source: trunk/LMDZ.COMMON/libf/evolution/pem.F90 @ 3921

Last change on this file since 3921 was 3912, checked in by jbclement, 5 months ago

Mars PCM 1D:
Prescription of the atmospheric water ice profile in 1D. The boolean 'ctrl_h2oice' activates the option, the file "profile_ref_h2ovap" defines the prescribed profile and the value 'relaxtime_h2oice', if positive, activates the relaxation and gives the constant of time.
JBC

File size: 66.5 KB
Line 
1!------------------------
2! I   Initialization
3!    I_a Read the "run.def"
4!    I_b Read the "start.nc" and "startfi.nc"
5!    I_c Subslope parametrisation
6!    I_d Read the PCM data and convert them to the physical grid
7!    I_e Initialization of the PEM variable and soil
8!    I_f Compute tendencies
9!    I_g Compute global surface pressure
10!    I_h Read the "startpem.nc"
11!    I_i Compute orbit criterion
12
13! II  Run
14!    II_a Update pressure, ice and tracers
15!    II_b Evolution of ice
16!    II_c Flow of glaciers
17!    II_d Update surface and soil temperatures
18!    II_e Outputs
19!    II_f Update the tendencies
20!    II_g Checking the stopping criterion
21
22! III Output
23!    III_a Update surface values for the PCM start files
24!    III_b Write the "restart.nc" and "restartfi.nc"
25!    III_c Write the "restartpem.nc"
26!------------------------
27
28PROGRAM pem
29
30use phyetat0_mod,               only: phyetat0
31use phyredem,                   only: physdem0, physdem1
32use netcdf,                     only: nf90_open, NF90_NOWRITE, nf90_get_var, nf90_inq_varid, nf90_close
33use turb_mod,                   only: q2, wstar
34use comslope_mod,               only: nslope, def_slope, def_slope_mean, subslope_dist, iflat, ini_comslope_h
35use logic_mod,                  only: iflag_phys
36use mod_const_mpi,              only: COMM_LMDZ
37use infotrac
38use geometry_mod,               only: latitude_deg
39use conf_pem_mod,               only: conf_pem
40use pemredem,                   only: pemdem0, pemdem1
41use glaciers_mod,               only: flow_co2glaciers, flow_h2oglaciers, co2ice_flow, h2oice_flow, inf_h2oice_threshold, &
42                                      metam_h2oice_threshold, metam_co2ice_threshold, metam_h2oice, metam_co2ice, computeTcondCO2
43use stopping_crit_mod,          only: stopping_crit_h2o_ice, stopping_crit_co2
44use constants_marspem_mod,      only: alpha_clap_co2, beta_clap_co2, alpha_clap_h2o, beta_clap_h2o, m_co2, m_noco2
45use evol_ice_mod,               only: evol_co2_ice, evol_h2o_ice
46use comsoil_h_PEM,              only: soil_pem, ini_comsoil_h_PEM, end_comsoil_h_PEM, nsoilmx_PEM, &
47                                      TI_PEM,               & ! Soil thermal inertia
48                                      tsoil_PEM, layer_PEM, & ! Soil temp, number of subsurface layers, soil mid layer depths
49                                      fluxgeo                 ! Geothermal flux for the PEM and PCM
50use adsorption_mod,             only: regolith_adsorption, adsorption_pem,        & ! Bool to check if adsorption, main subroutine
51                                      ini_adsorption_h_PEM, end_adsorption_h_PEM, & ! Allocate arrays
52                                      co2_adsorbed_phys, h2o_adsorbed_phys          ! Mass of co2 and h2O adsorbed
53use time_evol_mod,              only: dt, evol_orbit_pem, Max_iter_pem, convert_years, year_bp_ini
54use orbit_param_criterion_mod,  only: orbit_param_criterion
55use recomp_orb_param_mod,       only: recomp_orb_param
56use ice_table_mod,              only: icetable_depth, icetable_thickness, end_ice_table, ice_porefilling, &
57                                      ini_ice_table, icetable_equilibrium, icetable_dynamic, computeice_table_equilibrium, compute_massh2o_exchange_ssi
58use soil_thermalproperties_mod, only: update_soil_thermalproperties
59use time_phylmdz_mod,           only: daysec, dtphys
60use abort_pem_mod,              only: abort_pem
61use soil_settings_PEM_mod,      only: soil_settings_PEM
62use compute_tend_mod,           only: compute_tend
63use info_PEM_mod,               only: info_PEM
64use get_timelen_PCM_mod,        only: get_timelen_PCM
65use pemetat0_mod,               only: pemetat0
66use read_data_PCM_mod,          only: read_data_PCM
67use recomp_tend_mod,            only: recomp_tend_co2, recomp_tend_h2o
68use compute_soiltemp_mod,       only: compute_tsoil_pem, shift_tsoil2surf
69use writediagpem_mod,           only: writediagpem, writediagsoilpem
70use co2condens_mod,             only: CO2cond_ps
71use layering_mod,               only: layering, del_layering, make_layering, layering_algo, subsurface_ice_layering, &
72                                      ptrarray, stratum, get_nb_str_max, nb_str_max, is_dust_lag, is_co2ice_str, is_h2oice_str
73use dyn_ss_ice_m_mod,           only: dyn_ss_ice_m
74use parse_args_mod,             only: parse_args
75use job_timelimit_mod,          only: timelimit, antetime, timewall
76use paleoclimate_mod,           only: h2o_ice_depth, zdqsdif_ssi_tot
77use surf_temp,                  only: update_tsurf_nearest_baresoil
78
79#ifndef CPP_STD
80    use comsoil_h,          only: tsoil, nsoilmx, ini_comsoil_h, inertiedat, mlayer, inertiesoil, flux_geo, nqsoil, qsoil
81    use surfdat_h,          only: tsurf, qsurf, emis, emissiv, emisice, ini_surfdat_h,   &
82                                  albedodat, albedice, albedo_h2o_frost, albedo_h2o_cap, &
83                                  zmea, zstd, zsig, zgam, zthe, frost_albedo_threshold,  &
84                                  watercap, watercaptag, perennial_co2ice, albedo_perennialco2
85    use dimradmars_mod,     only: totcloudfrac, albedo
86    use dust_param_mod,     only: tauscaling
87    use tracer_mod,         only: noms, igcm_h2o_ice, igcm_co2, mmol, igcm_h2o_vap ! Tracer names and molar masses
88    use mod_phys_lmdz_para, only: is_parallel, is_sequential, is_mpi_root, is_omp_root, is_master
89    use planete_h,          only: aphelie, periheli, year_day, peri_day, obliquit, iniorbit
90    use surfini_mod,        only: surfini
91    use comcstfi_h,         only: mugaz
92#else
93    use tracer_h,           only: noms, igcm_h2o_ice, igcm_co2 ! Tracer names
94    use phys_state_var_mod, only: cloudfrac, totcloudfrac, albedo_snow_SPECTV,HICE,RNAT,   &
95                                  PCTSRF_SIC, TSLAB, TSEA_ICE, SEA_ICE, ALBEDO_BAREGROUND, &
96                                  ALBEDO_CO2_ICE_SPECTV, phys_state_var_init
97    use aerosol_mod,        only: iniaerosol
98    use planete_mod,        only: apoastr, periastr, year_day, peri_day, obliquit
99    use comcstfi_mod,       only: pi, rad, g, r, cpp, rcp, mugaz
100#endif
101
102#ifndef CPP_1D
103    use comconst_mod,             only: pi, rad, g, r, cpp, rcp => kappa
104    use iniphysiq_mod,            only: iniphysiq
105    use control_mod,              only: iphysiq, day_step, nsplit_phys
106#else
107    use comcstfi_h,               only: pi, rad, g, r, cpp, rcp
108    use time_phylmdz_mod,         only: iphysiq, steps_per_sol
109    use regular_lonlat_mod,       only: init_regular_lonlat
110    use physics_distribution_mod, only: init_physics_distribution
111    use mod_grid_phy_lmdz,        only: regular_lonlat
112    use init_testphys1d_mod,      only: init_testphys1d
113    use comvert_mod,              only: ap, bp
114    use writerestart1D_mod,       only: writerestart1D
115#endif
116
117implicit none
118
119include "dimensions.h"
120include "paramet.h"
121include "comgeom.h"
122include "iniprint.h"
123
124! Same variable names as in the PCM
125integer, parameter :: ngridmx = 2 + (jjm - 1)*iim - 1/jjm
126integer, parameter :: nlayer = llm ! Number of vertical layer
127integer            :: ngrid        ! Number of physical grid points
128integer            :: nq           ! Number of tracer
129integer            :: day_ini      ! First day of the simulation
130real               :: pday         ! Physical day
131real               :: time_phys    ! Same as in PCM
132real               :: ptimestep    ! Same as in PCM
133real               :: ztime_fin    ! Same as in PCM
134
135! Variables to read "start.nc"
136character(*), parameter :: start_name = "start.nc" ! Name of the file used to initialize the PEM
137
138! Dynamic variables
139real, dimension(ip1jm,llm)          :: vcov          ! vents covariants
140real, dimension(ip1jmp1,llm)        :: ucov          ! vents covariants
141real, dimension(ip1jmp1,llm)        :: teta          ! Potential temperature
142real, dimension(:,:,:), allocatable :: q             ! champs advectes
143real, dimension(:),     allocatable :: pdyn          ! pressure for the dynamic grid
144real, dimension(:),     allocatable :: ps_start      ! surface pressure in the start file
145real, dimension(:),     allocatable :: ps_start0     ! surface pressure in the start file at the beginning
146real, dimension(:),     allocatable :: ps_avg        ! (ngrid) Average surface pressure
147real, dimension(:),     allocatable :: ps_dev        ! (ngrid x timelen) Surface pressure deviation
148real, dimension(:,:),   allocatable :: ps_timeseries ! (ngrid x timelen) Instantaneous surface pressure
149real, dimension(ip1jmp1,llm)        :: masse         ! Air mass
150real, dimension(ip1jmp1)            :: phis          ! geopotentiel au sol
151real                                :: time_0
152
153! Variables to read starfi.nc
154character(*), parameter :: startfi_name = "startfi.nc" ! Name of the file used to initialize the PEM
155character(2)            :: str2
156integer                 :: ncid, status                           ! Variable for handling opening of files
157integer                 :: lonvarid, latvarid, areavarid, sdvarid ! Variable ID for Netcdf files
158integer                 :: apvarid, bpvarid                       ! Variable ID for Netcdf files
159
160! Variables to read starfi.nc and write restartfi.nc
161real, dimension(:), allocatable :: longitude     ! Longitude read in startfi_name and written in restartfi
162real, dimension(:), allocatable :: latitude      ! Latitude read in startfi_name and written in restartfi
163real, dimension(:), allocatable :: cell_area     ! Cell_area read in startfi_name and written in restartfi
164real                            :: total_surface ! Total surface of the planet
165
166! Variables for h2o ice evolution
167real, dimension(:,:),    allocatable  :: h2o_ice              ! h2o ice in the PEM
168real, dimension(:,:),    allocatable  :: d_h2oice             ! physical point x slope field: Tendency of evolution of perennial h2o ice
169real, dimension(:,:,:),  allocatable  :: min_h2o_ice          ! Minima of h2o ice at each point for the PCM years [kg/m^2]
170real                                  :: h2oice_ini_surf      ! Initial surface of sublimating h2o ice
171logical, dimension(:,:), allocatable  :: is_h2oice_sublim_ini ! Logical array to know if h2o ice is sublimating
172real                                  :: ps_avg_global_ini    ! constant: Global average pressure at initialization [Pa]
173real                                  :: ps_avg_global_old    ! constant: Global average pressure of previous time step
174real                                  :: ps_avg_global_new    ! constant: Global average pressure of current time step
175real,   dimension(:,:),   allocatable :: zplev_new            ! Grid points x Atmospheric field: mass of the atmospheric layers in the pem at current time step [kg/m^2]
176real,   dimension(:,:),   allocatable :: zplev_start0         ! Grid points x Atmospheric field: mass of the atmospheric layers in the start [kg/m^2]
177real,   dimension(:,:,:), allocatable :: zplev_timeseries_new ! Grid points x Atmospheric x Time: same as zplev_new, but in times series [kg/m ^2]
178real,   dimension(:,:,:), allocatable :: zplev_timeseries_old ! same but with the time series, for previous time step
179integer                               :: stopPEM              ! which criterion is reached? 0 = no stopping; 1 = h2o ice surf; 2 = no h2o ice; 3 = co2 ice surf; 4 = ps; 5 = orb param; 6 = end of simu
180real                                  :: A, B, mmean          ! Molar mass: intermediate A, B for computations of the  mean molar mass of the layer [mol/kg]
181real,   dimension(:,:),   allocatable :: q_h2o_PEM_phys       ! Grid points x Times: h2o mass mixing ratio computed in the PEM, first value comes from PCM [kg/kg]
182integer                               :: timelen              ! # time samples
183real                                  :: extra_mass           ! Intermediate variables Extra mass of a tracer if it is greater than 1
184
185! Variables for co2 ice evolution
186real,    dimension(:,:), allocatable :: co2_ice                ! co2 ice in the PEM
187real,    dimension(:,:), allocatable :: d_co2ice               ! physical point x slope field: Tendency of evolution of perennial co2 ice over a year
188real,    dimension(:,:), allocatable :: d_co2ice_ini           ! physical point x slope field: Tendency of evolution of perennial co2 ice over a year in the PCM
189logical, dimension(:,:), allocatable :: is_co2ice_ini          ! Was there co2 ice initially in the PEM?
190real,  dimension(:,:,:), allocatable :: min_co2_ice            ! Minimum of co2 ice at each point for the first year [kg/m^2]
191real                                 :: co2ice_sublim_surf_ini ! Initial surface of sublimating co2 ice
192logical, dimension(:,:), allocatable :: is_co2ice_sublim_ini   ! Logical array to know if co2 ice is sublimating
193real,    dimension(:,:), allocatable :: vmr_co2_PCM            ! Grid points x Times co2 volume mixing ratio retrieve from the PCM [m^3/m^3]
194real,    dimension(:,:), allocatable :: vmr_co2_PEM_phys       ! Grid points x Times co2 volume mixing ratio used in the PEM
195real,    dimension(:,:), allocatable :: q_co2_PEM_phys         ! Grid points x Times co2 mass mixing ratio in the first layer computed in the PEM, first value comes from PCM [kg/kg]
196real(kind = 16)                      :: totmass_co2ice, totmass_atmco2         ! Current total CO2 masses
197real(kind = 16)                      :: totmass_co2ice_ini, totmass_atmco2_ini ! Initial total CO2 masses
198
199! Variables for the evolution of layered layerings_map
200type(layering), dimension(:,:), allocatable :: layerings_map     ! Layering for each grid point and slope
201type(ptrarray), dimension(:,:), allocatable :: current           ! Current active stratum in the layering
202logical,        dimension(:,:), allocatable :: new_str, new_lag  ! Flags for the layering algorithm
203real,           dimension(:,:), allocatable :: h2o_ice_depth_old ! Old depth of subsurface ice layer
204
205! Variables for slopes
206integer(kind = 1), dimension(:,:), allocatable :: flag_co2flow ! (ngrid,nslope): Flag where there is a CO2 glacier flow
207integer(kind = 1), dimension(:,:), allocatable :: flag_h2oflow ! (ngrid,nslope): Flag where there is a H2O glacier flow
208
209! Variables for surface and soil
210real, dimension(:,:),     allocatable :: tsurf_avg                          ! Grid points x Slope field: Average surface temperature [K]
211real, dimension(:,:),     allocatable :: tsurf_dev                          ! Grid points x Slope field: Surface temperature deviation [K]
212real, dimension(:,:),     allocatable :: tsurf_avg_yr1                      ! Grid points x Slope field: Average surface temperature of first call of the PCM [K]
213real, dimension(:,:,:),   allocatable :: tsoil_avg                          ! Grid points x Soil x Slope field: Average Soil Temperature [K]
214real, dimension(:,:),     allocatable :: tsoil_avg_old                      ! Grid points x Soil field: Average Soil Temperature at the previous time step [K]
215real, dimension(:,:,:),   allocatable :: tsoil_dev                          ! Grid points x Soil x Slope field: Soil temperature deviation [K]
216real, dimension(:,:,:,:), allocatable :: tsoil_timeseries                   ! Grid points x Soil x Slope x Times field: Soil temperature timeseries [K]
217real, dimension(:,:,:,:), allocatable :: tsoil_PEM_timeseries               ! Grid points x Soil x Slope x Times field: Soil temperature timeseries for PEM [K]
218real, dimension(:,:,:,:), allocatable :: tsoil_PEM_timeseries_old           ! Grid points x Soil x Slope x Times field: Soil temperature timeseries for PEM at the previous time step [K]
219real, dimension(:,:,:,:), allocatable :: watersoil_density_timeseries       ! Grid points x Soil x Slope x Times Water soil density timeseries [kg /m^3]
220real, dimension(:,:),     allocatable :: watersurf_density_avg              ! Grid points x Slope: Average water surface density [kg/m^3]
221real, dimension(:,:,:,:), allocatable :: watersoil_density_PEM_timeseries   ! Grid points x Soil x Slope x Times: Water soil density timeseries for PEM [kg/m^3]
222real, dimension(:,:,:),   allocatable :: watersoil_density_PEM_avg          ! Grid points x Soil x Slopes: Average water soil density [kg/m^3]
223real, dimension(:),       allocatable :: delta_co2_adsorbed                 ! Physics: quantity of CO2 that is exchanged because of adsorption / desorption [kg/m^2]
224real, dimension(:),       allocatable :: delta_h2o_adsorbed                 ! Physics: quantity of H2O that is exchanged because of adsorption / desorption [kg/m^2]
225real(kind = 16)                       :: totmass_adsco2, totmass_adsco2_ini ! Total mass of CO2 that is exchanged because of adsorption / desoprtion over the planets [kg]
226real                                  :: totmass_adsh2o                     ! Total mass of H2O that is exchanged because of adsorption / desoprtion over the planets [kg]
227logical, dimension(:,:),  allocatable :: co2ice_disappeared                 ! logical to check if a co2 ice reservoir already disappeared at a previous timestep
228real, dimension(:,:),     allocatable :: icetable_thickness_old             ! ngrid x nslope: Thickness of the ice table at the previous iteration [m]
229real, dimension(:,:,:),   allocatable :: ice_porefilling_old                ! ngrid x nslope: Ice pore filling at the previous iteration [m]
230real, dimension(:),       allocatable :: delta_h2o_icetablesublim           ! ngrid x Total mass of the H2O that has sublimated / condenses from the ice table [kg]
231real, dimension(:),       allocatable :: porefill                           ! Pore filling (output) to compute the dynamic ice table
232real                                  :: ssi_depth                          ! Ice table depth (output) to compute the dynamic ice table
233real, dimension(:,:),     allocatable :: zshift_surf                        ! Elevation shift for the surface [m]
234real, dimension(:,:),     allocatable :: zlag                               ! Newly built lag thickness [m]
235real, dimension(:,:),     allocatable :: icetable_depth_old                 ! Old depth of the ice table
236
237! Some variables for the PEM run
238real, parameter       :: year_step = 1   ! Timestep for the pem
239real                  :: i_myear_leg     ! Number of iteration
240real                  :: n_myear_leg     ! Maximum number of iterations before stopping
241real                  :: i_myear         ! Global number of Martian years of the chained simulations
242real                  :: n_myear         ! Maximum number of Martian years of the chained simulations
243real                  :: timestep        ! Timestep [s]
244integer(kind = 8)     :: cr              ! Number of clock ticks per second (count rate)
245integer(kind = 8)     :: c1, c2          ! Counts of processor clock
246character(8)          :: date
247character(10)         :: time
248character(5)          :: zone
249integer, dimension(8) :: values
250character(128)        :: dir = ' '
251character(32)         :: logname = ' '
252character(32)         :: hostname = ' '
253
254#ifdef CPP_STD
255    real                                :: frost_albedo_threshold = 0.05 ! Frost albedo threeshold to convert fresh frost to old ice
256    real                                :: albedo_h2o_frost              ! Albedo of h2o frost
257    real, dimension(:),     allocatable :: tsurf_read_generic            ! Temporary variable to do the subslope transfert dimension when reading form generic
258    real, dimension(:,:),   allocatable :: qsurf_read_generic            ! Temporary variable to do the subslope transfert dimension when reading form generic
259    real, dimension(:,:),   allocatable :: tsoil_read_generic            ! Temporary variable to do the subslope transfert dimension when reading form generic
260    real, dimension(:),     allocatable :: emis_read_generic             ! Temporary variable to do the subslope transfert dimension when reading form generic
261    real, dimension(:,:),   allocatable :: albedo_read_generic           ! Temporary variable to do the subslope transfert dimension when reading form generic
262    real, dimension(:,:),   allocatable :: tsurf                         ! Subslope variable, only needed in the GENERIC case
263    real, dimension(:,:,:), allocatable :: qsurf                         ! Subslope variable, only needed in the GENERIC case
264    real, dimension(:,:,:), allocatable :: tsoil                         ! Subslope variable, only needed in the GENERIC case
265    real, dimension(:,:),   allocatable :: emis                          ! Subslope variable, only needed in the GENERIC case
266    real, dimension(:,:),   allocatable :: watercap                      ! Subslope variable, only needed in the GENERIC case =0 no watercap in generic model
267    logical, dimension(:),  allocatable :: watercaptag                   ! Subslope variable, only needed in the GENERIC case =false no watercaptag in generic model
268    real, dimension(:,:,:), allocatable :: albedo                        ! Subslope variable, only needed in the GENERIC case
269    real, dimension(:,:,:), allocatable :: inertiesoil                   ! Subslope variable, only needed in the GENERIC case
270#endif
271
272#ifdef CPP_1D
273    integer            :: nsplit_phys
274    integer, parameter :: jjm_value = jjm - 1
275    integer            :: day_step
276
277    ! Dummy variables to use the subroutine 'init_testphys1d'
278    logical                             :: therestart1D, therestartfi, ctrl_h2ovap, ctrl_h2oice
279    integer                             :: ndt, day0
280    real                                :: ptif, pks, day, gru, grv, relaxtime_h2ovap, relaxtime_h2oice
281    real, dimension(:),     allocatable :: zqsat
282    real, dimension(:,:,:), allocatable :: dq, dqdyn
283    real, dimension(nlayer)             :: play, w, qref_h2ovap, qref_h2oice
284    real, dimension(nlayer + 1)         :: plev
285#else
286    integer, parameter                :: jjm_value = jjm
287    real, dimension(:),   allocatable :: ap ! Coefficient ap read in start_name and written in restart
288    real, dimension(:),   allocatable :: bp ! Coefficient bp read in start_name and written in restart
289    real, dimension(:,:), allocatable :: p  ! Grid points x Atmosphere: pressure to recompute and write in restart (ip1jmp1,llmp1)
290#endif
291
292! Loop variables
293integer :: i, l, ig, nnq, t, islope, ig_loop, islope_loop, isoil, icap
294real    :: totmass_ini
295logical :: num_str
296
297! CODE
298! Elapsed time with system clock
299call system_clock(count_rate = cr)
300call system_clock(c1)
301
302! Parse command-line options
303call parse_args()
304
305! Header
306write(*,*) '  *    .          .   +     .    *        .  +      .    .       .      '
307write(*,*) '           +         _______  ________  ____    ____      *           + '
308write(*,*) ' +   .        *     |_   __ \|_   __  ||_   \  /   _|          .       *'
309write(*,*) '          .     .     | |__) | | |_ \_|  |   \/   |  *        *      .  '
310write(*,*) '       .              |  ___/  |  _| _   | |\  /| |      .        .     '
311write(*,*) '.  *          *      _| |_    _| |__/ | _| |_\/_| |_                  * '
312write(*,*) '            +       |_____|  |________||_____||_____|   +     .         '
313write(*,*) '  .      *          .   *       .   +       *          .        +      .'
314
315! Some user info
316call date_and_time(date,time,zone,values)
317call getcwd(dir)      ! Current directory
318call getlog(logname)  ! User name
319call hostnm(hostname) ! Machine/station name
320write(*,*)
321write(*,*) '********* PEM information *********'
322write(*,*) '+ User     : '//trim(logname)
323write(*,*) '+ Machine  : '//trim(hostname)
324write(*,*) '+ Directory: '//trim(dir)
325write(*,'(a,i2,a,i2,a,i4)') ' + Date     : ',values(3),'/',values(2),'/',values(1)
326write(*,'(a,i2,a,i2,a,i2,a)') ' + Time     : ',values(5),':',values(6),':',values(7)
327
328! Parallel variables
329#ifndef CPP_STD
330    is_sequential = .true.
331    is_parallel = .false.
332    is_mpi_root = .true.
333    is_omp_root = .true.
334    is_master = .true.
335#endif
336
337! Some constants
338day_ini = 0
339time_phys = 0.
340ngrid = ngridmx
341A = (1./m_co2 - 1./m_noco2)
342B = 1./m_noco2
343year_day = 669
344daysec = 88775.
345timestep = year_day*daysec*year_step
346
347!----------------------------- INITIALIZATION --------------------------
348!------------------------
349! I   Initialization
350!    I_a Read the "run.def"
351!------------------------
352write(*,*)
353write(*,*) '********* PEM initialization *********'
354write(*,*) '> Reading "run.def" (PEM)'
355#ifndef CPP_1D
356    dtphys = daysec/48. ! Dummy value (overwritten in phyetat0)
357    call conf_gcm(99,.true.)
358    call infotrac_init
359    nq = nqtot
360    allocate(q(ip1jmp1,llm,nqtot))
361    allocate(longitude(ngrid),latitude(ngrid),cell_area(ngrid))
362#else
363    allocate(q(1,llm,nqtot),pdyn(1))
364    allocate(longitude(1),latitude(1),cell_area(1))
365
366    therestart1D = .false. ! Default value
367    inquire(file = 'start1D.txt',exist = therestart1D)
368    if (.not. therestart1D) then
369        write(*,*) 'There is no "start1D.txt" file!'
370        error stop 'Initialization cannot be done for the 1D PEM.'
371    endif
372    therestartfi = .false. ! Default value
373    inquire(file = 'startfi.nc',exist = therestartfi)
374    if (.not. therestartfi) then
375        write(*,*) 'There is no "startfi.nc" file!'
376        error stop 'Initialization cannot be done for the 1D PEM.'
377    endif
378
379    write(*,*) '> Reading "start1D.txt" and "startfi.nc"'
380    call init_testphys1d('start1D.txt','startfi.nc',therestart1D,therestartfi,ngrid,nlayer,610.,nq,q,         &
381                         time_0,pdyn(1),ucov,vcov,teta,ndt,ptif,pks,dtphys,zqsat,dq,dqdyn,day0,day,gru,grv,w, &
382                         play,plev,latitude,longitude,cell_area,                                              &
383                         ctrl_h2ovap,relaxtime_h2ovap,qref_h2ovap,ctrl_h2oice,relaxtime_h2oice,qref_h2oice)
384    nsplit_phys = 1
385    day_step = steps_per_sol
386#endif
387
388call conf_pem(i_myear,n_myear)
389
390!------------------------
391! I   Initialization
392!    I_b Read of the "start.nc" and "starfi.nc"
393!------------------------
394! I_b.1 Read "start.nc"
395write(*,*) '> Reading "start.nc"'
396allocate(ps_start0(ngrid))
397#ifndef CPP_1D
398    allocate(pdyn(ip1jmp1))
399    call dynetat0(start_name,vcov,ucov,teta,q,masse,pdyn,phis,time_0)
400
401    call gr_dyn_fi(1,iip1,jjp1,ngridmx,pdyn,ps_start0)
402
403    call iniconst ! Initialization of dynamical constants (comconst_mod)
404    call inigeom ! Initialization of geometry
405
406    allocate(ap(nlayer + 1))
407    allocate(bp(nlayer + 1))
408    status = nf90_open(start_name,NF90_NOWRITE,ncid)
409    status = nf90_inq_varid(ncid,"ap",apvarid)
410    status = nf90_get_var(ncid,apvarid,ap)
411    status = nf90_inq_varid(ncid,"bp",bpvarid)
412    status = nf90_get_var(ncid,bpvarid,bp)
413    status = nf90_close(ncid)
414
415    ! Initialization of physics constants and variables (comcstfi_h)
416    call iniphysiq(iim,jjm,llm,(jjm - 1)*iim + 2,comm_lmdz,daysec,day_ini,dtphys/nsplit_phys,rlatu,rlatv,rlonu,rlonv,aire,cu,cv,rad,g,r,cpp,iflag_phys)
417#else
418    ps_start0(1) = pdyn(1)
419#endif
420deallocate(pdyn)
421
422! In the PCM, these values are given to the physic by the dynamic.
423! Here we simply read them in the "startfi.nc" file
424status = nf90_open(startfi_name,NF90_NOWRITE,ncid)
425status = nf90_inq_varid(ncid,"longitude",lonvarid)
426status = nf90_get_var(ncid,lonvarid,longitude)
427status = nf90_inq_varid(ncid,"latitude",latvarid)
428status = nf90_get_var(ncid,latvarid,latitude)
429status = nf90_inq_varid(ncid,"area",areavarid)
430status = nf90_get_var(ncid,areavarid,cell_area)
431status = nf90_inq_varid(ncid,"soildepth",sdvarid)
432status = nf90_get_var(ncid,sdvarid,mlayer)
433status = nf90_close(ncid)
434
435! I_b.2 Read the "startfi.nc"
436! First we read the initial state (starfi.nc)
437#ifndef CPP_STD
438    write(*,*) '> Reading "startfi.nc"'
439    call phyetat0(startfi_name,0,0,nsoilmx,ngrid,nlayer,nq,nqsoil,day_ini,time_phys,tsurf, &
440                  tsoil,albedo,emis,q2,qsurf,qsoil,tauscaling,totcloudfrac,wstar,          &
441                  watercap,perennial_co2ice,def_slope,def_slope_mean,subslope_dist)
442
443    ! Remove unphysical values of surface tracer
444    where (qsurf < 0.) qsurf = 0.
445
446    call surfini(ngrid,nslope,qsurf)
447#else
448    call phys_state_var_init(nq)
449    if (.not. allocated(noms)) allocate(noms(nq)) ! (because noms is an argument of physdem1 whether or not tracer is on)
450    call initracer(ngrid,nq)
451    call iniaerosol()
452    allocate(tsurf_read_generic(ngrid))
453    allocate(qsurf_read_generic(ngrid,nq))
454    allocate(tsoil_read_generic(ngrid,nsoilmx))
455    allocate(qsoil_read_generic(ngrid,nsoilmx,nqsoil,nslope))
456    allocate(emis_read_generic(ngrid))
457    allocate(albedo_read_generic(ngrid,2))
458    allocate(qsurf(ngrid,nq,1))
459    allocate(tsurf(ngrid,1))
460    allocate(tsoil(ngrid,nsoilmx,1))
461    allocate(emis(ngrid,1))
462    allocate(watercap(ngrid,1))
463    allocate(watercaptag(ngrid))
464    allocate(albedo(ngrid,2,1))
465    allocate(inertiesoil(ngrid,nsoilmx,1))
466    call phyetat0(.true.,ngrid,nlayer,startfi_name,0,0,nsoilmx,nq,nqsoil,day_ini,time_phys, &
467                  tsurf_read_generic,tsoil_read_generic,emis_read_generic,q2,               &
468                  qsurf_read_generic,qsoil_read_generic,cloudfrac,totcloudfrac,hice,        &
469                  rnat,pctsrf_sic,tslab,tsea_ice,sea_ice)
470    call surfini(ngrid,nq,qsurf_read_generic,albedo_read_generic,albedo_bareground,albedo_snow_SPECTV,albedo_co2_ice_SPECTV)
471
472    nslope = 1
473    call ini_comslope_h(ngrid,1)
474
475    qsurf(:,:,1) = qsurf_read_generic
476    tsurf(:,1) = tsurf_read_generic
477    tsoil(:,:,1) = tsoil_read_generic
478    emis(:,1) = emis_read_generic
479    watercap(:,1) = 0.
480    watercaptag(:) = .false.
481    albedo(:,1,1) = albedo_read_generic(:,1)
482    albedo(:,2,1) = albedo_read_generic(:,2)
483    inertiesoil(:,:,1) = inertiedat
484
485    if (nslope == 1) then
486        def_slope(1) = 0
487        def_slope(2) = 0
488        def_slope_mean = 0
489        subslope_dist(:,1) = 1.
490    endif
491
492    ! Remove unphysical values of surface tracer
493    qsurf(:,:,1) = qsurf_read_generic
494    where (qsurf < 0.) qsurf = 0.
495
496    deallocate(tsurf_read_generic,qsurf_read_generic,qsoil_read_generic,emis_read_generic)
497#endif
498
499do nnq = 1,nqtot  ! Why not using ini_tracer?
500    if (noms(nnq) == "h2o_ice") igcm_h2o_ice = nnq
501    if (noms(nnq) == "h2o_vap") then
502        igcm_h2o_vap = nnq
503        mmol(igcm_h2o_vap) = 18.
504    endif
505    if (noms(nnq) == "co2") igcm_co2 = nnq
506enddo
507
508!------------------------
509! I   Initialization
510!    I_c Subslope parametrisation
511!------------------------
512! Define some slope statistics
513iflat = 1
514do islope = 2,nslope
515    if (abs(def_slope_mean(islope)) < abs(def_slope_mean(iflat))) iflat = islope
516enddo
517write(*,*) 'Flat slope for islope = ',iflat
518write(*,*) 'Corresponding criterium = ',def_slope_mean(iflat)
519
520!------------------------
521! I   Initialization
522!    I_d Read the PCM data and convert them to the physical grid
523!------------------------
524! First we read the evolution of water and co2 ice (and the mass mixing ratio) over the first year of the PCM run, saving only the minimum value
525call get_timelen_PCM("data_PCM_Y1.nc",timelen)
526
527allocate(vmr_co2_PCM(ngrid,timelen),q_co2_PEM_phys(ngrid,timelen),q_h2o_PEM_phys(ngrid,timelen))
528allocate(ps_timeseries(ngrid,timelen),ps_avg(ngrid))
529allocate(min_co2_ice(ngrid,nslope,2),min_h2o_ice(ngrid,nslope,2))
530allocate(tsurf_avg_yr1(ngrid,nslope),tsurf_avg(ngrid,nslope))
531allocate(tsoil_avg(ngrid,nsoilmx,nslope),tsoil_timeseries(ngrid,nsoilmx,nslope,timelen))
532allocate(watersurf_density_avg(ngrid,nslope),watersoil_density_timeseries(ngrid,nsoilmx,nslope,timelen))
533
534call read_data_PCM("data_PCM_Y1.nc","data_PCM_Y2.nc",timelen,iim,jjm_value,ngrid,nslope,vmr_co2_PCM,ps_timeseries,ps_avg,tsurf_avg_yr1,tsurf_avg, &
535                   tsoil_avg,tsoil_timeseries,min_co2_ice,min_h2o_ice,q_co2_PEM_phys,q_h2o_PEM_phys,watersurf_density_avg,watersoil_density_timeseries)
536
537! Compute the deviation from the average
538allocate(ps_dev(ngrid),tsurf_dev(ngrid,nslope),tsoil_dev(ngrid,nsoilmx,nslope))
539ps_dev = ps_start0 - ps_avg
540tsurf_dev = tsurf - tsurf_avg
541tsoil_dev = tsoil - tsoil_avg(:,1:nsoilmx,:)
542
543!------------------------
544! I   Initialization
545!    I_e Initialization of the PEM variables and soil
546!------------------------
547call end_comsoil_h_PEM
548call ini_comsoil_h_PEM(ngrid,nslope)
549call end_adsorption_h_PEM
550call ini_adsorption_h_PEM(ngrid,nslope,nsoilmx_PEM)
551call end_ice_table
552call ini_ice_table(ngrid,nslope,nsoilmx_PEM)
553
554allocate(tsoil_PEM_timeseries(ngrid,nsoilmx_PEM,nslope,timelen),watersoil_density_PEM_avg(ngrid,nsoilmx_PEM,nslope),watersoil_density_PEM_timeseries(ngrid,nsoilmx_PEM,nslope,timelen))
555if (soil_pem) then
556    call soil_settings_PEM(ngrid,nslope,nsoilmx_PEM,nsoilmx,inertiesoil,TI_PEM)
557    tsoil_PEM(:,1:nsoilmx,:) = tsoil_avg
558    watersoil_density_PEM_timeseries(:,1:nsoilmx,:,:) = watersoil_density_timeseries
559    tsoil_PEM_timeseries(:,1:nsoilmx,:,:) = tsoil_timeseries
560    do l = nsoilmx + 1,nsoilmx_PEM
561        tsoil_PEM(:,l,:) = tsoil_avg(:,nsoilmx,:)
562        watersoil_density_PEM_timeseries(:,l,:,:) = watersoil_density_timeseries(:,nsoilmx,:,:)
563        tsoil_PEM_timeseries(:,l,:,:) = tsoil_timeseries(:,nsoilmx,:,:)
564    enddo
565    watersoil_density_PEM_avg = sum(watersoil_density_PEM_timeseries,4)/timelen
566endif !soil_pem
567deallocate(tsoil_avg,watersoil_density_timeseries,tsoil_timeseries)
568
569!------------------------
570! I   Initialization
571!    I_f Compute tendencies
572!------------------------
573allocate(d_co2ice(ngrid,nslope),d_h2oice(ngrid,nslope),d_co2ice_ini(ngrid,nslope))
574call compute_tend(ngrid,nslope,min_co2_ice,d_co2ice)
575call compute_tend(ngrid,nslope,min_h2o_ice,d_h2oice)
576d_co2ice_ini = d_co2ice
577deallocate(min_co2_ice,min_h2o_ice)
578
579!------------------------
580! I   Initialization
581!    I_g Compute global surface pressure
582!------------------------
583total_surface = sum(cell_area)
584ps_avg_global_ini = sum(cell_area*ps_avg)/total_surface
585ps_avg_global_new = ps_avg_global_ini
586write(*,*) "Total surface of the planet     =", total_surface
587write(*,*) "Initial global average pressure =", ps_avg_global_ini
588
589!------------------------
590! I   Initialization
591!    I_h Read the "startpem.nc"
592!------------------------
593write(*,*) '> Reading "startpem.nc"'
594allocate(co2_ice(ngrid,nslope),h2o_ice(ngrid,nslope),layerings_map(ngrid,nslope))
595allocate(delta_h2o_adsorbed(ngrid),delta_co2_adsorbed(ngrid),delta_h2o_icetablesublim(ngrid))
596delta_h2o_icetablesublim = 0.
597call pemetat0("startpem.nc",ngrid,nsoilmx,nsoilmx_PEM,nslope,timelen,timestep,TI_PEM,tsoil_PEM,icetable_depth,icetable_thickness,ice_porefilling, &
598              tsurf_avg_yr1,tsurf_avg,q_co2_PEM_phys,q_h2o_PEM_phys,ps_timeseries,ps_avg_global_ini,d_h2oice,d_co2ice,co2_ice,h2o_ice,            &
599              watersurf_density_avg,watersoil_density_PEM_avg,co2_adsorbed_phys,delta_co2_adsorbed,h2o_adsorbed_phys,delta_h2o_adsorbed,layerings_map)
600deallocate(tsurf_avg_yr1)
601
602! We save the places where h2o ice is sublimating
603! We compute the surface of h2o ice sublimating
604allocate(is_co2ice_sublim_ini(ngrid,nslope),is_h2oice_sublim_ini(ngrid,nslope),is_co2ice_ini(ngrid,nslope),co2ice_disappeared(ngrid,nslope))
605co2ice_sublim_surf_ini = 0.
606h2oice_ini_surf = 0.
607is_co2ice_sublim_ini = .false.
608is_h2oice_sublim_ini = .false.
609is_co2ice_ini = .false.
610co2ice_disappeared = .false.
611totmass_co2ice_ini = 0.
612totmass_atmco2_ini = 0.
613if (layering_algo) then
614    do ig = 1,ngrid
615        do islope = 1,nslope
616            if (is_co2ice_str(layerings_map(ig,islope)%top)) then
617                co2_ice(ig,islope) = layerings_map(ig,islope)%top%h_co2ice
618            else if (is_h2oice_str(layerings_map(ig,islope)%top)) then
619                h2o_ice(ig,islope) = layerings_map(ig,islope)%top%h_h2oice
620            else
621                call subsurface_ice_layering(layerings_map(ig,islope),h2o_ice_depth(ig,islope),h2o_ice(ig,islope),co2_ice(ig,islope))
622            endif
623        enddo
624    enddo
625    ! We put the sublimating tendency coming from subsurface ice into the overall tendency
626    where (h2o_ice_depth > 0. .and. zdqsdif_ssi_tot < -1.e-10) d_h2oice = zdqsdif_ssi_tot
627endif
628do i = 1,ngrid
629    totmass_atmco2_ini = totmass_atmco2_ini + cell_area(i)*ps_avg(i)/g
630    do islope = 1,nslope
631        totmass_co2ice_ini = totmass_co2ice_ini + co2_ice(i,islope)*cell_area(i)*subslope_dist(i,islope)/cos(pi*def_slope_mean(islope)/180.)
632        if (co2_ice(i,islope) > 0.) is_co2ice_ini(i,islope) = .true.
633        if (d_co2ice(i,islope) < 0. .and. co2_ice(i,islope) > 0.) then
634            is_co2ice_sublim_ini(i,islope) = .true.
635            co2ice_sublim_surf_ini = co2ice_sublim_surf_ini + cell_area(i)*subslope_dist(i,islope)
636        endif
637        if (d_h2oice(i,islope) < 0.) then
638            if (h2o_ice(i,islope) > 0.) then
639                is_h2oice_sublim_ini(i,islope) = .true.
640                h2oice_ini_surf = h2oice_ini_surf + cell_area(i)*subslope_dist(i,islope)
641            else if (h2o_ice_depth(i,islope) > 0.) then
642                is_h2oice_sublim_ini(i,islope) = .true.
643            endif
644        endif
645    enddo
646enddo
647write(*,*) "Total initial surface of CO2 ice sublimating =", co2ice_sublim_surf_ini
648write(*,*) "Total initial surface of H2O ice sublimating =", h2oice_ini_surf
649
650totmass_adsco2_ini = 0.
651totmass_adsh2o = 0.
652if (adsorption_pem) then
653    do ig = 1,ngrid
654        do islope = 1,nslope
655            do l = 1,nsoilmx_PEM - 1
656                if (l == 1) then
657                   totmass_adsco2_ini = totmass_adsco2_ini + co2_adsorbed_phys(ig,l,islope)*(layer_PEM(l))* &
658                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
659                   totmass_adsh2o = totmass_adsh2o + h2o_adsorbed_phys(ig,l,islope)*(layer_PEM(l))* &
660                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
661                else
662                   totmass_adsco2_ini = totmass_adsco2_ini + co2_adsorbed_phys(ig,l,islope)*(layer_PEM(l) - layer_PEM(l-1))* &
663                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
664                   totmass_adsh2o = totmass_adsh2o + h2o_adsorbed_phys(ig,l,islope)*(layer_PEM(l) - layer_PEM(l-1))* &
665                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
666                endif
667            enddo
668        enddo
669    enddo
670    totmass_adsco2 = totmass_adsco2_ini
671    write(*,*) "Tot mass of CO2 in the regolith =", totmass_adsco2
672    write(*,*) "Tot mass of H2O in the regolith =", totmass_adsh2o
673endif ! adsorption
674
675!------------------------
676! I   Initialization
677!    I_i Compute orbit criterion
678!------------------------
679#ifndef CPP_STD
680    call iniorbit(aphelie,periheli,year_day,peri_day,obliquit)
681#else
682    call iniorbit(apoastr,periastr,year_day,peri_day,obliquit)
683#endif
684
685n_myear_leg = Max_iter_pem
686if (evol_orbit_pem) call orbit_param_criterion(i_myear,n_myear_leg)
687
688!-------------------------- END INITIALIZATION -------------------------
689
690!-------------------------------- RUN ----------------------------------
691!------------------------
692! II  Run
693!    II_a Update pressure, ice and tracers
694!------------------------
695write(*,*)
696write(*,*) '********* PEM cycle *********'
697i_myear_leg = 0
698stopPEM = 0
699if (layering_algo) then
700    allocate(h2o_ice_depth_old(ngrid,nslope),new_str(ngrid,nslope),new_lag(ngrid,nslope),current(ngrid,nslope))
701    new_str = .true.
702    new_lag = .true.
703    do islope = 1,nslope
704        do ig = 1,ngrid
705            current(ig,islope)%p => layerings_map(ig,islope)%top
706        enddo
707    enddo
708endif
709
710do while (i_myear_leg < n_myear_leg .and. i_myear < n_myear)
711! II.a.1. Compute updated global pressure
712    write(*,'(a,f10.2)') ' **** Iteration of the PEM leg (Martian years): ', i_myear_leg + 1
713    write(*,*) "> Updating the surface pressure"
714    ps_avg_global_old = ps_avg_global_new
715    do i = 1,ngrid
716        do islope = 1,nslope
717            ps_avg_global_new = ps_avg_global_new - CO2cond_ps*g*cell_area(i)*d_co2ice(i,islope)*subslope_dist(i,islope)/cos(pi*def_slope_mean(islope)/180.)/total_surface
718        enddo
719    enddo
720    if (adsorption_pem) then
721        do i = 1,ngrid
722            ps_avg_global_new = ps_avg_global_new - g*cell_area(i)*delta_co2_adsorbed(i)/total_surface
723        enddo
724    endif
725    ps_avg = ps_avg*ps_avg_global_new/ps_avg_global_old
726    write(*,*) 'Global average pressure old time step:',ps_avg_global_old
727    write(*,*) 'Global average pressure new time step:',ps_avg_global_new
728
729! II.a.2. Pressure timeseries (the values are deleted when unused because of big memory consumption)
730    write(*,*) "> Updating the surface pressure timeseries for the new pressure"
731    allocate(zplev_timeseries_old(ngrid,nlayer + 1,timelen))
732    do l = 1,nlayer + 1
733        do ig = 1,ngrid
734            zplev_timeseries_old(ig,l,:) = ap(l) + bp(l)*ps_timeseries(ig,:)
735        enddo
736    enddo
737    ps_timeseries(:,:) = ps_timeseries(:,:)*ps_avg_global_new/ps_avg_global_old
738    write(*,*) "> Updating the pressure levels timeseries for the new pressure"
739    allocate(zplev_timeseries_new(ngrid,nlayer + 1,timelen))
740    do l = 1,nlayer + 1
741        do ig = 1,ngrid
742            zplev_timeseries_new(ig,l,:) = ap(l) + bp(l)*ps_timeseries(ig,:)
743        enddo
744    enddo
745
746! II.a.3. Tracers timeseries
747    write(*,*) "> Updating the tracer VMR timeseries for the new pressure"
748    allocate(vmr_co2_PEM_phys(ngrid,timelen))
749    l = 1
750    do ig = 1,ngrid
751        do t = 1,timelen
752            ! H2O
753            q_h2o_PEM_phys(ig,t) = q_h2o_PEM_phys(ig,t)*(zplev_timeseries_old(ig,l,t) - zplev_timeseries_old(ig,l + 1,t))/ &
754                                   (zplev_timeseries_new(ig,l,t) - zplev_timeseries_new(ig,l + 1,t))
755            if (q_h2o_PEM_phys(ig,t) < 0) then
756                q_h2o_PEM_phys(ig,t) = 1.e-30
757            else if (q_h2o_PEM_phys(ig,t) > 1) then
758                q_h2o_PEM_phys(ig,t) = 1.
759            endif
760            ! CO2
761            q_co2_PEM_phys(ig,t) = q_co2_PEM_phys(ig,t)*(zplev_timeseries_old(ig,l,t) - zplev_timeseries_old(ig,l + 1,t))/ &
762                                   (zplev_timeseries_new(ig,l,t) - zplev_timeseries_new(ig,l + 1,t))                       &
763                                + ((zplev_timeseries_new(ig,l,t) - zplev_timeseries_new(ig,l + 1,t))                       &
764                                -  (zplev_timeseries_old(ig,l,t) - zplev_timeseries_old(ig,l + 1,t)))/                     &
765                                   (zplev_timeseries_new(ig,l,t) - zplev_timeseries_new(ig,l + 1,t))
766            if (q_co2_PEM_phys(ig,t) < 0) then
767                q_co2_PEM_phys(ig,t) = 1.e-30
768            else if (q_co2_PEM_phys(ig,t) > 1) then
769                q_co2_PEM_phys(ig,t) = 1.
770            endif
771            mmean = 1./(A*q_co2_PEM_phys(ig,t) + B)
772            vmr_co2_PEM_phys(ig,t) = q_co2_PEM_phys(ig,t)*mmean/m_co2
773        enddo
774    enddo
775    deallocate(zplev_timeseries_new,zplev_timeseries_old)
776
777!------------------------
778! II  Run
779!    II_b Evolution of ice
780!------------------------
781    allocate(zshift_surf(ngrid,nslope),zlag(ngrid,nslope))
782    if (layering_algo) then
783        h2o_ice_depth_old = h2o_ice_depth
784        do islope = 1,nslope
785            do ig = 1,ngrid
786                call make_layering(layerings_map(ig,islope),d_co2ice(ig,islope),d_h2oice(ig,islope),new_str(ig,islope),zshift_surf(ig,islope),new_lag(ig,islope),zlag(ig,islope),current(ig,islope)%p)
787                !call print_layering(layerings_map(ig,islope))
788                co2_ice(ig,islope) = 0.
789                h2o_ice(ig,islope) = 0.
790                h2o_ice_depth(ig,islope) = 0.
791                if (is_co2ice_str(layerings_map(ig,islope)%top)) then
792                    co2_ice(ig,islope) = layerings_map(ig,islope)%top%h_co2ice
793                else if (is_h2oice_str(layerings_map(ig,islope)%top)) then
794                    h2o_ice(ig,islope) = layerings_map(ig,islope)%top%h_h2oice
795                else
796                    call subsurface_ice_layering(layerings_map(ig,islope),h2o_ice_depth(ig,islope),h2o_ice(ig,islope),co2_ice(ig,islope))
797                endif
798            enddo
799        enddo
800    else
801        zlag = 0.
802        call evol_h2o_ice(ngrid,nslope,cell_area,delta_h2o_adsorbed,delta_h2o_icetablesublim,h2o_ice,d_h2oice,zshift_surf,stopPEM)
803        call evol_co2_ice(ngrid,nslope,co2_ice,d_co2ice,zshift_surf)
804    endif
805
806!------------------------
807! II  Run
808!    II_c Flow of glaciers
809!------------------------
810    allocate(flag_co2flow(ngrid,nslope),flag_h2oflow(ngrid,nslope))
811    if (co2ice_flow .and. nslope > 1) then
812        call flow_co2glaciers(timelen,ngrid,nslope,iflat,subslope_dist,def_slope_mean,vmr_co2_PEM_phys, &
813                              ps_timeseries,ps_avg_global_old,ps_avg_global_new,co2_ice,flag_co2flow)
814        if (layering_algo) then
815            do islope = 1,nslope
816                do ig = 1,ngrid
817                    layerings_map(ig,islope)%top%h_co2ice = co2_ice(ig,islope)
818                enddo
819            enddo
820        endif
821    endif
822    if (h2oice_flow .and. nslope > 1) then
823        call flow_h2oglaciers(ngrid,nslope,iflat,subslope_dist,def_slope_mean,tsurf_avg,h2o_ice,flag_h2oflow)
824        if (layering_algo) then
825            do islope = 1,nslope
826                do ig = 1,ngrid
827!~                     layerings_map(ig,islope)%top%h_h2oice = h2o_ice(ig,islope)
828                enddo
829            enddo
830        endif
831    endif
832
833!------------------------
834! II  Run
835!    II_d Update surface and soil temperatures
836!------------------------
837! II_d.1 Update Tsurf
838    call update_tsurf_nearest_baresoil(ngrid,nslope,iim,jjm,tsurf_avg,co2_ice,is_co2ice_ini,co2ice_disappeared)
839
840    if (soil_pem) then
841! II_d.2 Shifting soil temperature to surface
842        call shift_tsoil2surf(ngrid,nsoilmx_PEM,nslope,zshift_surf,zlag,tsurf_avg,tsoil_PEM)
843
844! II_d.3 Update soil temperature
845        write(*,*)"> Updating soil temperature profile"
846        allocate(tsoil_avg_old(ngrid,nsoilmx_PEM),tsoil_PEM_timeseries_old(ngrid,nsoilmx_PEM,nslope,timelen))
847        tsoil_PEM_timeseries_old = tsoil_PEM_timeseries
848        do islope = 1,nslope
849            tsoil_avg_old = tsoil_PEM(:,:,islope)
850            call compute_tsoil_pem(ngrid,nsoilmx_PEM,.true.,TI_PEM(:,:,islope),timestep,tsurf_avg(:,islope),tsoil_PEM(:,:,islope))
851            call compute_tsoil_pem(ngrid,nsoilmx_PEM,.false.,TI_PEM(:,:,islope),timestep,tsurf_avg(:,islope),tsoil_PEM(:,:,islope))
852
853            do t = 1,timelen
854                do ig = 1,ngrid
855                    do isoil = 1,nsoilmx_PEM
856                        ! Update of soil temperature timeseries which is needed to compute the water soil density timeseries
857                        tsoil_PEM_timeseries(ig,isoil,islope,t) = tsoil_PEM_timeseries(ig,isoil,islope,t)*tsoil_PEM(ig,isoil,islope)/tsoil_avg_old(ig,isoil)
858                        ! Update of watersoil density
859                        watersoil_density_PEM_timeseries(ig,isoil,islope,t) = exp(beta_clap_h2o/tsoil_PEM_timeseries(ig,isoil,islope,t) + alpha_clap_h2o)/tsoil_PEM_timeseries(ig,isoil,islope,t)*mmol(igcm_h2o_vap)/(mugaz*r)
860                        if (isnan(tsoil_PEM(ig,isoil,islope))) call abort_pem("PEM - Update Tsoil","NaN detected in tsoil_PEM",1)
861                    enddo
862                enddo
863            enddo
864        enddo
865        watersoil_density_PEM_avg = sum(watersoil_density_PEM_timeseries,4)/timelen
866        deallocate(tsoil_avg_old)
867
868! II_d.4 Update the ice table
869        allocate(icetable_thickness_old(ngrid,nslope),ice_porefilling_old(ngrid,nsoilmx_PEM,nslope),icetable_depth_old(ngrid,nslope))
870        if (icetable_equilibrium) then
871            write(*,*) "> Updating ice table (equilibrium method)"
872            icetable_thickness_old = icetable_thickness
873            call computeice_table_equilibrium(ngrid,nslope,nsoilmx_PEM,watercaptag,watersurf_density_avg,watersoil_density_PEM_avg,TI_PEM(:,1,:),icetable_depth,icetable_thickness)
874            call compute_massh2o_exchange_ssi(ngrid,nslope,nsoilmx_PEM,icetable_thickness_old,ice_porefilling_old,tsurf_avg,tsoil_PEM,delta_h2o_icetablesublim) ! Mass of H2O exchange between the ssi and the atmosphere
875        else if (icetable_dynamic) then
876            write(*,*) "> Updating ice table (dynamic method)"
877            ice_porefilling_old = ice_porefilling
878            icetable_depth_old = icetable_depth
879            allocate(porefill(nsoilmx_PEM))
880            do ig = 1,ngrid
881                do islope = 1,nslope
882                    call dyn_ss_ice_m(icetable_depth(ig,islope),tsurf_avg(ig,islope),tsoil_PEM(ig,:,islope),nsoilmx_PEM,TI_PEM(ig,1,nslope),ps_avg(ig),(/sum(q_h2o_PEM_phys(ig,:))/size(q_h2o_PEM_phys,2)/),ice_porefilling(ig,:,islope),porefill,ssi_depth)
883                    icetable_depth(ig,islope) = ssi_depth
884                    ice_porefilling(ig,:,islope) = porefill
885                enddo
886            enddo
887            deallocate(porefill)
888            call compute_massh2o_exchange_ssi(ngrid,nslope,nsoilmx_PEM,icetable_thickness_old,ice_porefilling_old,tsurf_avg,tsoil_PEM,delta_h2o_icetablesublim) ! Mass of H2O exchange between the ssi and the atmosphere
889        endif
890        deallocate(icetable_thickness_old,ice_porefilling_old)
891
892! II_d.5 Update the soil thermal properties
893        call update_soil_thermalproperties(ngrid,nslope,nsoilmx_PEM,d_h2oice,h2o_ice,ps_avg_global_new,icetable_depth,icetable_thickness,ice_porefilling,icetable_equilibrium,icetable_dynamic,TI_PEM)
894
895! II_d.6 Update the mass of the regolith adsorbed
896        totmass_adsco2 = 0.
897        totmass_adsh2o = 0.
898        if (adsorption_pem) then
899            call regolith_adsorption(ngrid,nslope,nsoilmx_PEM,timelen,d_h2oice,d_co2ice,h2o_ice,co2_ice, &
900                                     tsoil_PEM,TI_PEM,ps_timeseries,q_co2_PEM_phys,q_h2o_PEM_phys,       &
901                                     h2o_adsorbed_phys,delta_h2o_adsorbed,co2_adsorbed_phys,delta_co2_adsorbed)
902            do ig = 1,ngrid
903                do islope = 1,nslope
904                    do l = 1,nsoilmx_PEM
905                        if (l == 1) then
906                            totmass_adsco2 = totmass_adsco2 + co2_adsorbed_phys(ig,l,islope)*(layer_PEM(l))* &
907                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
908                            totmass_adsh2o = totmass_adsh2o + h2o_adsorbed_phys(ig,l,islope)*(layer_PEM(l))* &
909                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
910                        else
911                            totmass_adsco2 = totmass_adsco2 + co2_adsorbed_phys(ig,l,islope)*(layer_PEM(l) - layer_PEM(l - 1))* &
912                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
913                            totmass_adsh2o = totmass_adsh2o + h2o_adsorbed_phys(ig,l,islope)*(layer_PEM(l) - layer_PEM(l - 1))* &
914                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
915                        endif
916                    enddo
917                enddo
918            enddo
919            write(*,*) "Total mass of CO2 in the regolith =", totmass_adsco2
920            write(*,*) "Total mass of H2O in the regolith =", totmass_adsh2o
921        endif
922    endif !soil_pem
923    deallocate(zshift_surf,zlag)
924
925!------------------------
926! II  Run
927!    II_e Outputs
928!------------------------
929    call writediagpem(ngrid,'ps_avg','Global average pressure','Pa',0,(/ps_avg_global_new/))
930    do islope = 1,nslope
931        write(str2(1:2),'(i2.2)') islope
932        call writediagpem(ngrid,'h2o_ice_slope'//str2,'H2O ice','kg.m-2',2,h2o_ice(:,islope))
933        call writediagpem(ngrid,'co2_ice_slope'//str2,'CO2 ice','kg.m-2',2,co2_ice(:,islope))
934        call writediagpem(ngrid,'d_h2oice_slope'//str2,'H2O ice tend','kg.m-2.year-1',2,d_h2oice(:,islope))
935        call writediagpem(ngrid,'d_co2ice_slope'//str2,'CO2 ice tend','kg.m-2.year-1',2,d_co2ice(:,islope))
936        call writediagpem(ngrid,'Flow_co2ice_slope'//str2,'CO2 ice flow','Boolean',2,real(flag_co2flow(:,islope)))
937        call writediagpem(ngrid,'Flow_h2oice_slope'//str2,'H2O ice flow','Boolean',2,real(flag_h2oflow(:,islope)))
938        call writediagpem(ngrid,'tsurf_slope'//str2,'tsurf','K',2,tsurf_avg(:,islope))
939        if (icetable_equilibrium) then
940            call writediagpem(ngrid,'ssi_depth_slope'//str2,'ice table depth','m',2,icetable_depth(:,islope))
941            call writediagpem(ngrid,'ssi_thick_slope'//str2,'ice table thickness','m',2,icetable_thickness(:,islope))
942        else if (icetable_dynamic) then
943            call writediagpem(ngrid,'ssi_depth_slope'//str2,'ice table depth','m',2,icetable_depth(:,islope))
944        endif
945
946        if (soil_pem) then
947            call writediagsoilpem(ngrid,'tsoil_PEM_slope'//str2,'tsoil','K',3,tsoil_PEM(:,:,islope))
948            call writediagsoilpem(ngrid,'inertiesoil_PEM_slope'//str2,'TI','K',3,TI_PEM(:,:,islope))
949            if (icetable_dynamic) call writediagsoilpem(ngrid,'ice_porefilling'//str2,'ice pore filling','-',3,ice_porefilling(:,:,islope))
950            if (adsorption_pem) then
951                call writediagsoilpem(ngrid,'co2_ads_slope'//str2,'co2_ads','K',3,co2_adsorbed_phys(:,:,islope))
952                call writediagsoilpem(ngrid,'h2o_ads_slope'//str2,'h2o_ads','K',3,h2o_adsorbed_phys(:,:,islope))
953            endif
954        endif
955    enddo
956    deallocate(flag_co2flow,flag_h2oflow)
957
958    ! Checking mass balance for CO2
959    if (abs(CO2cond_ps - 1.) < 1.e-10) then
960        totmass_co2ice = 0.
961        totmass_atmco2 = 0.
962        do ig = 1,ngrid
963            totmass_atmco2 = totmass_atmco2 + cell_area(ig)*ps_avg(ig)/g
964            do islope = 1,nslope
965                totmass_co2ice = totmass_co2ice + co2_ice(ig,islope)*cell_area(ig)*subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)
966            enddo
967        enddo
968        totmass_ini = max(totmass_atmco2_ini + totmass_co2ice_ini + totmass_adsco2_ini,1.e-10)
969        write(*,'(a,f8.3,a)') " > Relative total CO2 mass balance = ", 100.*(totmass_atmco2 + totmass_co2ice + totmass_adsco2 - totmass_atmco2_ini - totmass_co2ice_ini - totmass_adsco2_ini)/totmass_ini, ' %'
970        if ((totmass_atmco2 + totmass_co2ice + totmass_adsco2 - totmass_atmco2_ini - totmass_co2ice_ini - totmass_adsco2_ini)/totmass_ini > 0.01) then
971            write(*,*) '  /!\ Warning: mass balance is not conseved!'
972            totmass_ini = max(totmass_atmco2_ini,1.e-10)
973            write(*,'(a,f8.3,a)') '       Atmospheric CO2 mass balance = ', 100.*(totmass_atmco2 - totmass_atmco2_ini)/totmass_ini, ' %'
974            totmass_ini = max(totmass_co2ice_ini,1.e-10)
975            write(*,'(a,f8.3,a)') '       CO2 ice mass balance         = ', 100.*(totmass_co2ice - totmass_co2ice_ini)/totmass_ini, ' %'
976            totmass_ini = max(totmass_adsco2_ini,1.e-10)
977            write(*,'(a,f8.3,a)') '       Adsorbed CO2 mass balance    = ', 100.*(totmass_adsco2 - totmass_adsco2_ini)/totmass_ini, ' %'
978        endif
979    endif
980
981!------------------------
982! II  Run
983!    II_f Update the tendencies
984!------------------------
985    call recomp_tend_co2(ngrid,nslope,timelen,d_co2ice,d_co2ice_ini,co2_ice,emis,vmr_co2_PCM,vmr_co2_PEM_phys,ps_timeseries,ps_avg_global_old,ps_avg_global_new)
986    write(*,*) "> Updating the H2O sub-surface ice tendency due to lag layer"
987    if (layering_algo) then
988        do ig = 1,ngrid
989            do islope = 1,nslope
990                if (is_h2oice_sublim_ini(ig,islope) .and. h2o_ice_depth(ig,islope) > 0.) call recomp_tend_h2o(h2o_ice_depth_old(ig,islope),h2o_ice_depth(ig,islope),tsurf_avg(ig,islope),tsoil_PEM_timeseries_old(ig,:,islope,:),tsoil_PEM_timeseries(ig,:,islope,:),d_h2oice(ig,islope))
991            enddo
992        enddo
993!~     else
994!~         do ig = 1,ngrid
995!~             do islope = 1,nslope
996!~                 call recomp_tend_h2o(icetable_depth_old(ig,islope),icetable_depth(ig,islope),tsurf_avg(ig,islope),tsoil_PEM_timeseries_old(ig,:,islope,:),tsoil_PEM_timeseries(ig,:,islope,:),d_h2oice(ig,islope))
997!~             enddo
998!~         enddo
999    endif
1000    if (soil_pem) deallocate(icetable_depth_old,tsoil_PEM_timeseries_old)
1001    deallocate(vmr_co2_PEM_phys)
1002
1003!------------------------
1004! II  Run
1005!    II_g Checking the stopping criterion
1006!------------------------
1007    write(*,*) "> Checking the stopping criteria"
1008    call stopping_crit_h2o_ice(cell_area,h2oice_ini_surf,is_h2oice_sublim_ini,h2o_ice,stopPEM,ngrid)
1009    call stopping_crit_co2(cell_area,co2ice_sublim_surf_ini,is_co2ice_sublim_ini,co2_ice,stopPEM,ngrid,ps_avg_global_ini,ps_avg_global_new,nslope)
1010    i_myear_leg = i_myear_leg + dt
1011    i_myear = i_myear + dt
1012    if (stopPEM <= 0 .and. i_myear_leg >= n_myear_leg) stopPEM = 5
1013    if (stopPEM <= 0 .and. i_myear >= n_myear) stopPEM = 6
1014    call system_clock(c2)
1015    if (stopPEM <= 0 .and. timewall .and. real((c2 - c1)/cr) >= timelimit - antetime) stopPEM = 7
1016    if (stopPEM > 0) then
1017        select case (stopPEM)
1018            case(1)
1019                write(*,'(a,i0,a)') " **** STOPPING because surface of h2o ice sublimating is too low: ", stopPEM, ". See message above."
1020            case(2)
1021                write(*,'(a,i0,a)') " **** STOPPING because tendencies on h2o ice = 0: ", stopPEM, ". See message above."
1022            case(3)
1023                write(*,'(a,i0,a)') " **** STOPPING because surface of co2 ice sublimating is too low: ", stopPEM, ". See message above."
1024            case(4)
1025                write(*,'(a,i0,a)') " **** STOPPING because surface global pressure changed too much: ", stopPEM, ". See message above."
1026            case(5)
1027                write(*,'(a,i0)') " **** STOPPING because maximum number of iterations is reached (possibly due to orbital parameters): ", stopPEM
1028            case(6)
1029                write(*,'(a,i0)') " **** STOPPING because maximum number of Martian years to be simulated is reached: ", stopPEM
1030            case(7)
1031                write(*,'(a,i0)') " **** STOPPING because the time limit for the PEM job will be reached soon: ", stopPEM
1032            case default
1033                write(*,'(a,i0)') " **** STOPPING with unknown stopping criterion code: ", stopPEM
1034        end select
1035        exit
1036    else
1037        write(*,'(a,f10.2,a)') ' **** The chained simulation has run for ',i_myear,' Martian years.'
1038        write(*,*) '**** The PEM can continue!'
1039        write(*,*) '****'
1040    endif
1041enddo ! big time iteration loop of the pem
1042deallocate(vmr_co2_PCM,q_co2_PEM_phys,q_h2o_PEM_phys,delta_co2_adsorbed)
1043deallocate(watersoil_density_PEM_avg,watersurf_density_avg)
1044deallocate(ps_timeseries,tsoil_PEM_timeseries,watersoil_density_PEM_timeseries)
1045deallocate(co2ice_disappeared,delta_h2o_adsorbed,delta_h2o_icetablesublim)
1046deallocate(d_co2ice,d_co2ice_ini,d_h2oice)
1047deallocate(is_co2ice_ini,is_co2ice_sublim_ini,is_h2oice_sublim_ini)
1048if (layering_algo) deallocate(h2o_ice_depth_old,new_str,new_lag,current)
1049!------------------------------ END RUN --------------------------------
1050
1051!------------------------------- OUTPUT --------------------------------
1052!------------------------
1053! III Output
1054!    III_a Update surface values for the PCM start files
1055!------------------------
1056write(*,*)
1057write(*,*) '********* PEM finalization *********'
1058! III_a.1 Ice update for start file
1059write(*,*) '> Reconstructing perennial ice and frost for the PCM'
1060watercap = 0.
1061perennial_co2ice = co2_ice
1062do ig = 1,ngrid
1063    ! H2O ice metamorphism
1064    !if (metam_h2oice .and. sum(qsurf(ig,igcm_h2o_ice,:)*subslope_dist(ig,:)/cos(pi*def_slope_mean(:)/180.)) > metam_h2oice_threshold) then
1065    !    h2o_ice(ig,:) = h2o_ice(ig,:) + qsurf(ig,igcm_h2o_ice,:) - metam_h2oice_threshold
1066    !    qsurf(ig,igcm_h2o_ice,:) = metam_h2oice_threshold
1067    !endif
1068
1069    ! Is H2O ice still considered as an infinite reservoir for the PCM?
1070    if (sum(h2o_ice(ig,:)*subslope_dist(ig,:)/cos(pi*def_slope_mean(:)/180.)) > inf_h2oice_threshold) then
1071        ! There is enough ice to be considered as an infinite reservoir
1072        watercaptag(ig) = .true.
1073    else
1074        ! Too little ice to be considered as an infinite reservoir so ice is transferred to the frost
1075        watercaptag(ig) = .false.
1076        qsurf(ig,igcm_h2o_ice,:) = qsurf(ig,igcm_h2o_ice,:) + h2o_ice(ig,:)
1077        h2o_ice(ig,:) = 0.
1078    endif
1079
1080    ! CO2 ice metamorphism
1081    !if (metam_co2ice .and. sum(qsurf(ig,igcm_co2,:)*subslope_dist(ig,:)/cos(pi*def_slope_mean(:)/180.)) > metam_co2ice_threshold) then
1082    !    perennial_co2ice(ig,:) = perennial_co2ice(ig,:) + qsurf(ig,igcm_co2,:) - metam_co2ice_threshold
1083    !    qsurf(ig,igcm_co2,:) = metam_co2ice_threshold
1084    !endif
1085enddo
1086
1087! III.a.3. Tsurf update for start file
1088write(*,*) '> Reconstructing the surface temperature for the PCM'
1089tsurf = tsurf_avg + tsurf_dev
1090deallocate(tsurf_dev)
1091
1092! III_a.4 Tsoil update for start file
1093if (soil_pem) then
1094    write(*,*) '> Reconstructing the soil temperature profile for the PCM'
1095    inertiesoil = TI_PEM(:,:nsoilmx,:)
1096    ! Tsurf has evolved and so the soil temperature profile needs to be adapted to match this new value
1097    do isoil = 1,nsoilmx
1098        tsoil_dev(:,isoil,:) = tsoil_dev(:,isoil,:)*(tsurf_avg(:,:) - tsoil_PEM(:,1,:))/tsoil_dev(:,1,:)
1099    enddo
1100    tsoil = tsoil_PEM(:,1:nsoilmx,:) + tsoil_dev
1101#ifndef CPP_STD
1102    flux_geo = fluxgeo
1103#endif
1104endif
1105deallocate(tsurf_avg,tsoil_dev)
1106
1107! III_a.5 Pressure update for start file
1108write(*,*) '> Reconstructing the pressure for the PCM'
1109allocate(ps_start(ngrid))
1110! The pressure deviation is rescaled as well to avoid disproportionate oscillations in case of huge average pressure drop
1111ps_start = ps_avg + ps_dev*ps_avg_global_new/ps_avg_global_ini
1112deallocate(ps_avg,ps_dev)
1113
1114! III_a.6 Tracers update for start file
1115write(*,*) '> Reconstructing the tracer VMR for the PCM'
1116allocate(zplev_start0(ngrid,nlayer + 1),zplev_new(ngrid,nlayer + 1))
1117do l = 1,nlayer + 1
1118    zplev_start0(:,l) = ap(l) + bp(l)*ps_start0
1119    zplev_new(:,l) = ap(l) + bp(l)*ps_start
1120enddo
1121
1122do nnq = 1,nqtot
1123    if (noms(nnq) /= "co2") then
1124        do l = 1,llm - 1
1125            do ig = 1,ngrid
1126                q(ig,l,nnq) = q(ig,l,nnq)*(zplev_start0(ig,l) - zplev_start0(ig,l + 1))/(zplev_new(ig,l) - zplev_new(ig,l + 1))
1127            enddo
1128            q(:,llm,nnq) = q(:,llm - 1,nnq)
1129        enddo
1130    else
1131        do l = 1,llm - 1
1132            do ig = 1,ngrid
1133                q(ig,l,nnq) = q(ig,l,nnq)*(zplev_start0(ig,l) - zplev_start0(ig,l + 1))/(zplev_new(ig,l) - zplev_new(ig,l + 1)) &
1134                              + ((zplev_new(ig,l) - zplev_new(ig,l + 1)) - (zplev_start0(ig,l) - zplev_start0(ig,l + 1)))/(zplev_new(ig,l) - zplev_new(ig,l + 1))
1135            enddo
1136            q(:,llm,nnq) = q(:,llm - 1,nnq)
1137        enddo
1138    endif
1139enddo
1140deallocate(zplev_start0)
1141
1142! Conserving the tracers mass for start file
1143do nnq = 1,nqtot
1144    do ig = 1,ngrid
1145        do l = 1,llm - 1
1146            if (q(ig,l,nnq) > 1 .and. (noms(nnq) /= "dust_number") .and. (noms(nnq) /= "ccn_number") .and. (noms(nnq) /= "stormdust_number") .and. (noms(nnq) /= "topdust_number")) then
1147                extra_mass = (q(ig,l,nnq) - 1)*(zplev_new(ig,l) - zplev_new(ig,l + 1))
1148                q(ig,l,nnq) = 1.
1149                q(ig,l + 1,nnq) = q(ig,l + 1,nnq) + extra_mass*(zplev_new(ig,l + 1) - zplev_new(ig,l + 2))
1150                write(*,*) 'extra ',noms(nnq),extra_mass, noms(nnq) /= "dust_number",noms(nnq) /= "ccn_number"
1151            endif
1152            if (q(ig,l,nnq) < 0) q(ig,l,nnq) = 1.e-30
1153        enddo
1154    enddo
1155enddo
1156deallocate(zplev_new)
1157
1158! III_a.7 Albedo update for start file
1159write(*,*) '> Reconstructing the albedo for the PCM'
1160do ig = 1,ngrid
1161    if (latitude(ig) < 0.) then
1162        icap = 2 ! Southern hemisphere
1163    else
1164        icap = 1 ! Northern hemisphere
1165    endif
1166    do islope = 1,nslope
1167        ! Bare ground
1168        albedo(ig,:,islope) = albedodat(ig)
1169        emis(ig,islope) = emissiv
1170
1171        ! CO2 ice/frost is treated after H20 ice/frost because it is considered dominant
1172        ! H2O ice
1173        if (h2o_ice(ig,islope) > 0.) then
1174            albedo(ig,:,islope) = albedo_h2o_cap
1175            emis(ig,islope) = 1.
1176        endif
1177        ! CO2 ice
1178        if (co2_ice(ig,islope) > 0.) then
1179            albedo(ig,:,islope) = albedo_perennialco2(icap)
1180            emis(ig,islope) = emisice(icap)
1181        endif
1182        ! H2O frost
1183        if (qsurf(ig,igcm_h2o_ice,islope) > 0.) then
1184            albedo(ig,:,islope) = albedo_h2o_frost
1185            emis(ig,islope) = 1.
1186        endif
1187        ! CO2 frost
1188        if (qsurf(ig,igcm_co2,islope) > 0.) then
1189            albedo(ig,:,islope) = albedice(icap)
1190            emis(ig,islope) = emisice(icap)
1191        endif
1192    enddo
1193enddo
1194
1195! III_a.8 Orbital parameters update for start file
1196write(*,*) '> Setting the new orbital parameters'
1197if (evol_orbit_pem) call recomp_orb_param(i_myear,i_myear_leg)
1198
1199!------------------------
1200! III Output
1201!    III_b Write "restart.nc" and "restartfi.nc"
1202!------------------------
1203! III_b.1 Write "restart.nc"
1204ptimestep = iphysiq*daysec/real(day_step)/nsplit_phys ! dtphys/nsplit_phys
1205pday = day_ini
1206ztime_fin = time_phys
1207#ifndef CPP_1D
1208    write(*,*) '> Writing "restart.nc"'
1209    ! Correction on teta due to surface pressure changes
1210    allocate(pdyn(ip1jmp1))
1211    call gr_fi_dyn(1,ngrid,iip1,jjp1,ps_start0/ps_start,pdyn)
1212    do i = 1,ip1jmp1
1213        teta(i,:) = teta(i,:)*pdyn(i)**rcp
1214    enddo
1215    ! Correction on atmospheric pressure
1216    allocate(p(ip1jmp1,nlayer + 1))
1217    call gr_fi_dyn(1,ngrid,iip1,jjp1,ps_start,pdyn)
1218    call pression(ip1jmp1,ap,bp,pdyn,p)
1219    ! Correction on the mass of atmosphere
1220    call massdair(p,masse)
1221    call dynredem0("restart.nc",day_ini,phis)
1222    call dynredem1("restart.nc",time_0,vcov,ucov,teta,q,masse,pdyn)
1223    deallocate(ap,bp,p,pdyn)
1224#else
1225    write(*,*) '> Writing "restart1D.txt"'
1226    call writerestart1D('restart1D.txt',ps_start(1),tsurf(1,:),nlayer,size(tsurf,2),teta,ucov,vcov,nq,noms,qsurf(1,:,:),q)
1227#endif
1228deallocate(ps_start0,ps_start)
1229
1230! III_b.2 Write the "restartfi.nc"
1231write(*,*) '> Writing "restartfi.nc"'
1232#ifndef CPP_STD
1233    call physdem0("restartfi.nc",longitude,latitude,nsoilmx,ngrid, &
1234                  nlayer,nq,ptimestep,pday,0.,cell_area,albedodat, &
1235                  inertiedat,def_slope,subslope_dist)
1236    call physdem1("restartfi.nc",nsoilmx,ngrid,nlayer,nq,nqsoil,      &
1237                  ptimestep,ztime_fin,tsurf,tsoil,inertiesoil,        &
1238                  albedo,emis,q2,qsurf,qsoil,tauscaling,totcloudfrac, &
1239                  wstar,watercap,perennial_co2ice)
1240#else
1241    if (allocated(noms)) deallocate(noms)
1242    deallocate(qsurf,tsurf,tsoil,emis,watercap,watercaptag,albedo,inertiesoil)
1243    call physdem0("restartfi.nc",longitude,latitude,nsoilmx,ngrid, &
1244                  nlayer,nq,ptimestep,pday,time_phys,cell_area,    &
1245                  albedo_bareground,inertiedat,zmea,zstd,zsig,zgam,zthe)
1246    call physdem1("restartfi.nc",nsoilmx,ngrid,nlayer,nq,nqsoil,       &
1247                  ptimestep,ztime_fin,tsurf,tsoil,emis,q2,qsurf,qsoil, &
1248                  cloudfrac,totcloudfrac,hice,rnat,pctsrf_sic,tslab,   &
1249                  tsea_ice,sea_ice)
1250#endif
1251
1252!------------------------
1253! III Output
1254!    III_c Write the "restartpem.nc"
1255!------------------------
1256write(*,*) '> Writing "restartpem.nc"'
1257if (layering_algo) nb_str_max = get_nb_str_max(layerings_map,ngrid,nslope) ! Get the maximum number of "stratum" in the layerings_mapication (layerings)
1258call pemdem0("restartpem.nc",longitude,latitude,cell_area,ngrid,nslope,def_slope,subslope_dist)
1259call pemdem1("restartpem.nc",i_myear,nsoilmx_PEM,ngrid,nslope,tsoil_PEM,TI_PEM,icetable_depth,icetable_thickness,ice_porefilling, &
1260             co2_adsorbed_phys,h2o_adsorbed_phys,h2o_ice,layerings_map)
1261
1262call info_PEM(i_myear_leg,stopPEM,i_myear,n_myear)
1263
1264write(*,*)
1265write(*,*) '****** PEM final information *******'
1266write(*,'(a,f16.4,a)') " + The PEM leg has run for ", i_myear_leg, " Martian years."
1267write(*,'(a,f16.4,a,f16.4,a)') " + The chained simulation has run for ", i_myear, " Martian years =", i_myear*convert_years, " Earth years."
1268write(*,'(a,f16.4,a)') " + The reached date is now ", (year_bp_ini + i_myear)*convert_years, " Earth years."
1269write(*,*) "+ PEM: so far, so good!"
1270write(*,*) '************************************'
1271
1272if (layering_algo) then
1273    do islope = 1,nslope
1274        do i = 1,ngrid
1275            call del_layering(layerings_map(i,islope))
1276        enddo
1277    enddo
1278endif
1279deallocate(q,longitude,latitude,cell_area,tsoil_PEM)
1280deallocate(co2_ice,h2o_ice,layerings_map)
1281!----------------------------- END OUTPUT ------------------------------
1282
1283END PROGRAM pem
Note: See TracBrowser for help on using the repository browser.