cond_ps
71use layering_mod,               only: layering, del_layering, make_layering, layering_algo, subsurface_ice_layering, &
72                                      rho_co2ice, rho_h2oice, ptrarray,                                              &
73                                      stratum, get_nb_str_max, nb_str_max, is_dust_lag, is_co2ice_str, is_h2oice_str
74use dyn_ss_ice_m_mod,           only: dyn_ss_ice_m
75use parse_args_mod,             only: parse_args
76use job_timelimit_mod,          only: timelimit, antetime, timewall
77use paleoclimate_mod,           only: h2o_ice_depth, zdqsdif_ssi_tot
78use surf_temp,                  only: update_tsurf_nearest_baresoil
79use comsoil_h,                  only: tsoil, nsoilmx, ini_comsoil_h, inertiedat, mlayer, inertiesoil, flux_geo, nqsoil, qsoil
80use surfdat_h,                  only: tsurf, qsurf, emis, emissiv, emisice, ini_surfdat_h,   &
81                                      albedodat, albedice, albedo_h2o_frost, albedo_h2o_cap, &
82                                      zmea, zstd, zsig, zgam, zthe, frost_albedo_threshold,  &
83                                      watercap, watercaptag, perennial_co2ice, albedo_perennialco2
84use dimradmars_mod,             only: totcloudfrac, albedo
85use dust_param_mod,             only: tauscaling
86use tracer_mod,                 only: noms, igcm_h2o_ice, igcm_co2, mmol, igcm_h2o_vap ! Tracer names and molar masses
87use mod_phys_lmdz_para,         only: is_parallel, is_sequential, is_mpi_root, is_omp_root, is_master
88use surfini_mod,                only: surfini
89use comcstfi_h,                 only: mugaz
90
91#ifndef CPP_1D
92    use comconst_mod,             only: pi, rad, g, r, cpp, rcp => kappa
93    use iniphysiq_mod,            only: iniphysiq
94    use control_mod,              only: iphysiq, day_step, nsplit_phys
95#else
96    use comcstfi_h,               only: pi, rad, g, r, cpp, rcp
97    use time_phylmdz_mod,         only: iphysiq, steps_per_sol
98    use regular_lonlat_mod,       only: init_regular_lonlat
99    use physics_distribution_mod, only: init_physics_distribution
100    use mod_grid_phy_lmdz,        only: regular_lonlat
101    use init_testphys1d_mod,      only: init_testphys1d
102    use comvert_mod,              only: ap, bp
103    use writerestart1D_mod,       only: writerestart1D
104#endif
105
106implicit none
107
108include "dimensions.h"
109include "paramet.h"
110include "comgeom.h"
111include "iniprint.h"
112
113! Same variable names as in the PCM
114integer, parameter :: ngridmx = 2 + (jjm - 1)*iim - 1/jjm
115integer, parameter :: nlayer = llm ! Number of vertical layer
116integer            :: ngrid        ! Number of physical grid points
117integer            :: nq           ! Number of tracer
118integer            :: day_ini      ! First day of the simulation
119real               :: pday         ! Physical day
120real               :: time_phys    ! Same as in PCM
121real               :: ptimestep    ! Same as in PCM
122real               :: ztime_fin    ! Same as in PCM
123
124! Variables to read "start.nc"
125character(*), parameter :: start_name = "start.nc" ! Name of the file used to initialize the PEM
126
127! Dynamic variables
128real, dimension(ip1jm,llm)          :: vcov          ! vents covariants
129real, dimension(ip1jmp1,llm)        :: ucov          ! vents covariants
130real, dimension(ip1jmp1,llm)        :: teta          ! Potential temperature
131real, dimension(:,:,:), allocatable :: q             ! champs advectes
132real, dimension(:),     allocatable :: pdyn          ! pressure for the dynamic grid
133real, dimension(:),     allocatable :: ps_start      ! surface pressure in the start file
134real, dimension(:),     allocatable :: ps_start0     ! surface pressure in the start file at the beginning
135real, dimension(:),     allocatable :: ps_avg        ! (ngrid) Average surface pressure
136real, dimension(:),     allocatable :: ps_dev        ! (ngrid x timelen) Surface pressure deviation
137real, dimension(:,:),   allocatable :: ps_timeseries ! (ngrid x timelen) Instantaneous surface pressure
138real, dimension(ip1jmp1,llm)        :: masse         ! Air mass
139real, dimension(ip1jmp1)            :: phis          ! geopotentiel au sol
140real                                :: time_0
141
142! Variables to read starfi.nc
143character(*), parameter :: startfi_name = "startfi.nc" ! Name of the file used to initialize the PEM
144character(2)            :: str2
145integer                 :: ncid, status                           ! Variable for handling opening of files
146integer                 :: lonvarid, latvarid, areavarid, sdvarid ! Variable ID for Netcdf files
147integer                 :: apvarid, bpvarid                       ! Variable ID for Netcdf files
148
149! Variables to read starfi.nc and write restartfi.nc
150real, dimension(:), allocatable :: longitude     ! Longitude read in startfi_name and written in restartfi
151real, dimension(:), allocatable :: latitude      ! Latitude read in startfi_name and written in restartfi
152real, dimension(:), allocatable :: cell_area     ! Cell_area read in startfi_name and written in restartfi
153real                            :: total_surface ! Total surface of the planet
154
155! Variables for h2o ice evolution
156real, dimension(:,:),    allocatable  :: h2o_ice              ! h2o ice in the PEM
157real, dimension(:,:),    allocatable  :: d_h2oice             ! physical point x slope field: Tendency of evolution of perennial h2o ice
158real, dimension(:,:,:),  allocatable  :: min_h2o_ice          ! Minima of h2o ice at each point for the PCM years [kg/m^2]
159real                                  :: h2oice_ini_surf      ! Initial surface of sublimating h2o ice
160logical, dimension(:,:), allocatable  :: is_h2oice_sublim_ini ! Logical array to know if h2o ice is sublimating
161real                                  :: ps_avg_global_ini    ! constant: Global average pressure at initialization [Pa]
162real                                  :: ps_avg_global_old    ! constant: Global average pressure of previous time step
163real                                  :: ps_avg_global_new    ! constant: Global average pressure of current time step
164real,   dimension(:,:),   allocatable :: zplev_new            ! Grid points x Atmospheric field: mass of the atmospheric layers in the pem at current time step [kg/m^2]
165real,   dimension(:,:),   allocatable :: zplev_start0         ! Grid points x Atmospheric field: mass of the atmospheric layers in the start [kg/m^2]
166real,   dimension(:,:,:), allocatable :: zplev_timeseries_new ! Grid points x Atmospheric x Time: same as zplev_new, but in times series [kg/m ^2]
167real,   dimension(:,:,:), allocatable :: zplev_timeseries_old ! same but with the time series, for previous time step
168type(stopFlags)                       :: stopCrit             ! Stopping criteria
169real                                  :: A, B, mmean          ! Molar mass: intermediate A, B for computations of the  mean molar mass of the layer [mol/kg]
170real,   dimension(:,:),   allocatable :: q_h2o_PEM_phys       ! Grid points x Times: h2o mass mixing ratio computed in the PEM, first value comes from PCM [kg/kg]
171integer                               :: timelen              ! # time samples
172real                                  :: extra_mass           ! Intermediate variables Extra mass of a tracer if it is greater than 1
173real, dimension(:,:),    allocatable  :: d_h2oice_new         ! Adjusted tendencies to keep balance between donor and recipient
174real                                  :: S_atm_2_h2o, S_h2o_2_atm, S_atm_2_h2oice, S_h2oice_2_atm ! Variables to balance H2O
175
176! Variables for co2 ice evolution
177real,    dimension(:,:), allocatable :: co2_ice                ! co2 ice in the PEM
178real,    dimension(:,:), allocatable :: d_co2ice               ! physical point x slope field: Tendency of evolution of perennial co2 ice over a year
179real,    dimension(:,:), allocatable :: d_co2ice_ini           ! physical point x slope field: Tendency of evolution of perennial co2 ice over a year in the PCM
180logical, dimension(:,:), allocatable :: is_co2ice_ini          ! Was there co2 ice initially in the PEM?
181real,  dimension(:,:,:), allocatable :: min_co2_ice            ! Minimum of co2 ice at each point for the first year [kg/m^2]
182real                                 :: co2ice_sublim_surf_ini ! Initial surface of sublimating co2 ice
183logical, dimension(:,:), allocatable :: is_co2ice_sublim_ini   ! Logical array to know if co2 ice is sublimating
184real,    dimension(:,:), allocatable :: vmr_co2_PCM            ! Grid points x Times co2 volume mixing ratio retrieve from the PCM [m^3/m^3]
185real,    dimension(:,:), allocatable :: vmr_co2_PEM_phys       ! Grid points x Times co2 volume mixing ratio used in the PEM
186real,    dimension(:,:), allocatable :: q_co2_PEM_phys         ! Grid points x Times co2 mass mixing ratio in the first layer computed in the PEM, first value comes from PCM [kg/kg]
187real(kind = 16)                      :: totmass_co2ice, totmass_atmco2         ! Current total CO2 masses
188real(kind = 16)                      :: totmass_co2ice_ini, totmass_atmco2_ini ! Initial total CO2 masses
189
190! Variables for the evolution of layered layerings_map
191type(layering), dimension(:,:), allocatable :: layerings_map     ! Layering for each grid point and slope
192type(ptrarray), dimension(:,:), allocatable :: current           ! Current active stratum in the layering
193logical,        dimension(:,:), allocatable :: new_str, new_lag  ! Flags for the layering algorithm
194real,           dimension(:,:), allocatable :: h2o_ice_depth_old ! Old depth of subsurface ice layer
195
196! Variables for slopes
197integer(kind = 1), dimension(:,:), allocatable :: flag_co2flow ! (ngrid,nslope): Flag where there is a CO2 glacier flow
198integer(kind = 1), dimension(:,:), allocatable :: flag_h2oflow ! (ngrid,nslope): Flag where there is a H2O glacier flow
199
200! Variables for surface and soil
201real, dimension(:,:),     allocatable :: tsurf_avg                          ! Grid points x Slope field: Average surface temperature [K]
202real, dimension(:,:),     allocatable :: tsurf_dev                          ! Grid points x Slope field: Surface temperature deviation [K]
203real, dimension(:,:),     allocatable :: tsurf_avg_yr1                      ! Grid points x Slope field: Average surface temperature of first call of the PCM [K]
204real, dimension(:,:,:),   allocatable :: tsoil_avg                          ! Grid points x Soil x Slope field: Average Soil Temperature [K]
205real, dimension(:,:),     allocatable :: tsoil_avg_old                      ! Grid points x Soil field: Average Soil Temperature at the previous time step [K]
206real, dimension(:,:,:),   allocatable :: tsoil_dev                          ! Grid points x Soil x Slope field: Soil temperature deviation [K]
207real, dimension(:,:,:,:), allocatable :: tsoil_timeseries                   ! Grid points x Soil x Slope x Times field: Soil temperature timeseries [K]
208real, dimension(:,:,:,:), allocatable :: tsoil_PEM_timeseries               ! Grid points x Soil x Slope x Times field: Soil temperature timeseries for PEM [K]
209real, dimension(:,:,:,:), allocatable :: tsoil_PEM_timeseries_old           ! Grid points x Soil x Slope x Times field: Soil temperature timeseries for PEM at the previous time step [K]
210real, dimension(:,:,:,:), allocatable :: watersoil_density_timeseries       ! Grid points x Soil x Slope x Times Water soil density timeseries [kg /m^3]
211real, dimension(:,:),     allocatable :: watersurf_density_avg              ! Grid points x Slope: Average water surface density [kg/m^3]
212real, dimension(:,:,:,:), allocatable :: watersoil_density_PEM_timeseries   ! Grid points x Soil x Slope x Times: Water soil density timeseries for PEM [kg/m^3]
213real, dimension(:,:,:),   allocatable :: watersoil_density_PEM_avg          ! Grid points x Soil x Slopes: Average water soil density [kg/m^3]
214real, dimension(:),       allocatable :: delta_co2_adsorbed                 ! Physics: quantity of CO2 that is exchanged because of adsorption / desorption [kg/m^2]
215real, dimension(:),       allocatable :: delta_h2o_adsorbed                 ! Physics: quantity of H2O that is exchanged because of adsorption / desorption [kg/m^2]
216real(kind = 16)                       :: totmass_adsco2, totmass_adsco2_ini ! Total mass of CO2 that is exchanged because of adsorption / desoprtion over the planets [kg]
217real                                  :: totmass_adsh2o                     ! Total mass of H2O that is exchanged because of adsorption / desoprtion over the planets [kg]
218logical, dimension(:,:),  allocatable :: co2ice_disappeared                 ! logical to check if a co2 ice reservoir already disappeared at a previous timestep
219real, dimension(:,:),     allocatable :: icetable_thickness_old             ! ngrid x nslope: Thickness of the ice table at the previous iteration [m]
220real, dimension(:,:,:),   allocatable :: ice_porefilling_old                ! ngrid x nslope: Ice pore filling at the previous iteration [m]
221real, dimension(:),       allocatable :: delta_h2o_icetablesublim           ! ngrid x Total mass of the H2O that has sublimated / condenses from the ice table [kg]
222real, dimension(:),       allocatable :: porefill                           ! Pore filling (output) to compute the dynamic ice table
223real                                  :: ssi_depth                          ! Ice table depth (output) to compute the dynamic ice table
224real, dimension(:,:),     allocatable :: zshift_surf                        ! Elevation shift for the surface [m]
225real, dimension(:,:),     allocatable :: zlag                               ! Newly built lag thickness [m]
226real, dimension(:,:),     allocatable :: icetable_depth_old                 ! Old depth of the ice table
227
228! Some variables for the PEM run
229real, parameter       :: year_step = 1   ! Timestep for the pem
230real                  :: i_myear_leg     ! Number of iteration
231real                  :: n_myear_leg     ! Maximum number of iterations before stopping
232real                  :: i_myear         ! Global number of Martian years of the chained simulations
233real                  :: n_myear         ! Maximum number of Martian years of the chained simulations
234real                  :: timestep        ! Timestep [s]
235integer(kind = 8)     :: cr              ! Number of clock ticks per second (count rate)
236integer(kind = 8)     :: c1, c2          ! Counts of processor clock
237character(8)          :: date
238character(10)         :: time
239character(5)          :: zone
240integer, dimension(8) :: values
241character(128)        :: dir = ' '
242character(32)         :: logname = ' '
243character(32)         :: hostname = ' '
244
245#ifdef CPP_1D
246    integer            :: nsplit_phys
247    integer, parameter :: jjm_value = jjm - 1
248    integer            :: day_step
249
250    ! Dummy variables to use the subroutine 'init_testphys1d'
251    logical                             :: therestart1D, therestartfi, ctrl_h2ovap, ctrl_h2oice
252    integer                             :: ndt, day0
253    real                                :: ptif, pks, day, gru, grv, relaxtime_h2ovap, relaxtime_h2oice
254    real, dimension(:),     allocatable :: zqsat
255    real, dimension(:,:,:), allocatable :: dq, dqdyn
256    real, dimension(nlayer)             :: play, w, qref_h2ovap, qref_h2oice
257    real, dimension(nlayer + 1)         :: plev
258#else
259    integer, parameter                :: jjm_value = jjm
260    real, dimension(:),   allocatable :: ap ! Coefficient ap read in start_name and written in restart
261    real, dimension(:),   allocatable :: bp ! Coefficient bp read in start_name and written in restart
262    real, dimension(:,:), allocatable :: p  ! Grid points x Atmosphere: pressure to recompute and write in restart (ip1jmp1,llmp1)
263#endif
264
265! Loop variables
266integer :: i, l, ig, nnq, t, islope, ig_loop, islope_loop, isoil, icap
267real    :: totmass_ini
268logical :: num_str
269
270! CODE
271! Elapsed time with system clock
272call system_clock(count_rate = cr)
273call system_clock(c1)
274
275! Parse command-line options
276call parse_args()
277
278! Header
279write(*,*) '  *    .          .   +     .    *        .  +      .    .       .      '
280write(*,*) '           +         _______  ________  ____    ____      *           + '
281write(*,*) ' +   .        *     |_   __ \|_   __  ||_   \  /   _|          .       *'
282write(*,*) '          .     .     | |__) | | |_ \_|  |   \/   |  *        *      .  '
283write(*,*) '       .              |  ___/  |  _| _   | |\  /| |      .        .     '
284write(*,*) '.  *          *      _| |_    _| |__/ | _| |_\/_| |_                  * '
285write(*,*) '            +       |_____|  |________||_____||_____|   +     .         '
286write(*,*) '  .      *          .   *       .   +       *          .        +      .'
287
288! Some user info
289call date_and_time(date,time,zone,values)
290call getcwd(dir)      ! Current directory
291call getlog(logname)  ! User name
292call hostnm(hostname) ! Machine/station name
293write(*,*)
294write(*,*) '********* PEM information *********'
295write(*,*) '+ User     : '//trim(logname)
296write(*,*) '+ Machine  : '//trim(hostname)
297write(*,*) '+ Directory: '//trim(dir)
298write(*,'(a,i2,a,i2,a,i4)') ' + Date     : ',values(3),'/',values(2),'/',values(1)
299write(*,'(a,i2,a,i2,a,i2,a)') ' + Time     : ',values(5),':',values(6),':',values(7)
300
301! Parallel variables
302is_sequential = .true.
303is_parallel = .false.
304is_mpi_root = .true.
305is_omp_root = .true.
306is_master = .true.
307
308! Some constants
309day_ini = 0
310time_phys = 0.
311ngrid = ngridmx
312A = (1./m_co2 - 1./m_noco2)
313B = 1./m_noco2
314year_day = 669
315daysec = 88775.
316timestep = year_day*daysec*year_step
317
318!----------------------------- INITIALIZATION --------------------------
319!------------------------
320! I   Initialization
321!    I_a Read the "run.def"
322!------------------------
323write(*,*)
324write(*,*) '********* PEM initialization *********'
325write(*,*) '> Reading "run.def" (PEM)'
326#ifndef CPP_1D
327    dtphys = daysec/48. ! Dummy value (overwritten in phyetat0)
328    call conf_gcm(99,.true.)
329    call infotrac_init
330    nq = nqtot
331    allocate(q(ip1jmp1,llm,nqtot))
332    allocate(longitude(ngrid),latitude(ngrid),cell_area(ngrid))
333#else
334    allocate(q(1,llm,nqtot),pdyn(1))
335    allocate(longitude(1),latitude(1),cell_area(1))
336
337    therestart1D = .false. ! Default value
338    inquire(file = 'start1D.txt',exist = therestart1D)
339    if (.not. therestart1D) then
340        write(*,*) 'There is no "start1D.txt" file!'
341        error stop 'Initialization cannot be done for the 1D PEM.'
342    endif
343    therestartfi = .false. ! Default value
344    inquire(file = 'startfi.nc',exist = therestartfi)
345    if (.not. therestartfi) then
346        write(*,*) 'There is no "startfi.nc" file!'
347        error stop 'Initialization cannot be done for the 1D PEM.'
348    endif
349
350    write(*,*) '> Reading "start1D.txt" and "startfi.nc"'
351    call init_testphys1d('start1D.txt','startfi.nc',therestart1D,therestartfi,ngrid,nlayer,610.,nq,q,         &
352                         time_0,pdyn(1),ucov,vcov,teta,ndt,ptif,pks,dtphys,zqsat,dq,dqdyn,day0,day,gru,grv,w, &
353                         play,plev,latitude,longitude,cell_area,                                              &
354                         ctrl_h2ovap,relaxtime_h2ovap,qref_h2ovap,ctrl_h2oice,relaxtime_h2oice,qref_h2oice)
355    nsplit_phys = 1
356    day_step = steps_per_sol
357#endif
358
359call conf_pem(i_myear,n_myear)
360
361!------------------------
362! I   Initialization
363!    I_b Read of the "start.nc" and "starfi.nc"
364!------------------------
365! I_b.1 Read "start.nc"
366write(*,*) '> Reading "start.nc"'
367allocate(ps_start0(ngrid))
368#ifndef CPP_1D
369    allocate(pdyn(ip1jmp1))
370    call dynetat0(start_name,vcov,ucov,teta,q,masse,pdyn,phis,time_0)
371
372    call gr_dyn_fi(1,iip1,jjp1,ngridmx,pdyn,ps_start0)
373
374    call iniconst ! Initialization of dynamical constants (comconst_mod)
375    call inigeom ! Initialization of geometry
376
377    allocate(ap(nlayer + 1))
378    allocate(bp(nlayer + 1))
379    status = nf90_open(start_name,NF90_NOWRITE,ncid)
380    status = nf90_inq_varid(ncid,"ap",apvarid)
381    status = nf90_get_var(ncid,apvarid,ap)
382    status = nf90_inq_varid(ncid,"bp",bpvarid)
383    status = nf90_get_var(ncid,bpvarid,bp)
384    status = nf90_close(ncid)
385
386    ! Initialization of physics constants and variables (comcstfi_h)
387    call iniphysiq(iim,jjm,llm,(jjm - 1)*iim + 2,comm_lmdz,daysec,day_ini,dtphys/nsplit_phys,rlatu,rlatv,rlonu,rlonv,aire,cu,cv,rad,g,r,cpp,iflag_phys)
388#else
389    ps_start0(1) = pdyn(1)
390#endif
391deallocate(pdyn)
392
393! In the PCM, these values are given to the physic by the dynamic.
394! Here we simply read them in the "startfi.nc" file
395status = nf90_open(startfi_name,NF90_NOWRITE,ncid)
396status = nf90_inq_varid(ncid,"longitude",lonvarid)
397status = nf90_get_var(ncid,lonvarid,longitude)
398status = nf90_inq_varid(ncid,"latitude",latvarid)
399status = nf90_get_var(ncid,latvarid,latitude)
400status = nf90_inq_varid(ncid,"area",areavarid)
401status = nf90_get_var(ncid,areavarid,cell_area)
402status = nf90_inq_varid(ncid,"soildepth",sdvarid)
403status = nf90_get_var(ncid,sdvarid,mlayer)
404status = nf90_close(ncid)
405
406! I_b.2 Read the "startfi.nc"
407! First we read the initial state (starfi.nc)
408write(*,*) '> Reading "startfi.nc"'
409call phyetat0(startfi_name,0,0,nsoilmx,ngrid,nlayer,nq,nqsoil,day_ini,time_phys,tsurf, &
410              tsoil,albedo,emis,q2,qsurf,qsoil,tauscaling,totcloudfrac,wstar,          &
411              watercap,perennial_co2ice,def_slope,def_slope_mean,subslope_dist)
412
413! Remove unphysical values of surface tracer
414where (qsurf < 0.) qsurf = 0.
415
416call surfini(ngrid,nslope,qsurf)
417
418do nnq = 1,nqtot  ! Why not using ini_tracer?
419    if (noms(nnq) == "h2o_ice") igcm_h2o_ice = nnq
420    if (noms(nnq) == "h2o_vap") then
421        igcm_h2o_vap = nnq
422        mmol(igcm_h2o_vap) = 18.
423    endif
424    if (noms(nnq) == "co2") igcm_co2 = nnq
425enddo
426
427!------------------------
428! I   Initialization
429!    I_c Subslope parametrisation
430!------------------------
431! Define some slope statistics
432iflat = 1
433do islope = 2,nslope
434    if (abs(def_slope_mean(islope)) < abs(def_slope_mean(iflat))) iflat = islope
435enddo
436write(*,*) 'Flat slope for islope = ',iflat
437write(*,*) 'Corresponding criterium = ',def_slope_mean(iflat)
438
439!------------------------
440! I   Initialization
441!    I_d Read the PCM data and convert them to the physical grid
442!------------------------
443! First we read the evolution of water and co2 ice (and the mass mixing ratio) over the first year of the PCM run, saving only the minimum value
444call get_timelen_PCM("data_PCM_Y1.nc",timelen)
445
446allocate(vmr_co2_PCM(ngrid,timelen),q_co2_PEM_phys(ngrid,timelen),q_h2o_PEM_phys(ngrid,timelen))
447allocate(ps_timeseries(ngrid,timelen),ps_avg(ngrid))
448allocate(min_co2_ice(ngrid,nslope,2),min_h2o_ice(ngrid,nslope,2))
449allocate(tsurf_avg_yr1(ngrid,nslope),tsurf_avg(ngrid,nslope))
450allocate(tsoil_avg(ngrid,nsoilmx,nslope),tsoil_timeseries(ngrid,nsoilmx,nslope,timelen))
451allocate(watersurf_density_avg(ngrid,nslope),watersoil_density_timeseries(ngrid,nsoilmx,nslope,timelen))
452
453call read_data_PCM("data_PCM_Y1.nc","data_PCM_Y2.nc",timelen,iim,jjm_value,ngrid,nslope,vmr_co2_PCM,ps_timeseries,ps_avg,tsurf_avg_yr1,tsurf_avg, &
454                   tsoil_avg,tsoil_timeseries,min_co2_ice,min_h2o_ice,q_co2_PEM_phys,q_h2o_PEM_phys,watersurf_density_avg,watersoil_density_timeseries)
455
456! Compute the deviation from the average
457allocate(ps_dev(ngrid),tsurf_dev(ngrid,nslope),tsoil_dev(ngrid,nsoilmx,nslope))
458ps_dev = ps_start0 - ps_avg
459tsurf_dev = tsurf - tsurf_avg
460tsoil_dev = tsoil - tsoil_avg(:,1:nsoilmx,:)
461
462!------------------------
463! I   Initialization
464!    I_e Initialization of the PEM variables and soil
465!------------------------
466call end_comsoil_h_PEM
467call ini_comsoil_h_PEM(ngrid,nslope)
468call end_adsorption_h_PEM
469call ini_adsorption_h_PEM(ngrid,nslope,nsoilmx_PEM)
470call end_ice_table
471call ini_ice_table(ngrid,nslope,nsoilmx_PEM)
472
473allocate(tsoil_PEM_timeseries(ngrid,nsoilmx_PEM,nslope,timelen),watersoil_density_PEM_avg(ngrid,nsoilmx_PEM,nslope),watersoil_density_PEM_timeseries(ngrid,nsoilmx_PEM,nslope,timelen))
474if (soil_pem) then
475    call soil_settings_PEM(ngrid,nslope,nsoilmx_PEM,nsoilmx,inertiesoil,TI_PEM)
476    tsoil_PEM(:,1:nsoilmx,:) = tsoil_avg
477    watersoil_density_PEM_timeseries(:,1:nsoilmx,:,:) = watersoil_density_timeseries
478    tsoil_PEM_timeseries(:,1:nsoilmx,:,:) = tsoil_timeseries
479    do l = nsoilmx + 1,nsoilmx_PEM
480        tsoil_PEM(:,l,:) = tsoil_avg(:,nsoilmx,:)
481        watersoil_density_PEM_timeseries(:,l,:,:) = watersoil_density_timeseries(:,nsoilmx,:,:)
482        tsoil_PEM_timeseries(:,l,:,:) = tsoil_timeseries(:,nsoilmx,:,:)
483    enddo
484    watersoil_density_PEM_avg = sum(watersoil_density_PEM_timeseries,4)/timelen
485endif !soil_pem
486deallocate(tsoil_avg,watersoil_density_timeseries,tsoil_timeseries)
487
488!------------------------
489! I   Initialization
490!    I_f Compute tendencies
491!------------------------
492allocate(d_co2ice(ngrid,nslope),d_h2oice(ngrid,nslope),d_co2ice_ini(ngrid,nslope))
493call compute_tend(ngrid,nslope,min_co2_ice,d_co2ice)
494call compute_tend(ngrid,nslope,min_h2o_ice,d_h2oice)
495d_co2ice_ini = d_co2ice
496deallocate(min_co2_ice,min_h2o_ice)
497
498!------------------------
499! I   Initialization
500!    I_g Compute global surface pressure
501!------------------------
502total_surface = sum(cell_area)
503ps_avg_global_ini = sum(cell_area*ps_avg)/total_surface
504ps_avg_global_new = ps_avg_global_ini
505write(*,*) "Total surface of the planet     =", total_surface
506write(*,*) "Initial global average pressure =", ps_avg_global_ini
507
508!------------------------
509! I   Initialization
510!    I_h Read the "startpem.nc"
511!------------------------
512write(*,*) '> Reading "startpem.nc"'
513allocate(co2_ice(ngrid,nslope),h2o_ice(ngrid,nslope),layerings_map(ngrid,nslope))
514allocate(delta_h2o_adsorbed(ngrid),delta_co2_adsorbed(ngrid),delta_h2o_icetablesublim(ngrid))
515delta_h2o_icetablesublim = 0.
516call pemetat0("startpem.nc",ngrid,nsoilmx,nsoilmx_PEM,nslope,timelen,timestep,TI_PEM,tsoil_PEM,icetable_depth,icetable_thickness,ice_porefilling, &
517              tsurf_avg_yr1,tsurf_avg,q_co2_PEM_phys,q_h2o_PEM_phys,ps_timeseries,ps_avg_global_ini,d_h2oice,d_co2ice,co2_ice,h2o_ice,            &
518              watersurf_density_avg,watersoil_density_PEM_avg,co2_adsorbed_phys,delta_co2_adsorbed,h2o_adsorbed_phys,delta_h2o_adsorbed,layerings_map)
519deallocate(tsurf_avg_yr1)
520
521! We save the places where h2o ice is sublimating
522! We compute the surface of h2o ice sublimating
523allocate(is_co2ice_sublim_ini(ngrid,nslope),is_h2oice_sublim_ini(ngrid,nslope),is_co2ice_ini(ngrid,nslope),co2ice_disappeared(ngrid,nslope))
524co2ice_sublim_surf_ini = 0.
525h2oice_ini_surf = 0.
526is_co2ice_sublim_ini = .false.
527is_h2oice_sublim_ini = .false.
528is_co2ice_ini = .false.
529co2ice_disappeared = .false.
530totmass_co2ice_ini = 0.
531totmass_atmco2_ini = 0.
532if (layering_algo) then
533    do ig = 1,ngrid
534        do islope = 1,nslope
535            if (is_co2ice_str(layerings_map(ig,islope)%top)) then
536                co2_ice(ig,islope) = layerings_map(ig,islope)%top%h_co2ice*rho_co2ice
537            else if (is_h2oice_str(layerings_map(ig,islope)%top)) then
538                h2o_ice(ig,islope) = layerings_map(ig,islope)%top%h_h2oice*rho_h2oice
539            else
540                call subsurface_ice_layering(layerings_map(ig,islope),h2o_ice_depth(ig,islope),h2o_ice(ig,islope),co2_ice(ig,islope))
541            endif
542        enddo
543    enddo
544    ! We put the sublimating tendency coming from subsurface ice into the overall tendency
545    where (h2o_ice_depth > 0. .and. zdqsdif_ssi_tot < -1.e-10) d_h2oice = zdqsdif_ssi_tot
546endif
547do i = 1,ngrid
548    totmass_atmco2_ini = totmass_atmco2_ini + cell_area(i)*ps_avg(i)/g
549    do islope = 1,nslope
550        totmass_co2ice_ini = totmass_co2ice_ini + co2_ice(i,islope)*cell_area(i)*subslope_dist(i,islope)/cos(pi*def_slope_mean(islope)/180.)
551        if (co2_ice(i,islope) > 0.) is_co2ice_ini(i,islope) = .true.
552        if (d_co2ice(i,islope) < 0. .and. co2_ice(i,islope) > 0.) then
553            is_co2ice_sublim_ini(i,islope) = .true.
554            co2ice_sublim_surf_ini = co2ice_sublim_surf_ini + cell_area(i)*subslope_dist(i,islope)
555        endif
556        if (d_h2oice(i,islope) < 0.) then
557            if (h2o_ice(i,islope) > 0.) then
558                is_h2oice_sublim_ini(i,islope) = .true.
559                h2oice_ini_surf = h2oice_ini_surf + cell_area(i)*subslope_dist(i,islope)
560            else if (h2o_ice_depth(i,islope) > 0.) then
561                is_h2oice_sublim_ini(i,islope) = .true.
562            endif
563        endif
564    enddo
565enddo
566write(*,*) "Total initial surface of CO2 ice sublimating =", co2ice_sublim_surf_ini
567write(*,*) "Total initial surface of H2O ice sublimating =", h2oice_ini_surf
568
569totmass_adsco2_ini = 0.
570totmass_adsh2o = 0.
571if (adsorption_pem) then
572    do ig = 1,ngrid
573        do islope = 1,nslope
574            do l = 1,nsoilmx_PEM - 1
575                if (l == 1) then
576                   totmass_adsco2_ini = totmass_adsco2_ini + co2_adsorbed_phys(ig,l,islope)*(layer_PEM(l))* &
577                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
578                   totmass_adsh2o = totmass_adsh2o + h2o_adsorbed_phys(ig,l,islope)*(layer_PEM(l))* &
579                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
580                else
581                   totmass_adsco2_ini = totmass_adsco2_ini + co2_adsorbed_phys(ig,l,islope)*(layer_PEM(l) - layer_PEM(l-1))* &
582                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
583                   totmass_adsh2o = totmass_adsh2o + h2o_adsorbed_phys(ig,l,islope)*(layer_PEM(l) - layer_PEM(l-1))* &
584                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
585                endif
586            enddo
587        enddo
588    enddo
589    totmass_adsco2 = totmass_adsco2_ini
590    write(*,*) "Tot mass of CO2 in the regolith =", totmass_adsco2
591    write(*,*) "Tot mass of H2O in the regolith =", totmass_adsh2o
592endif ! adsorption
593
594!------------------------
595! I   Initialization
596!    I_i Compute orbit criterion
597!------------------------
598n_myear_leg = Max_iter_pem
599if (evol_orbit_pem) call orbit_param_criterion(i_myear,n_myear_leg)
600
601!-------------------------- END INITIALIZATION -------------------------
602
603!-------------------------------- RUN ----------------------------------
604!------------------------
605! II  Run
606!    II_a Update pressure, ice and tracers
607!------------------------
608write(*,*)
609write(*,*) '********* PEM cycle *********'
610i_myear_leg = 0
611if (layering_algo) then
612    allocate(h2o_ice_depth_old(ngrid,nslope),new_str(ngrid,nslope),new_lag(ngrid,nslope),current(ngrid,nslope))
613    new_str = .true.
614    new_lag = .true.
615    do islope = 1,nslope
616        do ig = 1,ngrid
617            current(ig,islope)%p => layerings_map(ig,islope)%top
618        enddo
619    enddo
620endif
621
622do while (i_myear_leg < n_myear_leg .and. i_myear < n_myear)
623! II.a.1. Compute updated global pressure
624    write(*,'(a,f10.2)') ' **** Iteration of the PEM leg (Martian years): ', i_myear_leg + 1
625    write(*,*) "> Updating the surface pressure"
626    ps_avg_global_old = ps_avg_global_new
627    do i = 1,ngrid
628        do islope = 1,nslope
629            ps_avg_global_new = ps_avg_global_new - CO2cond_ps*g*cell_area(i)*d_co2ice(i,islope)*subslope_dist(i,islope)/cos(pi*def_slope_mean(islope)/180.)/total_surface
630        enddo
631    enddo
632    if (adsorption_pem) then
633        do i = 1,ngrid
634            ps_avg_global_new = ps_avg_global_new - g*cell_area(i)*delta_co2_adsorbed(i)/total_surface
635        enddo
636    endif
637    ps_avg = ps_avg*ps_avg_global_new/ps_avg_global_old
638    write(*,*) 'Global average pressure old time step:',ps_avg_global_old
639    write(*,*) 'Global average pressure new time step:',ps_avg_global_new
640
641! II.a.2. Pressure timeseries (the values are deleted when unused because of big memory consumption)
642    write(*,*) "> Updating the surface pressure timeseries for the new pressure"
643    allocate(zplev_timeseries_old(ngrid,nlayer + 1,timelen))
644    do l = 1,nlayer + 1
645        do ig = 1,ngrid
646            zplev_timeseries_old(ig,l,:) = ap(l) + bp(l)*ps_timeseries(ig,:)
647        enddo
648    enddo
649    ps_timeseries(:,:) = ps_timeseries(:,:)*ps_avg_global_new/ps_avg_global_old
650    write(*,*) "> Updating the pressure levels timeseries for the new pressure"
651    allocate(zplev_timeseries_new(ngrid,nlayer + 1,timelen))
652    do l = 1,nlayer + 1
653        do ig = 1,ngrid
654            zplev_timeseries_new(ig,l,:) = ap(l) + bp(l)*ps_timeseries(ig,:)
655        enddo
656    enddo
657
658! II.a.3. Tracers timeseries
659    write(*,*) "> Updating the tracer VMR timeseries for the new pressure"
660    allocate(vmr_co2_PEM_phys(ngrid,timelen))
661    l = 1
662    do ig = 1,ngrid
663        do t = 1,timelen
664            ! H2O
665            q_h2o_PEM_phys(ig,t) = q_h2o_PEM_phys(ig,t)*(zplev_timeseries_old(ig,l,t) - zplev_timeseries_old(ig,l + 1,t))/ &
666                                   (zplev_timeseries_new(ig,l,t) - zplev_timeseries_new(ig,l + 1,t))
667            if (q_h2o_PEM_phys(ig,t) < 0) then
668                q_h2o_PEM_phys(ig,t) = 1.e-30
669            else if (q_h2o_PEM_phys(ig,t) > 1) then
670                q_h2o_PEM_phys(ig,t) = 1.
671            endif
672            ! CO2
673            q_co2_PEM_phys(ig,t) = q_co2_PEM_phys(ig,t)*(zplev_timeseries_old(ig,l,t) - zplev_timeseries_old(ig,l + 1,t))/ &
674                                   (zplev_timeseries_new(ig,l,t) - zplev_timeseries_new(ig,l + 1,t))                       &
675                                + ((zplev_timeseries_new(ig,l,t) - zplev_timeseries_new(ig,l + 1,t))                       &
676                                -  (zplev_timeseries_old(ig,l,t) - zplev_timeseries_old(ig,l + 1,t)))/                     &
677                                   (zplev_timeseries_new(ig,l,t) - zplev_timeseries_new(ig,l + 1,t))
678            if (q_co2_PEM_phys(ig,t) < 0) then
679                q_co2_PEM_phys(ig,t) = 1.e-30
680            else if (q_co2_PEM_phys(ig,t) > 1) then
681                q_co2_PEM_phys(ig,t) = 1.
682            endif
683            mmean = 1./(A*q_co2_PEM_phys(ig,t) + B)
684            vmr_co2_PEM_phys(ig,t) = q_co2_PEM_phys(ig,t)*mmean/m_co2
685        enddo
686    enddo
687    deallocate(zplev_timeseries_new,zplev_timeseries_old)
688
689!------------------------
690! II  Run
691!    II_b Evolution of ice
692!------------------------
693    allocate(zshift_surf(ngrid,nslope),zlag(ngrid,nslope))
694    if (layering_algo) then
695        h2o_ice_depth_old = h2o_ice_depth
696
697        allocate(d_h2oice_new(ngrid,nslope))
698        call stopping_crit_h2o(ngrid,nslope,cell_area,delta_h2o_adsorbed,delta_h2o_icetablesublim,h2o_ice,d_h2oice,S_atm_2_h2o,S_h2o_2_atm,S_atm_2_h2oice,S_h2oice_2_atm,stopCrit)
699        call balance_h2oice_reservoirs(ngrid,nslope,S_atm_2_h2o,S_h2o_2_atm,S_atm_2_h2oice,S_h2oice_2_atm,h2o_ice,d_h2oice,d_h2oice_new)
700   
701        do islope = 1,nslope
702            do ig = 1,ngrid
703                call make_layering(layerings_map(ig,islope),d_co2ice(ig,islope),d_h2oice_new(ig,islope),new_str(ig,islope),zshift_surf(ig,islope),new_lag(ig,islope),zlag(ig,islope),current(ig,islope)%p)
704                !call print_layering(layerings_map(ig,islope))
705                co2_ice(ig,islope) = 0.
706                h2o_ice(ig,islope) = 0.
707                h2o_ice_depth(ig,islope) = 0.
708                if (is_co2ice_str(layerings_map(ig,islope)%top)) then
709                    co2_ice(ig,islope) = layerings_map(ig,islope)%top%h_co2ice*rho_co2ice
710                else if (is_h2oice_str(layerings_map(ig,islope)%top)) then
711                    h2o_ice(ig,islope) = layerings_map(ig,islope)%top%h_h2oice*rho_h2oice
712                else
713                    call subsurface_ice_layering(layerings_map(ig,islope),h2o_ice_depth(ig,islope),h2o_ice(ig,islope),co2_ice(ig,islope))
714                endif
715            enddo
716        enddo
717        deallocate(d_h2oice_new)
718    else
719        zlag = 0.
720        call evol_h2o_ice(ngrid,nslope,cell_area,delta_h2o_adsorbed,delta_h2o_icetablesublim,h2o_ice,d_h2oice,zshift_surf,stopCrit)
721        call evol_co2_ice(ngrid,nslope,co2_ice,d_co2ice,zshift_surf)
722    endif
723
724!------------------------
725! II  Run
726!    II_c Flow of glaciers
727!------------------------
728    allocate(flag_co2flow(ngrid,nslope),flag_h2oflow(ngrid,nslope))
729    if (co2ice_flow .and. nslope > 1) then
730        call flow_co2glaciers(timelen,ngrid,nslope,iflat,subslope_dist,def_slope_mean,vmr_co2_PEM_phys, &
731                              ps_timeseries,ps_avg_global_old,ps_avg_global_new,co2_ice,flag_co2flow)
732        if (layering_algo) then
733            do islope = 1,nslope
734                do ig = 1,ngrid
735                    layerings_map(ig,islope)%top%h_co2ice = co2_ice(ig,islope)/rho_co2ice
736                enddo
737            enddo
738        endif
739    endif
740    if (h2oice_flow .and. nslope > 1) then
741        call flow_h2oglaciers(ngrid,nslope,iflat,subslope_dist,def_slope_mean,tsurf_avg,h2o_ice,flag_h2oflow)
742        if (layering_algo) then
743            do islope = 1,nslope
744                do ig = 1,ngrid
745                    layerings_map(ig,islope)%top%h_h2oice = h2o_ice(ig,islope)/rho_h2oice
746                enddo
747            enddo
748        endif
749    endif
750
751!------------------------
752! II  Run
753!    II_d Update surface and soil temperatures
754!------------------------
755! II_d.1 Update Tsurf
756    call update_tsurf_nearest_baresoil(ngrid,nslope,iim,jjm_value,tsurf_avg,co2_ice,is_co2ice_ini,co2ice_disappeared)
757
758    if (soil_pem) then
759! II_d.2 Shifting soil temperature to surface
760        call shift_tsoil2surf(ngrid,nsoilmx_PEM,nslope,zshift_surf,zlag,tsurf_avg,tsoil_PEM)
761
762! II_d.3 Update soil temperature
763        write(*,*)"> Updating soil temperature profile"
764        allocate(tsoil_avg_old(ngrid,nsoilmx_PEM),tsoil_PEM_timeseries_old(ngrid,nsoilmx_PEM,nslope,timelen))
765        tsoil_PEM_timeseries_old = tsoil_PEM_timeseries
766        do islope = 1,nslope
767            tsoil_avg_old = tsoil_PEM(:,:,islope)
768            call compute_tsoil_pem(ngrid,nsoilmx_PEM,.true.,TI_PEM(:,:,islope),timestep,tsurf_avg(:,islope),tsoil_PEM(:,:,islope))
769            call compute_tsoil_pem(ngrid,nsoilmx_PEM,.false.,TI_PEM(:,:,islope),timestep,tsurf_avg(:,islope),tsoil_PEM(:,:,islope))
770
771            do t = 1,timelen
772                do ig = 1,ngrid
773                    do isoil = 1,nsoilmx_PEM
774                        ! Update of soil temperature timeseries which is needed to compute the water soil density timeseries
775                        tsoil_PEM_timeseries(ig,isoil,islope,t) = tsoil_PEM_timeseries(ig,isoil,islope,t)*tsoil_PEM(ig,isoil,islope)/tsoil_avg_old(ig,isoil)
776                        ! Update of watersoil density
777                        watersoil_density_PEM_timeseries(ig,isoil,islope,t) = exp(beta_clap_h2o/tsoil_PEM_timeseries(ig,isoil,islope,t) + alpha_clap_h2o)/tsoil_PEM_timeseries(ig,isoil,islope,t)*mmol(igcm_h2o_vap)/(mugaz*r)
778                        if (isnan(tsoil_PEM(ig,isoil,islope))) call abort_pem("PEM - Update Tsoil","NaN detected in tsoil_PEM",1)
779                    enddo
780                enddo
781            enddo
782        enddo
783        watersoil_density_PEM_avg = sum(watersoil_density_PEM_timeseries,4)/timelen
784        deallocate(tsoil_avg_old)
785
786! II_d.4 Update the ice table
787        allocate(icetable_thickness_old(ngrid,nslope),ice_porefilling_old(ngrid,nsoilmx_PEM,nslope),icetable_depth_old(ngrid,nslope))
788        if (icetable_equilibrium) then
789            write(*,*) "> Updating ice table (equilibrium method)"
790            icetable_thickness_old = icetable_thickness
791            call computeice_table_equilibrium(ngrid,nslope,nsoilmx_PEM,watercaptag,watersurf_density_avg,watersoil_density_PEM_avg,TI_PEM(:,1,:),icetable_depth,icetable_thickness)
792            call compute_massh2o_exchange_ssi(ngrid,nslope,nsoilmx_PEM,icetable_thickness_old,ice_porefilling_old,tsurf_avg,tsoil_PEM,delta_h2o_icetablesublim) ! Mass of H2O exchange between the ssi and the atmosphere
793        else if (icetable_dynamic) then
794            write(*,*) "> Updating ice table (dynamic method)"
795            ice_porefilling_old = ice_porefilling
796            icetable_depth_old = icetable_depth
797            allocate(porefill(nsoilmx_PEM))
798            do ig = 1,ngrid
799                do islope = 1,nslope
800                    call dyn_ss_ice_m(icetable_depth(ig,islope),tsurf_avg(ig,islope),tsoil_PEM(ig,:,islope),nsoilmx_PEM,TI_PEM(ig,1,nslope),ps_avg(ig),(/sum(q_h2o_PEM_phys(ig,:))/size(q_h2o_PEM_phys,2)/),ice_porefilling(ig,:,islope),porefill,ssi_depth)
801                    icetable_depth(ig,islope) = ssi_depth
802                    ice_porefilling(ig,:,islope) = porefill
803                enddo
804            enddo
805            deallocate(porefill)
806            call compute_massh2o_exchange_ssi(ngrid,nslope,nsoilmx_PEM,icetable_thickness_old,ice_porefilling_old,tsurf_avg,tsoil_PEM,delta_h2o_icetablesublim) ! Mass of H2O exchange between the ssi and the atmosphere
807        endif
808        deallocate(icetable_thickness_old,ice_porefilling_old)
809
810! II_d.5 Update the soil thermal properties
811        call update_soil_thermalproperties(ngrid,nslope,nsoilmx_PEM,d_h2oice,h2o_ice,ps_avg_global_new,icetable_depth,icetable_thickness,ice_porefilling,icetable_equilibrium,icetable_dynamic,TI_PEM)
812
813! II_d.6 Update the mass of the regolith adsorbed
814        totmass_adsco2 = 0.
815        totmass_adsh2o = 0.
816        if (adsorption_pem) then
817            call regolith_adsorption(ngrid,nslope,nsoilmx_PEM,timelen,d_h2oice,d_co2ice,h2o_ice,co2_ice, &
818                                     tsoil_PEM,TI_PEM,ps_timeseries,q_co2_PEM_phys,q_h2o_PEM_phys,       &
819                                     h2o_adsorbed_phys,delta_h2o_adsorbed,co2_adsorbed_phys,delta_co2_adsorbed)
820            do ig = 1,ngrid
821                do islope = 1,nslope
822                    do l = 1,nsoilmx_PEM
823                        if (l == 1) then
824                            totmass_adsco2 = totmass_adsco2 + co2_adsorbed_phys(ig,l,islope)*(layer_PEM(l))* &
825                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
826                            totmass_adsh2o = totmass_adsh2o + h2o_adsorbed_phys(ig,l,islope)*(layer_PEM(l))* &
827                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
828                        else
829                            totmass_adsco2 = totmass_adsco2 + co2_adsorbed_phys(ig,l,islope)*(layer_PEM(l) - layer_PEM(l - 1))* &
830                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
831                            totmass_adsh2o = totmass_adsh2o + h2o_adsorbed_phys(ig,l,islope)*(layer_PEM(l) - layer_PEM(l - 1))* &
832                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
833                        endif
834                    enddo
835                enddo
836            enddo
837            write(*,*) "Total mass of CO2 in the regolith =", totmass_adsco2
838            write(*,*) "Total mass of H2O in the regolith =", totmass_adsh2o
839        endif
840    endif !soil_pem
841    deallocate(zshift_surf,zlag)
842
843!------------------------
844! II  Run
845!    II_e Outputs
846!------------------------
847    call writediagpem(ngrid,'ps_avg','Global average pressure','Pa',0,(/ps_avg_global_new/))
848    do islope = 1,nslope
849        write(str2(1:2),'(i2.2)') islope
850        call writediagpem(ngrid,'h2o_ice_slope'//str2,'H2O ice','kg.m-2',2,h2o_ice(:,islope))
851        call writediagpem(ngrid,'co2_ice_slope'//str2,'CO2 ice','kg.m-2',2,co2_ice(:,islope))
852        call writediagpem(ngrid,'d_h2oice_slope'//str2,'H2O ice tend','kg.m-2.year-1',2,d_h2oice(:,islope))
853        call writediagpem(ngrid,'d_co2ice_slope'//str2,'CO2 ice tend','kg.m-2.year-1',2,d_co2ice(:,islope))
854        call writediagpem(ngrid,'Flow_co2ice_slope'//str2,'CO2 ice flow','Boolean',2,real(flag_co2flow(:,islope)))
855        call writediagpem(ngrid,'Flow_h2oice_slope'//str2,'H2O ice flow','Boolean',2,real(flag_h2oflow(:,islope)))
856        call writediagpem(ngrid,'tsurf_slope'//str2,'tsurf','K',2,tsurf_avg(:,islope))
857        if (icetable_equilibrium) then
858            call writediagpem(ngrid,'ssi_depth_slope'//str2,'ice table depth','m',2,icetable_depth(:,islope))
859            call writediagpem(ngrid,'ssi_thick_slope'//str2,'ice table thickness','m',2,icetable_thickness(:,islope))
860        else if (icetable_dynamic) then
861            call writediagpem(ngrid,'ssi_depth_slope'//str2,'ice table depth','m',2,icetable_depth(:,islope))
862        endif
863
864        if (soil_pem) then
865            call writediagsoilpem(ngrid,'tsoil_PEM_slope'//str2,'tsoil','K',3,tsoil_PEM(:,:,islope))
866            call writediagsoilpem(ngrid,'inertiesoil_PEM_slope'//str2,'TI','K',3,TI_PEM(:,:,islope))
867            if (icetable_dynamic) call writediagsoilpem(ngrid,'ice_porefilling'//str2,'ice pore filling','-',3,ice_porefilling(:,:,islope))
868            if (adsorption_pem) then
869                call writediagsoilpem(ngrid,'co2_ads_slope'//str2,'co2_ads','K',3,co2_adsorbed_phys(:,:,islope))
870                call writediagsoilpem(ngrid,'h2o_ads_slope'//str2,'h2o_ads','K',3,h2o_adsorbed_phys(:,:,islope))
871            endif
872        endif
873    enddo
874    deallocate(flag_co2flow,flag_h2oflow)
875
876    ! Checking mass balance for CO2
877    if (abs(CO2cond_ps - 1.) < 1.e-10) then
878        totmass_co2ice = 0.
879        totmass_atmco2 = 0.
880        do ig = 1,ngrid
881            totmass_atmco2 = totmass_atmco2 + cell_area(ig)*ps_avg(ig)/g
882            do islope = 1,nslope
883                totmass_co2ice = totmass_co2ice + co2_ice(ig,islope)*cell_area(ig)*subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)
884            enddo
885        enddo
886        totmass_ini = max(totmass_atmco2_ini + totmass_co2ice_ini + totmass_adsco2_ini,1.e-10)
887        write(*,'(a,f8.3,a)') " > Relative total CO2 mass balance = ", 100.*(totmass_atmco2 + totmass_co2ice + totmass_adsco2 - totmass_atmco2_ini - totmass_co2ice_ini - totmass_adsco2_ini)/totmass_ini, ' %'
888        if (abs((totmass_atmco2 + totmass_co2ice + totmass_adsco2 - totmass_atmco2_ini - totmass_co2ice_ini - totmass_adsco2_ini)/totmass_ini) > 0.01) then
889            write(*,*) '  /!\ Warning: mass balance is not conserved!'
890            totmass_ini = max(totmass_atmco2_ini,1.e-10)
891            write(*,*) '       Atmospheric CO2 mass balance = ', 100.*(totmass_atmco2 - totmass_atmco2_ini)/totmass_ini, ' %'
892            totmass_ini = max(totmass_co2ice_ini,1.e-10)
893            write(*,*) '       CO2 ice mass balance         = ', 100.*(totmass_co2ice - totmass_co2ice_ini)/totmass_ini, ' %'
894            totmass_ini = max(totmass_adsco2_ini,1.e-10)
895            write(*,*) '       Adsorbed CO2 mass balance    = ', 100.*(totmass_adsco2 - totmass_adsco2_ini)/totmass_ini, ' %'
896        endif
897    endif
898
899!------------------------
900! II  Run
901!    II_f Update the tendencies
902!------------------------
903    call recomp_tend_co2(ngrid,nslope,timelen,d_co2ice,d_co2ice_ini,co2_ice,emis,vmr_co2_PCM,vmr_co2_PEM_phys,ps_timeseries,ps_avg_global_old,ps_avg_global_new)
904    write(*,*) "> Updating the H2O sub-surface ice tendency due to lag layer"
905    if (layering_algo) then
906        do ig = 1,ngrid
907            do islope = 1,nslope
908                if (is_h2oice_sublim_ini(ig,islope) .and. h2o_ice_depth(ig,islope) > 0.) call recomp_tend_h2o(h2o_ice_depth_old(ig,islope),h2o_ice_depth(ig,islope),tsurf_avg(ig,islope),tsoil_PEM_timeseries_old(ig,:,islope,:),tsoil_PEM_timeseries(ig,:,islope,:),d_h2oice(ig,islope))
909            enddo
910        enddo
911!~     else
912!~         do ig = 1,ngrid
913!~             do islope = 1,nslope
914!~                 call recomp_tend_h2o(icetable_depth_old(ig,islope),icetable_depth(ig,islope),tsurf_avg(ig,islope),tsoil_PEM_timeseries_old(ig,:,islope,:),tsoil_PEM_timeseries(ig,:,islope,:),d_h2oice(ig,islope))
915!~             enddo
916!~         enddo
917    endif
918    if (soil_pem) deallocate(icetable_depth_old,tsoil_PEM_timeseries_old)
919    deallocate(vmr_co2_PEM_phys)
920
921!------------------------
922! II  Run
923!    II_g Checking the stopping criterion
924!------------------------
925    write(*,*) "> Checking the stopping criteria"
926    call stopping_crit_h2o_ice(cell_area,h2oice_ini_surf,is_h2oice_sublim_ini,h2o_ice,stopCrit,ngrid)
927    call stopping_crit_co2(cell_area,co2ice_sublim_surf_ini,is_co2ice_sublim_ini,co2_ice,stopCrit,ngrid,ps_avg_global_ini,ps_avg_global_new,nslope)
928    i_myear_leg = i_myear_leg + dt
929    i_myear = i_myear + dt
930    if (stopCrit%stop_code() == 0 .and. i_myear_leg >= n_myear_leg) stopCrit%max_iter_reached = .true.
931    if (stopCrit%stop_code() == 0 .and. i_myear >= n_myear) stopCrit%max_years_reached = .true.
932    call system_clock(c2)
933    if (stopCrit%stop_code() == 0 .and. timewall .and. real((c2 - c1)/cr) >= timelimit - antetime) stopCrit%time_limit_reached = .true.
934    if (stopCrit%is_any_set()) then
935        write(*,*) stopCrit%stop_message()
936        exit
937    else
938        write(*,'(a,f10.2,a)') ' **** The chained simulation has run for ',i_myear,' Martian years.'
939        write(*,*) '**** The PEM can continue!'
940        write(*,*) '****'
941    endif
942enddo ! big time iteration loop of the pem
943deallocate(vmr_co2_PCM,q_co2_PEM_phys,q_h2o_PEM_phys,delta_co2_adsorbed)
944deallocate(watersoil_density_PEM_avg,watersurf_density_avg)
945deallocate(ps_timeseries,tsoil_PEM_timeseries,watersoil_density_PEM_timeseries)
946deallocate(co2ice_disappeared,delta_h2o_adsorbed,delta_h2o_icetablesublim)
947deallocate(d_co2ice,d_co2ice_ini,d_h2oice)
948deallocate(is_co2ice_ini,is_co2ice_sublim_ini,is_h2oice_sublim_ini)
949if (layering_algo) deallocate(h2o_ice_depth_old,new_str,new_lag,current)
950!------------------------------ END RUN --------------------------------
951
952!------------------------------- OUTPUT --------------------------------
953!------------------------
954! III Output
955!    III_a Update surface values for the PCM start files
956!------------------------
957write(*,*)
958write(*,*) '********* PEM finalization *********'
959! III_a.1 Ice update for start file
960write(*,*) '> Reconstructing perennial ice and frost for the PCM'
961watercap = 0.
962perennial_co2ice = co2_ice
963do ig = 1,ngrid
964    ! H2O ice metamorphism
965    !if (metam_h2oice .and. sum(qsurf(ig,igcm_h2o_ice,:)*subslope_dist(ig,:)/cos(pi*def_slope_mean(:)/180.)) > metam_h2oice_threshold) then
966    !    h2o_ice(ig,:) = h2o_ice(ig,:) + qsurf(ig,igcm_h2o_ice,:) - metam_h2oice_threshold
967    !    qsurf(ig,igcm_h2o_ice,:) = metam_h2oice_threshold
968    !endif
969
970    ! Is H2O ice still considered as an infinite reservoir for the PCM?
971    if (sum(h2o_ice(ig,:)*subslope_dist(ig,:)/cos(pi*def_slope_mean(:)/180.)) > inf_h2oice_threshold) then
972        ! There is enough ice to be considered as an infinite reservoir
973        watercaptag(ig) = .true.
974    else
975        ! Too little ice to be considered as an infinite reservoir so ice is transferred to the frost
976        watercaptag(ig) = .false.
977        qsurf(ig,igcm_h2o_ice,:) = qsurf(ig,igcm_h2o_ice,:) + h2o_ice(ig,:)
978        h2o_ice(ig,:) = 0.
979    endif
980
981    ! CO2 ice metamorphism
982    !if (metam_co2ice .and. sum(qsurf(ig,igcm_co2,:)*subslope_dist(ig,:)/cos(pi*def_slope_mean(:)/180.)) > metam_co2ice_threshold) then
983    !    perennial_co2ice(ig,:) = perennial_co2ice(ig,:) + qsurf(ig,igcm_co2,:) - metam_co2ice_threshold
984    !    qsurf(ig,igcm_co2,:) = metam_co2ice_threshold
985    !endif
986enddo
987
988! III.a.3. Tsurf update for start file
989write(*,*) '> Reconstructing the surface temperature for the PCM'
990tsurf = tsurf_avg + tsurf_dev
991deallocate(tsurf_dev)
992
993! III_a.4 Tsoil update for start file
994if (soil_pem) then
995    write(*,*) '> Reconstructing the soil temperature profile for the PCM'
996    inertiesoil = TI_PEM(:,:nsoilmx,:)
997    ! Tsurf has evolved and so the soil temperature profile needs to be adapted to match this new value
998    do isoil = 1,nsoilmx
999        tsoil_dev(:,isoil,:) = tsoil_dev(:,isoil,:)*(tsurf_avg(:,:) - tsoil_PEM(:,1,:))/tsoil_dev(:,1,:)
1000    enddo
1001    tsoil = tsoil_PEM(:,1:nsoilmx,:) + tsoil_dev
1002    flux_geo = fluxgeo
1003endif
1004deallocate(tsurf_avg,tsoil_dev)
1005
1006! III_a.5 Pressure update for start file
1007write(*,*) '> Reconstructing the pressure for the PCM'
1008allocate(ps_start(ngrid))
1009! The pressure deviation is rescaled as well to avoid disproportionate oscillations in case of huge average pressure drop
1010ps_start = ps_avg + ps_dev*ps_avg_global_new/ps_avg_global_ini
1011deallocate(ps_avg,ps_dev)
1012
1013! III_a.6 Tracers update for start file
1014write(*,*) '> Reconstructing the tracer VMR for the PCM'
1015allocate(zplev_start0(ngrid,nlayer + 1),zplev_new(ngrid,nlayer + 1))
1016do l = 1,nlayer + 1
1017    zplev_start0(:,l) = ap(l) + bp(l)*ps_start0
1018    zplev_new(:,l) = ap(l) + bp(l)*ps_start
1019enddo
1020
1021do nnq = 1,nqtot
1022    if (noms(nnq) /= "co2") then
1023        do l = 1,llm - 1
1024            do ig = 1,ngrid
1025                q(ig,l,nnq) = q(ig,l,nnq)*(zplev_start0(ig,l) - zplev_start0(ig,l + 1))/(zplev_new(ig,l) - zplev_new(ig,l + 1))
1026            enddo
1027            q(:,llm,nnq) = q(:,llm - 1,nnq)
1028        enddo
1029    else
1030        do l = 1,llm - 1
1031            do ig = 1,ngrid
1032                q(ig,l,nnq) = q(ig,l,nnq)*(zplev_start0(ig,l) - zplev_start0(ig,l + 1))/(zplev_new(ig,l) - zplev_new(ig,l + 1)) &
1033                              + ((zplev_new(ig,l) - zplev_new(ig,l + 1)) - (zplev_start0(ig,l) - zplev_start0(ig,l + 1)))/(zplev_new(ig,l) - zplev_new(ig,l + 1))
1034            enddo
1035            q(:,llm,nnq) = q(:,llm - 1,nnq)
1036        enddo
1037    endif
1038enddo
1039deallocate(zplev_start0)
1040
1041! Conserving the tracers mass for start file
1042do nnq = 1,nqtot
1043    do ig = 1,ngrid
1044        do l = 1,llm - 1
1045            if (q(ig,l,nnq) > 1 .and. (noms(nnq) /= "dust_number") .and. (noms(nnq) /= "ccn_number") .and. (noms(nnq) /= "stormdust_number") .and. (noms(nnq) /= "topdust_number")) then
1046                extra_mass = (q(ig,l,nnq) - 1)*(zplev_new(ig,l) - zplev_new(ig,l + 1))
1047                q(ig,l,nnq) = 1.
1048                q(ig,l + 1,nnq) = q(ig,l + 1,nnq) + extra_mass*(zplev_new(ig,l + 1) - zplev_new(ig,l + 2))
1049                write(*,*) 'extra ',noms(nnq),extra_mass, noms(nnq) /= "dust_number",noms(nnq) /= "ccn_number"
1050            endif
1051            if (q(ig,l,nnq) < 0) q(ig,l,nnq) = 1.e-30
1052        enddo
1053    enddo
1054enddo
1055deallocate(zplev_new)
1056
1057! III_a.7 Albedo update for start file
1058write(*,*) '> Reconstructing the albedo for the PCM'
1059do ig = 1,ngrid
1060    if (latitude(ig) < 0.) then
1061        icap = 2 ! Southern hemisphere
1062    else
1063        icap = 1 ! Northern hemisphere
1064    endif
1065    do islope = 1,nslope
1066        ! Bare ground
1067        albedo(ig,:,islope) = albedodat(ig)
1068        emis(ig,islope) = emissiv
1069
1070        ! CO2 ice/frost is treated after H20 ice/frost because it is considered dominant
1071        ! H2O ice
1072        if (h2o_ice(ig,islope) > 0.) then
1073            albedo(ig,:,islope) = albedo_h2o_cap
1074            emis(ig,islope) = 1.
1075        endif
1076        ! CO2 ice
1077        if (co2_ice(ig,islope) > 0.) then
1078            albedo(ig,:,islope) = albedo_perennialco2(icap)
1079            emis(ig,islope) = emisice(icap)
1080        endif
1081        ! H2O frost
1082        if (qsurf(ig,igcm_h2o_ice,islope) > 0.) then
1083            albedo(ig,:,islope) = albedo_h2o_frost
1084            emis(ig,islope) = 1.
1085        endif
1086        ! CO2 frost
1087        if (qsurf(ig,igcm_co2,islope) > 0.) then
1088            albedo(ig,:,islope) = albedice(icap)
1089            emis(ig,islope) = emisice(icap)
1090        endif
1091    enddo
1092enddo
1093
1094! III_a.8 Orbital parameters update for start file
1095write(*,*) '> Setting the new orbital parameters'
1096if (evol_orbit_pem) call recomp_orb_param(i_myear,i_myear_leg)
1097
1098!------------------------
1099! III Output
1100!    III_b Write "restart.nc" and "restartfi.nc"
1101!------------------------
1102! III_b.1 Write "restart.nc"
1103ptimestep = iphysiq*daysec/real(day_step)/nsplit_phys ! dtphys/nsplit_phys
1104pday = day_ini
1105ztime_fin = time_phys
1106#ifndef CPP_1D
1107    write(*,*) '> Writing "restart.nc"'
1108    ! Correction on teta due to surface pressure changes
1109    allocate(pdyn(ip1jmp1))
1110    call gr_fi_dyn(1,ngrid,iip1,jjp1,ps_start0/ps_start,pdyn)
1111    do i = 1,ip1jmp1
1112        teta(i,:) = teta(i,:)*pdyn(i)**rcp
1113    enddo
1114    ! Correction on atmospheric pressure
1115    allocate(p(ip1jmp1,nlayer + 1))
1116    call gr_fi_dyn(1,ngrid,iip1,jjp1,ps_start,pdyn)
1117    call pression(ip1jmp1,ap,bp,pdyn,p)
1118    ! Correction on the mass of atmosphere
1119    call massdair(p,masse)
1120    call dynredem0("restart.nc",day_ini,phis)
1121    call dynredem1("restart.nc",time_0,vcov,ucov,teta,q,masse,pdyn)
1122    deallocate(ap,bp,p,pdyn)
1123#else
1124    write(*,*) '> Writing "restart1D.txt"'
1125    call writerestart1D('restart1D.txt',ps_start(1),tsurf(1,:),nlayer,size(tsurf,2),teta,ucov,vcov,nq,noms,qsurf(1,:,:),q)
1126#endif
1127deallocate(ps_start0,ps_start)
1128
1129! III_b.2 Write the "restartfi.nc"
1130write(*,*) '> Writing "restartfi.nc"'
1131call physdem0("restartfi.nc",longitude,latitude,nsoilmx,ngrid, &
1132              nlayer,nq,ptimestep,pday,0.,cell_area,albedodat, &
1133              inertiedat,def_slope,subslope_dist)
1134call physdem1("restartfi.nc",nsoilmx,ngrid,nlayer,nq,nqsoil,      &
1135              ptimestep,ztime_fin,tsurf,tsoil,inertiesoil,        &
1136              albedo,emis,q2,qsurf,qsoil,tauscaling,totcloudfrac, &
1137              wstar,watercap,perennial_co2ice)
1138
1139!------------------------
1140! III Output
1141!    III_c Write the "restartpem.nc"
1142!------------------------
1143write(*,*) '> Writing "restartpem.nc"'
1144if (layering_algo) nb_str_max = get_nb_str_max(layerings_map,ngrid,nslope) ! Get the maximum number of "stratum" in the layerings_mapication (layerings)
1145call pemdem0("restartpem.nc",longitude,latitude,cell_area,ngrid,nslope,def_slope,subslope_dist)
1146call pemdem1("restartpem.nc",i_myear,nsoilmx_PEM,ngrid,nslope,tsoil_PEM,TI_PEM,icetable_depth,icetable_thickness,ice_porefilling, &
1147             co2_adsorbed_phys,h2o_adsorbed_phys,h2o_ice,layerings_map)
1148
1149call info_PEM(i_myear_leg,stopCrit%stop_code(),i_myear,n_myear)
1150
1151write(*,*)
1152write(*,*) '****** PEM final information *******'
1153write(*,'(a,f16.4,a)') " + The PEM leg has run for ", i_myear_leg, " Martian years."
1154write(*,'(a,f16.4,a,f16.4,a)') " + The chained simulation has run for ", i_myear, " Martian years =", i_myear*convert_years, " Earth years."
1155write(*,'(a,f16.4,a)') " + The reached date is now ", (year_bp_ini + i_myear)*convert_years, " Earth years."
1156write(*,*) "+ PEM: so far, so good!"
1157write(*,*) '************************************'
1158
1159if (layering_algo) then
1160    do islope = 1,nslope
1161        do i = 1,ngrid
1162            call del_layering(layerings_map(i,islope))
1163        enddo
1164    enddo
1165endif
1166deallocate(q,longitude,latitude,cell_area,tsoil_PEM)
1167deallocate(co2_ice,h2o_ice,layerings_map)
1168!----------------------------- END OUTPUT ------------------------------
1169
1170END PROGRAM pem
Note: See TracBrowser for help on using the repository browser.