| 1 | !------------------------ |
|---|
| 2 | ! I Initialization |
|---|
| 3 | ! I_a Read the "run.def" |
|---|
| 4 | ! I_b Read the "start.nc" and "startfi.nc" |
|---|
| 5 | ! I_c Subslope parametrisation |
|---|
| 6 | ! I_d Read the PCM data and convert them to the physical grid |
|---|
| 7 | ! I_e Initialization of the PEM variable and soil |
|---|
| 8 | ! I_f Compute tendencies |
|---|
| 9 | ! I_g Compute global surface pressure |
|---|
| 10 | ! I_h Read the "startpem.nc" |
|---|
| 11 | ! I_i Compute orbit criterion |
|---|
| 12 | |
|---|
| 13 | ! II Run |
|---|
| 14 | ! II_a Update pressure, ice and tracers |
|---|
| 15 | ! II_b Evolution of ice |
|---|
| 16 | ! II_c Flow of glaciers |
|---|
| 17 | ! II_d Update surface and soil temperatures |
|---|
| 18 | ! II_e Outputs |
|---|
| 19 | ! II_f Update the tendencies |
|---|
| 20 | ! II_g Checking the stopping criterion |
|---|
| 21 | |
|---|
| 22 | ! III Output |
|---|
| 23 | ! III_a Update surface values for the PCM start files |
|---|
| 24 | ! III_b Write the "restart.nc" and "restartfi.nc" |
|---|
| 25 | ! III_c Write the "restartpem.nc" |
|---|
| 26 | !------------------------ |
|---|
| 27 | |
|---|
| 28 | PROGRAM pem |
|---|
| 29 | |
|---|
| 30 | use phyetat0_mod, only: phyetat0 |
|---|
| 31 | use phyredem, only: physdem0, physdem1 |
|---|
| 32 | use netcdf, only: nf90_open, NF90_NOWRITE, nf90_get_var, nf90_inq_varid, nf90_close |
|---|
| 33 | use turb_mod, only: q2, wstar |
|---|
| 34 | use comslope_mod, only: nslope, def_slope, def_slope_mean, subslope_dist, iflat, ini_comslope_h |
|---|
| 35 | use logic_mod, only: iflag_phys |
|---|
| 36 | use mod_const_mpi, only: COMM_LMDZ |
|---|
| 37 | use infotrac |
|---|
| 38 | use geometry_mod, only: latitude_deg |
|---|
| 39 | use conf_pem_mod, only: conf_pem |
|---|
| 40 | use pemredem, only: pemdem0, pemdem1 |
|---|
| 41 | use glaciers_mod, only: flow_co2glaciers, flow_h2oglaciers, co2ice_flow, h2oice_flow, inf_h2oice_threshold, & |
|---|
| 42 | metam_h2oice_threshold, metam_co2ice_threshold, metam_h2oice, metam_co2ice, computeTcondCO2 |
|---|
| 43 | use stopping_crit_mod, only: stopping_crit_h2o_ice, stopping_crit_co2 |
|---|
| 44 | use constants_marspem_mod, only: alpha_clap_co2, beta_clap_co2, alpha_clap_h2o, beta_clap_h2o, m_co2, m_noco2 |
|---|
| 45 | use evol_ice_mod, only: evol_co2_ice, evol_h2o_ice |
|---|
| 46 | use comsoil_h_PEM, only: soil_pem, ini_comsoil_h_PEM, end_comsoil_h_PEM, nsoilmx_PEM, & |
|---|
| 47 | TI_PEM, & ! Soil thermal inertia |
|---|
| 48 | tsoil_PEM, layer_PEM, & ! Soil temp, number of subsurface layers, soil mid layer depths |
|---|
| 49 | fluxgeo ! Geothermal flux for the PEM and PCM |
|---|
| 50 | use adsorption_mod, only: regolith_adsorption, adsorption_pem, & ! Bool to check if adsorption, main subroutine |
|---|
| 51 | ini_adsorption_h_PEM, end_adsorption_h_PEM, & ! Allocate arrays |
|---|
| 52 | co2_adsorbed_phys, h2o_adsorbed_phys ! Mass of co2 and h2O adsorbed |
|---|
| 53 | use time_evol_mod, only: dt, evol_orbit_pem, Max_iter_pem, convert_years, year_bp_ini |
|---|
| 54 | use orbit_param_criterion_mod, only: orbit_param_criterion |
|---|
| 55 | use recomp_orb_param_mod, only: recomp_orb_param |
|---|
| 56 | use ice_table_mod, only: icetable_depth, icetable_thickness, end_ice_table, ice_porefilling, & |
|---|
| 57 | ini_ice_table, icetable_equilibrium, icetable_dynamic, computeice_table_equilibrium, compute_massh2o_exchange_ssi |
|---|
| 58 | use soil_thermalproperties_mod, only: update_soil_thermalproperties |
|---|
| 59 | use time_phylmdz_mod, only: daysec, dtphys |
|---|
| 60 | use abort_pem_mod, only: abort_pem |
|---|
| 61 | use soil_settings_PEM_mod, only: soil_settings_PEM |
|---|
| 62 | use compute_tend_mod, only: compute_tend |
|---|
| 63 | use info_PEM_mod, only: info_PEM |
|---|
| 64 | use get_timelen_PCM_mod, only: get_timelen_PCM |
|---|
| 65 | use pemetat0_mod, only: pemetat0 |
|---|
| 66 | use read_data_PCM_mod, only: read_data_PCM |
|---|
| 67 | use recomp_tend_mod, only: recomp_tend_co2, recomp_tend_h2o |
|---|
| 68 | use compute_soiltemp_mod, only: compute_tsoil_pem, shift_tsoil2surf |
|---|
| 69 | use writediagpem_mod, only: writediagpem, writediagsoilpem |
|---|
| 70 | use co2condens_mod, only: CO2cond_ps |
|---|
| 71 | use layering_mod, only: layering, del_layering, make_layering, layering_algo, subsurface_ice_layering, & |
|---|
| 72 | ptrarray, stratum, get_nb_str_max, nb_str_max, is_dust_lag, is_co2ice_str, is_h2oice_str |
|---|
| 73 | use dyn_ss_ice_m_mod, only: dyn_ss_ice_m |
|---|
| 74 | use parse_args_mod, only: parse_args |
|---|
| 75 | use job_timelimit_mod, only: timelimit, antetime, timewall |
|---|
| 76 | use paleoclimate_mod, only: h2o_ice_depth, zdqsdif_ssi_tot |
|---|
| 77 | |
|---|
| 78 | #ifndef CPP_STD |
|---|
| 79 | use comsoil_h, only: tsoil, nsoilmx, ini_comsoil_h, inertiedat, mlayer, inertiesoil, flux_geo, nqsoil, qsoil |
|---|
| 80 | use surfdat_h, only: tsurf, qsurf, emis, emissiv, emisice, ini_surfdat_h, & |
|---|
| 81 | albedodat, albedice, albedo_h2o_frost, albedo_h2o_cap, & |
|---|
| 82 | zmea, zstd, zsig, zgam, zthe, frost_albedo_threshold, & |
|---|
| 83 | watercap, watercaptag, perennial_co2ice, albedo_perennialco2 |
|---|
| 84 | use dimradmars_mod, only: totcloudfrac, albedo |
|---|
| 85 | use dust_param_mod, only: tauscaling |
|---|
| 86 | use tracer_mod, only: noms, igcm_h2o_ice, igcm_co2, mmol, igcm_h2o_vap ! Tracer names and molar masses |
|---|
| 87 | use mod_phys_lmdz_para, only: is_parallel, is_sequential, is_mpi_root, is_omp_root, is_master |
|---|
| 88 | use planete_h, only: aphelie, periheli, year_day, peri_day, obliquit, iniorbit |
|---|
| 89 | use surfini_mod, only: surfini |
|---|
| 90 | use comcstfi_h, only: mugaz |
|---|
| 91 | #else |
|---|
| 92 | use tracer_h, only: noms, igcm_h2o_ice, igcm_co2 ! Tracer names |
|---|
| 93 | use phys_state_var_mod, only: cloudfrac, totcloudfrac, albedo_snow_SPECTV,HICE,RNAT, & |
|---|
| 94 | PCTSRF_SIC, TSLAB, TSEA_ICE, SEA_ICE, ALBEDO_BAREGROUND, & |
|---|
| 95 | ALBEDO_CO2_ICE_SPECTV, phys_state_var_init |
|---|
| 96 | use aerosol_mod, only: iniaerosol |
|---|
| 97 | use planete_mod, only: apoastr, periastr, year_day, peri_day, obliquit |
|---|
| 98 | use comcstfi_mod, only: pi, rad, g, r, cpp, rcp, mugaz |
|---|
| 99 | #endif |
|---|
| 100 | |
|---|
| 101 | #ifndef CPP_1D |
|---|
| 102 | use comconst_mod, only: pi, rad, g, r, cpp, rcp => kappa |
|---|
| 103 | use iniphysiq_mod, only: iniphysiq |
|---|
| 104 | use control_mod, only: iphysiq, day_step, nsplit_phys |
|---|
| 105 | #else |
|---|
| 106 | use comcstfi_h, only: pi, rad, g, r, cpp, rcp |
|---|
| 107 | use time_phylmdz_mod, only: iphysiq, steps_per_sol |
|---|
| 108 | use regular_lonlat_mod, only: init_regular_lonlat |
|---|
| 109 | use physics_distribution_mod, only: init_physics_distribution |
|---|
| 110 | use mod_grid_phy_lmdz, only: regular_lonlat |
|---|
| 111 | use init_testphys1d_mod, only: init_testphys1d |
|---|
| 112 | use comvert_mod, only: ap, bp |
|---|
| 113 | use writerestart1D_mod, only: writerestart1D |
|---|
| 114 | #endif |
|---|
| 115 | |
|---|
| 116 | implicit none |
|---|
| 117 | |
|---|
| 118 | include "dimensions.h" |
|---|
| 119 | include "paramet.h" |
|---|
| 120 | include "comgeom.h" |
|---|
| 121 | include "iniprint.h" |
|---|
| 122 | |
|---|
| 123 | ! Same variable names as in the PCM |
|---|
| 124 | integer, parameter :: ngridmx = 2 + (jjm - 1)*iim - 1/jjm |
|---|
| 125 | integer, parameter :: nlayer = llm ! Number of vertical layer |
|---|
| 126 | integer :: ngrid ! Number of physical grid points |
|---|
| 127 | integer :: nq ! Number of tracer |
|---|
| 128 | integer :: day_ini ! First day of the simulation |
|---|
| 129 | real :: pday ! Physical day |
|---|
| 130 | real :: time_phys ! Same as in PCM |
|---|
| 131 | real :: ptimestep ! Same as in PCM |
|---|
| 132 | real :: ztime_fin ! Same as in PCM |
|---|
| 133 | |
|---|
| 134 | ! Variables to read "start.nc" |
|---|
| 135 | character(*), parameter :: start_name = "start.nc" ! Name of the file used to initialize the PEM |
|---|
| 136 | |
|---|
| 137 | ! Dynamic variables |
|---|
| 138 | real, dimension(ip1jm,llm) :: vcov ! vents covariants |
|---|
| 139 | real, dimension(ip1jmp1,llm) :: ucov ! vents covariants |
|---|
| 140 | real, dimension(ip1jmp1,llm) :: teta ! Potential temperature |
|---|
| 141 | real, dimension(:,:,:), allocatable :: q ! champs advectes |
|---|
| 142 | real, dimension(:), allocatable :: pdyn ! pressure for the dynamic grid |
|---|
| 143 | real, dimension(:), allocatable :: ps_start ! surface pressure in the start file |
|---|
| 144 | real, dimension(:), allocatable :: ps_start0 ! surface pressure in the start file at the beginning |
|---|
| 145 | real, dimension(:), allocatable :: ps_avg ! (ngrid) Average surface pressure |
|---|
| 146 | real, dimension(:), allocatable :: ps_dev ! (ngrid x timelen) Surface pressure deviation |
|---|
| 147 | real, dimension(:,:), allocatable :: ps_timeseries ! (ngrid x timelen) Instantaneous surface pressure |
|---|
| 148 | real, dimension(ip1jmp1,llm) :: masse ! Air mass |
|---|
| 149 | real, dimension(ip1jmp1) :: phis ! geopotentiel au sol |
|---|
| 150 | real :: time_0 |
|---|
| 151 | |
|---|
| 152 | ! Variables to read starfi.nc |
|---|
| 153 | character(*), parameter :: startfi_name = "startfi.nc" ! Name of the file used to initialize the PEM |
|---|
| 154 | character(2) :: str2 |
|---|
| 155 | integer :: ncid, status ! Variable for handling opening of files |
|---|
| 156 | integer :: lonvarid, latvarid, areavarid, sdvarid ! Variable ID for Netcdf files |
|---|
| 157 | integer :: apvarid, bpvarid ! Variable ID for Netcdf files |
|---|
| 158 | |
|---|
| 159 | ! Variables to read starfi.nc and write restartfi.nc |
|---|
| 160 | real, dimension(:), allocatable :: longitude ! Longitude read in startfi_name and written in restartfi |
|---|
| 161 | real, dimension(:), allocatable :: latitude ! Latitude read in startfi_name and written in restartfi |
|---|
| 162 | real, dimension(:), allocatable :: cell_area ! Cell_area read in startfi_name and written in restartfi |
|---|
| 163 | real :: total_surface ! Total surface of the planet |
|---|
| 164 | |
|---|
| 165 | ! Variables for h2o ice evolution |
|---|
| 166 | real, dimension(:,:), allocatable :: h2o_ice ! h2o ice in the PEM |
|---|
| 167 | real, dimension(:,:), allocatable :: d_h2oice ! physical point x slope field: Tendency of evolution of perennial h2o ice |
|---|
| 168 | real, dimension(:,:,:), allocatable :: min_h2o_ice ! Minima of h2o ice at each point for the PCM years [kg/m^2] |
|---|
| 169 | real :: h2oice_ini_surf ! Initial surface of sublimating h2o ice |
|---|
| 170 | logical, dimension(:,:), allocatable :: is_h2oice_sublim_ini ! Logical array to know if h2o ice is sublimating |
|---|
| 171 | real :: ps_avg_global_ini ! constant: Global average pressure at initialization [Pa] |
|---|
| 172 | real :: ps_avg_global_old ! constant: Global average pressure of previous time step |
|---|
| 173 | real :: ps_avg_global_new ! constant: Global average pressure of current time step |
|---|
| 174 | real, dimension(:,:), allocatable :: zplev_new ! Grid points x Atmospheric field: mass of the atmospheric layers in the pem at current time step [kg/m^2] |
|---|
| 175 | real, dimension(:,:), allocatable :: zplev_start0 ! Grid points x Atmospheric field: mass of the atmospheric layers in the start [kg/m^2] |
|---|
| 176 | real, dimension(:,:,:), allocatable :: zplev_timeseries_new ! Grid points x Atmospheric x Time: same as zplev_new, but in times series [kg/m ^2] |
|---|
| 177 | real, dimension(:,:,:), allocatable :: zplev_timeseries_old ! same but with the time series, for previous time step |
|---|
| 178 | integer :: stopPEM ! which criterion is reached? 0 = no stopping; 1 = h2o ice surf; 2 = no h2o ice; 3 = co2 ice surf; 4 = ps; 5 = orb param; 6 = end of simu |
|---|
| 179 | real :: A, B, mmean ! Molar mass: intermediate A, B for computations of the mean molar mass of the layer [mol/kg] |
|---|
| 180 | real, dimension(:,:), allocatable :: q_h2o_PEM_phys ! Grid points x Times: h2o mass mixing ratio computed in the PEM, first value comes from PCM [kg/kg] |
|---|
| 181 | integer :: timelen ! # time samples |
|---|
| 182 | real :: extra_mass ! Intermediate variables Extra mass of a tracer if it is greater than 1 |
|---|
| 183 | |
|---|
| 184 | ! Variables for co2 ice evolution |
|---|
| 185 | real, dimension(:,:), allocatable :: co2_ice ! co2 ice in the PEM |
|---|
| 186 | real, dimension(:,:), allocatable :: d_co2ice ! physical point x slope field: Tendency of evolution of perennial co2 ice over a year |
|---|
| 187 | real, dimension(:,:), allocatable :: d_co2ice_ini ! physical point x slope field: Tendency of evolution of perennial co2 ice over a year in the PCM |
|---|
| 188 | logical, dimension(:,:), allocatable :: is_co2ice_ini ! Was there co2 ice initially in the PEM? |
|---|
| 189 | real, dimension(:,:,:), allocatable :: min_co2_ice ! Minimum of co2 ice at each point for the first year [kg/m^2] |
|---|
| 190 | real :: co2ice_sublim_surf_ini ! Initial surface of sublimating co2 ice |
|---|
| 191 | logical, dimension(:,:), allocatable :: is_co2ice_sublim_ini ! Logical array to know if co2 ice is sublimating |
|---|
| 192 | real, dimension(:,:), allocatable :: vmr_co2_PCM ! Grid points x Times co2 volume mixing ratio retrieve from the PCM [m^3/m^3] |
|---|
| 193 | real, dimension(:,:), allocatable :: vmr_co2_PEM_phys ! Grid points x Times co2 volume mixing ratio used in the PEM |
|---|
| 194 | real, dimension(:,:), allocatable :: q_co2_PEM_phys ! Grid points x Times co2 mass mixing ratio in the first layer computed in the PEM, first value comes from PCM [kg/kg] |
|---|
| 195 | real(kind = 16) :: totmass_co2ice, totmass_atmco2 ! Current total CO2 masses |
|---|
| 196 | real(kind = 16) :: totmass_co2ice_ini, totmass_atmco2_ini ! Initial total CO2 masses |
|---|
| 197 | |
|---|
| 198 | ! Variables for the evolution of layered layerings_map |
|---|
| 199 | type(layering), dimension(:,:), allocatable :: layerings_map ! Layering for each grid point and slope |
|---|
| 200 | type(ptrarray), dimension(:,:), allocatable :: current ! Current active stratum in the layering |
|---|
| 201 | logical, dimension(:,:), allocatable :: new_str, new_lag ! Flags for the layering algorithm |
|---|
| 202 | real, dimension(:,:), allocatable :: h2o_ice_depth_old ! Old depth of subsurface ice layer |
|---|
| 203 | |
|---|
| 204 | ! Variables for slopes |
|---|
| 205 | integer(kind = 1), dimension(:,:), allocatable :: flag_co2flow ! (ngrid,nslope): Flag where there is a CO2 glacier flow |
|---|
| 206 | integer(kind = 1), dimension(:,:), allocatable :: flag_h2oflow ! (ngrid,nslope): Flag where there is a H2O glacier flow |
|---|
| 207 | |
|---|
| 208 | ! Variables for surface and soil |
|---|
| 209 | real, dimension(:,:), allocatable :: tsurf_avg ! Grid points x Slope field: Average surface temperature [K] |
|---|
| 210 | real, dimension(:,:), allocatable :: tsurf_dev ! Grid points x Slope field: Surface temperature deviation [K] |
|---|
| 211 | real, dimension(:,:), allocatable :: tsurf_avg_yr1 ! Grid points x Slope field: Average surface temperature of first call of the PCM [K] |
|---|
| 212 | real, dimension(:,:,:), allocatable :: tsoil_avg ! Grid points x Soil x Slope field: Average Soil Temperature [K] |
|---|
| 213 | real, dimension(:,:), allocatable :: tsoil_avg_old ! Grid points x Soil field: Average Soil Temperature at the previous time step [K] |
|---|
| 214 | real, dimension(:,:,:), allocatable :: tsoil_dev ! Grid points x Soil x Slope field: Soil temperature deviation [K] |
|---|
| 215 | real, dimension(:,:,:,:), allocatable :: tsoil_timeseries ! Grid points x Soil x Slope x Times field: Soil temperature timeseries [K] |
|---|
| 216 | real, dimension(:,:,:,:), allocatable :: tsoil_PEM_timeseries ! Grid points x Soil x Slope x Times field: Soil temperature timeseries for PEM [K] |
|---|
| 217 | real, dimension(:,:,:,:), allocatable :: tsoil_PEM_timeseries_old ! Grid points x Soil x Slope x Times field: Soil temperature timeseries for PEM at the previous time step [K] |
|---|
| 218 | real, dimension(:,:,:,:), allocatable :: watersoil_density_timeseries ! Grid points x Soil x Slope x Times Water soil density timeseries [kg /m^3] |
|---|
| 219 | real, dimension(:,:), allocatable :: watersurf_density_avg ! Grid points x Slope: Average water surface density [kg/m^3] |
|---|
| 220 | real, dimension(:,:,:,:), allocatable :: watersoil_density_PEM_timeseries ! Grid points x Soil x Slope x Times: Water soil density timeseries for PEM [kg/m^3] |
|---|
| 221 | real, dimension(:,:,:), allocatable :: watersoil_density_PEM_avg ! Grid points x Soil x Slopes: Average water soil density [kg/m^3] |
|---|
| 222 | real, dimension(:), allocatable :: delta_co2_adsorbed ! Physics: quantity of CO2 that is exchanged because of adsorption / desorption [kg/m^2] |
|---|
| 223 | real, dimension(:), allocatable :: delta_h2o_adsorbed ! Physics: quantity of H2O that is exchanged because of adsorption / desorption [kg/m^2] |
|---|
| 224 | real(kind = 16) :: totmass_adsco2, totmass_adsco2_ini ! Total mass of CO2 that is exchanged because of adsorption / desoprtion over the planets [kg] |
|---|
| 225 | real :: totmass_adsh2o ! Total mass of H2O that is exchanged because of adsorption / desoprtion over the planets [kg] |
|---|
| 226 | logical, dimension(:,:), allocatable :: co2ice_disappeared ! logical to check if a co2 ice reservoir already disappeared at a previous timestep |
|---|
| 227 | real, dimension(:,:), allocatable :: icetable_thickness_old ! ngrid x nslope: Thickness of the ice table at the previous iteration [m] |
|---|
| 228 | real, dimension(:,:,:), allocatable :: ice_porefilling_old ! ngrid x nslope: Ice pore filling at the previous iteration [m] |
|---|
| 229 | real, dimension(:), allocatable :: delta_h2o_icetablesublim ! ngrid x Total mass of the H2O that has sublimated / condenses from the ice table [kg] |
|---|
| 230 | real, dimension(:), allocatable :: porefill ! Pore filling (output) to compute the dynamic ice table |
|---|
| 231 | real :: ssi_depth ! Ice table depth (output) to compute the dynamic ice table |
|---|
| 232 | real, dimension(:,:), allocatable :: zshift_surf ! Elevation shift for the surface [m] |
|---|
| 233 | real, dimension(:,:), allocatable :: zlag ! Newly built lag thickness [m] |
|---|
| 234 | real, dimension(:,:), allocatable :: icetable_depth_old ! Old depth of the ice table |
|---|
| 235 | |
|---|
| 236 | ! Some variables for the PEM run |
|---|
| 237 | real, parameter :: year_step = 1 ! Timestep for the pem |
|---|
| 238 | real :: i_myear_leg ! Number of iteration |
|---|
| 239 | real :: n_myear_leg ! Maximum number of iterations before stopping |
|---|
| 240 | real :: i_myear ! Global number of Martian years of the chained simulations |
|---|
| 241 | real :: n_myear ! Maximum number of Martian years of the chained simulations |
|---|
| 242 | real :: timestep ! Timestep [s] |
|---|
| 243 | integer(kind = 8) :: cr ! Number of clock ticks per second (count rate) |
|---|
| 244 | integer(kind = 8) :: c1, c2 ! Counts of processor clock |
|---|
| 245 | character(8) :: date |
|---|
| 246 | character(10) :: time |
|---|
| 247 | character(5) :: zone |
|---|
| 248 | integer, dimension(8) :: values |
|---|
| 249 | character(128) :: dir = ' ' |
|---|
| 250 | character(32) :: logname = ' ' |
|---|
| 251 | character(32) :: hostname = ' ' |
|---|
| 252 | |
|---|
| 253 | #ifdef CPP_STD |
|---|
| 254 | real :: frost_albedo_threshold = 0.05 ! Frost albedo threeshold to convert fresh frost to old ice |
|---|
| 255 | real :: albedo_h2o_frost ! Albedo of h2o frost |
|---|
| 256 | real, dimension(:), allocatable :: tsurf_read_generic ! Temporary variable to do the subslope transfert dimension when reading form generic |
|---|
| 257 | real, dimension(:,:), allocatable :: qsurf_read_generic ! Temporary variable to do the subslope transfert dimension when reading form generic |
|---|
| 258 | real, dimension(:,:), allocatable :: tsoil_read_generic ! Temporary variable to do the subslope transfert dimension when reading form generic |
|---|
| 259 | real, dimension(:), allocatable :: emis_read_generic ! Temporary variable to do the subslope transfert dimension when reading form generic |
|---|
| 260 | real, dimension(:,:), allocatable :: albedo_read_generic ! Temporary variable to do the subslope transfert dimension when reading form generic |
|---|
| 261 | real, dimension(:,:), allocatable :: tsurf ! Subslope variable, only needed in the GENERIC case |
|---|
| 262 | real, dimension(:,:,:), allocatable :: qsurf ! Subslope variable, only needed in the GENERIC case |
|---|
| 263 | real, dimension(:,:,:), allocatable :: tsoil ! Subslope variable, only needed in the GENERIC case |
|---|
| 264 | real, dimension(:,:), allocatable :: emis ! Subslope variable, only needed in the GENERIC case |
|---|
| 265 | real, dimension(:,:), allocatable :: watercap ! Subslope variable, only needed in the GENERIC case =0 no watercap in generic model |
|---|
| 266 | logical, dimension(:), allocatable :: watercaptag ! Subslope variable, only needed in the GENERIC case =false no watercaptag in generic model |
|---|
| 267 | real, dimension(:,:,:), allocatable :: albedo ! Subslope variable, only needed in the GENERIC case |
|---|
| 268 | real, dimension(:,:,:), allocatable :: inertiesoil ! Subslope variable, only needed in the GENERIC case |
|---|
| 269 | #endif |
|---|
| 270 | |
|---|
| 271 | #ifdef CPP_1D |
|---|
| 272 | integer :: nsplit_phys |
|---|
| 273 | integer, parameter :: jjm_value = jjm - 1 |
|---|
| 274 | integer :: day_step |
|---|
| 275 | |
|---|
| 276 | ! Dummy variables to use the subroutine 'init_testphys1d' |
|---|
| 277 | logical :: therestart1D, therestartfi, prescribed_h2ovap |
|---|
| 278 | integer :: ndt, day0 |
|---|
| 279 | real :: ptif, pks, day, gru, grv, h2ovap_relax_time |
|---|
| 280 | real, dimension(:), allocatable :: zqsat |
|---|
| 281 | real, dimension(:,:,:), allocatable :: dq, dqdyn |
|---|
| 282 | real, dimension(nlayer) :: play, w, q_prescribed_h2o_vap |
|---|
| 283 | real, dimension(nlayer + 1) :: plev |
|---|
| 284 | #else |
|---|
| 285 | integer, parameter :: jjm_value = jjm |
|---|
| 286 | real, dimension(:), allocatable :: ap ! Coefficient ap read in start_name and written in restart |
|---|
| 287 | real, dimension(:), allocatable :: bp ! Coefficient bp read in start_name and written in restart |
|---|
| 288 | real, dimension(:,:), allocatable :: p ! Grid points x Atmosphere: pressure to recompute and write in restart (ip1jmp1,llmp1) |
|---|
| 289 | #endif |
|---|
| 290 | |
|---|
| 291 | ! Loop variables |
|---|
| 292 | integer :: i, l, ig, nnq, t, islope, ig_loop, islope_loop, isoil, icap |
|---|
| 293 | real :: totmass_ini |
|---|
| 294 | logical :: num_str |
|---|
| 295 | |
|---|
| 296 | ! CODE |
|---|
| 297 | ! Elapsed time with system clock |
|---|
| 298 | call system_clock(count_rate = cr) |
|---|
| 299 | call system_clock(c1) |
|---|
| 300 | |
|---|
| 301 | ! Parse command-line options |
|---|
| 302 | call parse_args() |
|---|
| 303 | |
|---|
| 304 | ! Header |
|---|
| 305 | write(*,*) ' * . . + . * . + . . . ' |
|---|
| 306 | write(*,*) ' + _______ ________ ____ ____ * + ' |
|---|
| 307 | write(*,*) ' + . * |_ __ \|_ __ ||_ \ / _| . *' |
|---|
| 308 | write(*,*) ' . . | |__) | | |_ \_| | \/ | * * . ' |
|---|
| 309 | write(*,*) ' . | ___/ | _| _ | |\ /| | . . ' |
|---|
| 310 | write(*,*) '. * * _| |_ _| |__/ | _| |_\/_| |_ * ' |
|---|
| 311 | write(*,*) ' + |_____| |________||_____||_____| + . ' |
|---|
| 312 | write(*,*) ' . * . * . + * . + .' |
|---|
| 313 | |
|---|
| 314 | ! Some user info |
|---|
| 315 | call date_and_time(date,time,zone,values) |
|---|
| 316 | call getcwd(dir) ! Current directory |
|---|
| 317 | call getlog(logname) ! User name |
|---|
| 318 | call hostnm(hostname) ! Machine/station name |
|---|
| 319 | write(*,*) |
|---|
| 320 | write(*,*) '********* PEM information *********' |
|---|
| 321 | write(*,*) '+ User : '//trim(logname) |
|---|
| 322 | write(*,*) '+ Machine : '//trim(hostname) |
|---|
| 323 | write(*,*) '+ Directory: '//trim(dir) |
|---|
| 324 | write(*,'(a,i2,a,i2,a,i4)') ' + Date : ',values(3),'/',values(2),'/',values(1) |
|---|
| 325 | write(*,'(a,i2,a,i2,a,i2,a)') ' + Time : ',values(5),':',values(6),':',values(7) |
|---|
| 326 | |
|---|
| 327 | ! Parallel variables |
|---|
| 328 | #ifndef CPP_STD |
|---|
| 329 | is_sequential = .true. |
|---|
| 330 | is_parallel = .false. |
|---|
| 331 | is_mpi_root = .true. |
|---|
| 332 | is_omp_root = .true. |
|---|
| 333 | is_master = .true. |
|---|
| 334 | #endif |
|---|
| 335 | |
|---|
| 336 | ! Some constants |
|---|
| 337 | day_ini = 0 |
|---|
| 338 | time_phys = 0. |
|---|
| 339 | ngrid = ngridmx |
|---|
| 340 | A = (1./m_co2 - 1./m_noco2) |
|---|
| 341 | B = 1./m_noco2 |
|---|
| 342 | year_day = 669 |
|---|
| 343 | daysec = 88775. |
|---|
| 344 | timestep = year_day*daysec*year_step |
|---|
| 345 | |
|---|
| 346 | !----------------------------- INITIALIZATION -------------------------- |
|---|
| 347 | !------------------------ |
|---|
| 348 | ! I Initialization |
|---|
| 349 | ! I_a Read the "run.def" |
|---|
| 350 | !------------------------ |
|---|
| 351 | write(*,*) |
|---|
| 352 | write(*,*) '********* PEM initialization *********' |
|---|
| 353 | write(*,*) '> Reading "run.def" (PEM)' |
|---|
| 354 | #ifndef CPP_1D |
|---|
| 355 | dtphys = daysec/48. ! Dummy value (overwritten in phyetat0) |
|---|
| 356 | call conf_gcm(99,.true.) |
|---|
| 357 | call infotrac_init |
|---|
| 358 | nq = nqtot |
|---|
| 359 | allocate(q(ip1jmp1,llm,nqtot)) |
|---|
| 360 | allocate(longitude(ngrid),latitude(ngrid),cell_area(ngrid)) |
|---|
| 361 | #else |
|---|
| 362 | allocate(q(1,llm,nqtot),pdyn(1)) |
|---|
| 363 | allocate(longitude(1),latitude(1),cell_area(1)) |
|---|
| 364 | |
|---|
| 365 | therestart1D = .false. ! Default value |
|---|
| 366 | inquire(file = 'start1D.txt',exist = therestart1D) |
|---|
| 367 | if (.not. therestart1D) then |
|---|
| 368 | write(*,*) 'There is no "start1D.txt" file!' |
|---|
| 369 | error stop 'Initialization cannot be done for the 1D PEM.' |
|---|
| 370 | endif |
|---|
| 371 | therestartfi = .false. ! Default value |
|---|
| 372 | inquire(file = 'startfi.nc',exist = therestartfi) |
|---|
| 373 | if (.not. therestartfi) then |
|---|
| 374 | write(*,*) 'There is no "startfi.nc" file!' |
|---|
| 375 | error stop 'Initialization cannot be done for the 1D PEM.' |
|---|
| 376 | endif |
|---|
| 377 | |
|---|
| 378 | write(*,*) '> Reading "start1D.txt" and "startfi.nc"' |
|---|
| 379 | call init_testphys1d('start1D.txt','startfi.nc',therestart1D,therestartfi,ngrid,nlayer,610.,nq,q, & |
|---|
| 380 | time_0,pdyn(1),ucov,vcov,teta,ndt,ptif,pks,dtphys,zqsat,dq,dqdyn,day0,day,gru,grv,w, & |
|---|
| 381 | play,plev,latitude,longitude,cell_area,prescribed_h2ovap,h2ovap_relax_time,q_prescribed_h2o_vap) |
|---|
| 382 | nsplit_phys = 1 |
|---|
| 383 | day_step = steps_per_sol |
|---|
| 384 | #endif |
|---|
| 385 | |
|---|
| 386 | call conf_pem(i_myear,n_myear) |
|---|
| 387 | |
|---|
| 388 | !------------------------ |
|---|
| 389 | ! I Initialization |
|---|
| 390 | ! I_b Read of the "start.nc" and "starfi.nc" |
|---|
| 391 | !------------------------ |
|---|
| 392 | ! I_b.1 Read "start.nc" |
|---|
| 393 | write(*,*) '> Reading "start.nc"' |
|---|
| 394 | allocate(ps_start0(ngrid)) |
|---|
| 395 | #ifndef CPP_1D |
|---|
| 396 | allocate(pdyn(ip1jmp1)) |
|---|
| 397 | call dynetat0(start_name,vcov,ucov,teta,q,masse,pdyn,phis,time_0) |
|---|
| 398 | |
|---|
| 399 | call gr_dyn_fi(1,iip1,jjp1,ngridmx,pdyn,ps_start0) |
|---|
| 400 | |
|---|
| 401 | call iniconst ! Initialization of dynamical constants (comconst_mod) |
|---|
| 402 | call inigeom ! Initialization of geometry |
|---|
| 403 | |
|---|
| 404 | allocate(ap(nlayer + 1)) |
|---|
| 405 | allocate(bp(nlayer + 1)) |
|---|
| 406 | status = nf90_open(start_name,NF90_NOWRITE,ncid) |
|---|
| 407 | status = nf90_inq_varid(ncid,"ap",apvarid) |
|---|
| 408 | status = nf90_get_var(ncid,apvarid,ap) |
|---|
| 409 | status = nf90_inq_varid(ncid,"bp",bpvarid) |
|---|
| 410 | status = nf90_get_var(ncid,bpvarid,bp) |
|---|
| 411 | status = nf90_close(ncid) |
|---|
| 412 | |
|---|
| 413 | ! Initialization of physics constants and variables (comcstfi_h) |
|---|
| 414 | call iniphysiq(iim,jjm,llm,(jjm - 1)*iim + 2,comm_lmdz,daysec,day_ini,dtphys/nsplit_phys,rlatu,rlatv,rlonu,rlonv,aire,cu,cv,rad,g,r,cpp,iflag_phys) |
|---|
| 415 | #else |
|---|
| 416 | ps_start0(1) = pdyn(1) |
|---|
| 417 | #endif |
|---|
| 418 | deallocate(pdyn) |
|---|
| 419 | |
|---|
| 420 | ! In the PCM, these values are given to the physic by the dynamic. |
|---|
| 421 | ! Here we simply read them in the "startfi.nc" file |
|---|
| 422 | status = nf90_open(startfi_name,NF90_NOWRITE,ncid) |
|---|
| 423 | status = nf90_inq_varid(ncid,"longitude",lonvarid) |
|---|
| 424 | status = nf90_get_var(ncid,lonvarid,longitude) |
|---|
| 425 | status = nf90_inq_varid(ncid,"latitude",latvarid) |
|---|
| 426 | status = nf90_get_var(ncid,latvarid,latitude) |
|---|
| 427 | status = nf90_inq_varid(ncid,"area",areavarid) |
|---|
| 428 | status = nf90_get_var(ncid,areavarid,cell_area) |
|---|
| 429 | status = nf90_inq_varid(ncid,"soildepth",sdvarid) |
|---|
| 430 | status = nf90_get_var(ncid,sdvarid,mlayer) |
|---|
| 431 | status = nf90_close(ncid) |
|---|
| 432 | |
|---|
| 433 | ! I_b.2 Read the "startfi.nc" |
|---|
| 434 | ! First we read the initial state (starfi.nc) |
|---|
| 435 | #ifndef CPP_STD |
|---|
| 436 | write(*,*) '> Reading "startfi.nc"' |
|---|
| 437 | call phyetat0(startfi_name,0,0,nsoilmx,ngrid,nlayer,nq,nqsoil,day_ini,time_phys,tsurf, & |
|---|
| 438 | tsoil,albedo,emis,q2,qsurf,qsoil,tauscaling,totcloudfrac,wstar, & |
|---|
| 439 | watercap,perennial_co2ice,def_slope,def_slope_mean,subslope_dist) |
|---|
| 440 | |
|---|
| 441 | ! Remove unphysical values of surface tracer |
|---|
| 442 | where (qsurf < 0.) qsurf = 0. |
|---|
| 443 | |
|---|
| 444 | call surfini(ngrid,nslope,qsurf) |
|---|
| 445 | #else |
|---|
| 446 | call phys_state_var_init(nq) |
|---|
| 447 | if (.not. allocated(noms)) allocate(noms(nq)) ! (because noms is an argument of physdem1 whether or not tracer is on) |
|---|
| 448 | call initracer(ngrid,nq) |
|---|
| 449 | call iniaerosol() |
|---|
| 450 | allocate(tsurf_read_generic(ngrid)) |
|---|
| 451 | allocate(qsurf_read_generic(ngrid,nq)) |
|---|
| 452 | allocate(tsoil_read_generic(ngrid,nsoilmx)) |
|---|
| 453 | allocate(qsoil_read_generic(ngrid,nsoilmx,nqsoil,nslope)) |
|---|
| 454 | allocate(emis_read_generic(ngrid)) |
|---|
| 455 | allocate(albedo_read_generic(ngrid,2)) |
|---|
| 456 | allocate(qsurf(ngrid,nq,1)) |
|---|
| 457 | allocate(tsurf(ngrid,1)) |
|---|
| 458 | allocate(tsoil(ngrid,nsoilmx,1)) |
|---|
| 459 | allocate(emis(ngrid,1)) |
|---|
| 460 | allocate(watercap(ngrid,1)) |
|---|
| 461 | allocate(watercaptag(ngrid)) |
|---|
| 462 | allocate(albedo(ngrid,2,1)) |
|---|
| 463 | allocate(inertiesoil(ngrid,nsoilmx,1)) |
|---|
| 464 | call phyetat0(.true.,ngrid,nlayer,startfi_name,0,0,nsoilmx,nq,nqsoil,day_ini,time_phys, & |
|---|
| 465 | tsurf_read_generic,tsoil_read_generic,emis_read_generic,q2, & |
|---|
| 466 | qsurf_read_generic,qsoil_read_generic,cloudfrac,totcloudfrac,hice, & |
|---|
| 467 | rnat,pctsrf_sic,tslab,tsea_ice,sea_ice) |
|---|
| 468 | call surfini(ngrid,nq,qsurf_read_generic,albedo_read_generic,albedo_bareground,albedo_snow_SPECTV,albedo_co2_ice_SPECTV) |
|---|
| 469 | |
|---|
| 470 | nslope = 1 |
|---|
| 471 | call ini_comslope_h(ngrid,1) |
|---|
| 472 | |
|---|
| 473 | qsurf(:,:,1) = qsurf_read_generic |
|---|
| 474 | tsurf(:,1) = tsurf_read_generic |
|---|
| 475 | tsoil(:,:,1) = tsoil_read_generic |
|---|
| 476 | emis(:,1) = emis_read_generic |
|---|
| 477 | watercap(:,1) = 0. |
|---|
| 478 | watercaptag(:) = .false. |
|---|
| 479 | albedo(:,1,1) = albedo_read_generic(:,1) |
|---|
| 480 | albedo(:,2,1) = albedo_read_generic(:,2) |
|---|
| 481 | inertiesoil(:,:,1) = inertiedat |
|---|
| 482 | |
|---|
| 483 | if (nslope == 1) then |
|---|
| 484 | def_slope(1) = 0 |
|---|
| 485 | def_slope(2) = 0 |
|---|
| 486 | def_slope_mean = 0 |
|---|
| 487 | subslope_dist(:,1) = 1. |
|---|
| 488 | endif |
|---|
| 489 | |
|---|
| 490 | ! Remove unphysical values of surface tracer |
|---|
| 491 | qsurf(:,:,1) = qsurf_read_generic |
|---|
| 492 | where (qsurf < 0.) qsurf = 0. |
|---|
| 493 | |
|---|
| 494 | deallocate(tsurf_read_generic,qsurf_read_generic,qsoil_read_generic,emis_read_generic) |
|---|
| 495 | #endif |
|---|
| 496 | |
|---|
| 497 | do nnq = 1,nqtot ! Why not using ini_tracer? |
|---|
| 498 | if (noms(nnq) == "h2o_ice") igcm_h2o_ice = nnq |
|---|
| 499 | if (noms(nnq) == "h2o_vap") then |
|---|
| 500 | igcm_h2o_vap = nnq |
|---|
| 501 | mmol(igcm_h2o_vap) = 18. |
|---|
| 502 | endif |
|---|
| 503 | if (noms(nnq) == "co2") igcm_co2 = nnq |
|---|
| 504 | enddo |
|---|
| 505 | |
|---|
| 506 | !------------------------ |
|---|
| 507 | ! I Initialization |
|---|
| 508 | ! I_c Subslope parametrisation |
|---|
| 509 | !------------------------ |
|---|
| 510 | ! Define some slope statistics |
|---|
| 511 | iflat = 1 |
|---|
| 512 | do islope = 2,nslope |
|---|
| 513 | if (abs(def_slope_mean(islope)) < abs(def_slope_mean(iflat))) iflat = islope |
|---|
| 514 | enddo |
|---|
| 515 | write(*,*) 'Flat slope for islope = ',iflat |
|---|
| 516 | write(*,*) 'Corresponding criterium = ',def_slope_mean(iflat) |
|---|
| 517 | |
|---|
| 518 | !------------------------ |
|---|
| 519 | ! I Initialization |
|---|
| 520 | ! I_d Read the PCM data and convert them to the physical grid |
|---|
| 521 | !------------------------ |
|---|
| 522 | ! First we read the evolution of water and co2 ice (and the mass mixing ratio) over the first year of the PCM run, saving only the minimum value |
|---|
| 523 | call get_timelen_PCM("data_PCM_Y1.nc",timelen) |
|---|
| 524 | |
|---|
| 525 | allocate(vmr_co2_PCM(ngrid,timelen),q_co2_PEM_phys(ngrid,timelen),q_h2o_PEM_phys(ngrid,timelen)) |
|---|
| 526 | allocate(ps_timeseries(ngrid,timelen),ps_avg(ngrid)) |
|---|
| 527 | allocate(min_co2_ice(ngrid,nslope,2),min_h2o_ice(ngrid,nslope,2)) |
|---|
| 528 | allocate(tsurf_avg_yr1(ngrid,nslope),tsurf_avg(ngrid,nslope)) |
|---|
| 529 | allocate(tsoil_avg(ngrid,nsoilmx,nslope),tsoil_timeseries(ngrid,nsoilmx,nslope,timelen)) |
|---|
| 530 | allocate(watersurf_density_avg(ngrid,nslope),watersoil_density_timeseries(ngrid,nsoilmx,nslope,timelen)) |
|---|
| 531 | |
|---|
| 532 | call read_data_PCM("data_PCM_Y1.nc","data_PCM_Y2.nc",timelen,iim,jjm_value,ngrid,nslope,vmr_co2_PCM,ps_timeseries,ps_avg,tsurf_avg_yr1,tsurf_avg, & |
|---|
| 533 | tsoil_avg,tsoil_timeseries,min_co2_ice,min_h2o_ice,q_co2_PEM_phys,q_h2o_PEM_phys,watersurf_density_avg,watersoil_density_timeseries) |
|---|
| 534 | |
|---|
| 535 | ! Compute the deviation from the average |
|---|
| 536 | allocate(ps_dev(ngrid),tsurf_dev(ngrid,nslope),tsoil_dev(ngrid,nsoilmx,nslope)) |
|---|
| 537 | ps_dev = ps_start0 - ps_avg |
|---|
| 538 | tsurf_dev = tsurf - tsurf_avg |
|---|
| 539 | tsoil_dev = tsoil - tsoil_avg(:,1:nsoilmx,:) |
|---|
| 540 | |
|---|
| 541 | !------------------------ |
|---|
| 542 | ! I Initialization |
|---|
| 543 | ! I_e Initialization of the PEM variables and soil |
|---|
| 544 | !------------------------ |
|---|
| 545 | call end_comsoil_h_PEM |
|---|
| 546 | call ini_comsoil_h_PEM(ngrid,nslope) |
|---|
| 547 | call end_adsorption_h_PEM |
|---|
| 548 | call ini_adsorption_h_PEM(ngrid,nslope,nsoilmx_PEM) |
|---|
| 549 | call end_ice_table |
|---|
| 550 | call ini_ice_table(ngrid,nslope,nsoilmx_PEM) |
|---|
| 551 | |
|---|
| 552 | allocate(tsoil_PEM_timeseries(ngrid,nsoilmx_PEM,nslope,timelen),watersoil_density_PEM_avg(ngrid,nsoilmx_PEM,nslope),watersoil_density_PEM_timeseries(ngrid,nsoilmx_PEM,nslope,timelen)) |
|---|
| 553 | if (soil_pem) then |
|---|
| 554 | call soil_settings_PEM(ngrid,nslope,nsoilmx_PEM,nsoilmx,inertiesoil,TI_PEM) |
|---|
| 555 | tsoil_PEM(:,1:nsoilmx,:) = tsoil_avg |
|---|
| 556 | watersoil_density_PEM_timeseries(:,1:nsoilmx,:,:) = watersoil_density_timeseries |
|---|
| 557 | tsoil_PEM_timeseries(:,1:nsoilmx,:,:) = tsoil_timeseries |
|---|
| 558 | do l = nsoilmx + 1,nsoilmx_PEM |
|---|
| 559 | tsoil_PEM(:,l,:) = tsoil_avg(:,nsoilmx,:) |
|---|
| 560 | watersoil_density_PEM_timeseries(:,l,:,:) = watersoil_density_timeseries(:,nsoilmx,:,:) |
|---|
| 561 | tsoil_PEM_timeseries(:,l,:,:) = tsoil_timeseries(:,nsoilmx,:,:) |
|---|
| 562 | enddo |
|---|
| 563 | watersoil_density_PEM_avg = sum(watersoil_density_PEM_timeseries,4)/timelen |
|---|
| 564 | endif !soil_pem |
|---|
| 565 | deallocate(tsoil_avg,watersoil_density_timeseries,tsoil_timeseries) |
|---|
| 566 | |
|---|
| 567 | !------------------------ |
|---|
| 568 | ! I Initialization |
|---|
| 569 | ! I_f Compute tendencies |
|---|
| 570 | !------------------------ |
|---|
| 571 | allocate(d_co2ice(ngrid,nslope),d_h2oice(ngrid,nslope),d_co2ice_ini(ngrid,nslope)) |
|---|
| 572 | call compute_tend(ngrid,nslope,min_co2_ice,d_co2ice) |
|---|
| 573 | call compute_tend(ngrid,nslope,min_h2o_ice,d_h2oice) |
|---|
| 574 | d_co2ice_ini = d_co2ice |
|---|
| 575 | deallocate(min_co2_ice,min_h2o_ice) |
|---|
| 576 | |
|---|
| 577 | !------------------------ |
|---|
| 578 | ! I Initialization |
|---|
| 579 | ! I_g Compute global surface pressure |
|---|
| 580 | !------------------------ |
|---|
| 581 | total_surface = sum(cell_area) |
|---|
| 582 | ps_avg_global_ini = sum(cell_area*ps_avg)/total_surface |
|---|
| 583 | ps_avg_global_new = ps_avg_global_ini |
|---|
| 584 | write(*,*) "Total surface of the planet =", total_surface |
|---|
| 585 | write(*,*) "Initial global average pressure =", ps_avg_global_ini |
|---|
| 586 | |
|---|
| 587 | !------------------------ |
|---|
| 588 | ! I Initialization |
|---|
| 589 | ! I_h Read the "startpem.nc" |
|---|
| 590 | !------------------------ |
|---|
| 591 | write(*,*) '> Reading "startpem.nc"' |
|---|
| 592 | allocate(co2_ice(ngrid,nslope),h2o_ice(ngrid,nslope),layerings_map(ngrid,nslope)) |
|---|
| 593 | allocate(delta_h2o_adsorbed(ngrid),delta_co2_adsorbed(ngrid),delta_h2o_icetablesublim(ngrid)) |
|---|
| 594 | delta_h2o_icetablesublim = 0. |
|---|
| 595 | call pemetat0("startpem.nc",ngrid,nsoilmx,nsoilmx_PEM,nslope,timelen,timestep,TI_PEM,tsoil_PEM,icetable_depth,icetable_thickness,ice_porefilling, & |
|---|
| 596 | tsurf_avg_yr1,tsurf_avg,q_co2_PEM_phys,q_h2o_PEM_phys,ps_timeseries,ps_avg_global_ini,d_h2oice,d_co2ice,co2_ice,h2o_ice, & |
|---|
| 597 | watersurf_density_avg,watersoil_density_PEM_avg,co2_adsorbed_phys,delta_co2_adsorbed,h2o_adsorbed_phys,delta_h2o_adsorbed,layerings_map) |
|---|
| 598 | deallocate(tsurf_avg_yr1) |
|---|
| 599 | |
|---|
| 600 | ! We save the places where h2o ice is sublimating |
|---|
| 601 | ! We compute the surface of h2o ice sublimating |
|---|
| 602 | allocate(is_co2ice_sublim_ini(ngrid,nslope),is_h2oice_sublim_ini(ngrid,nslope),is_co2ice_ini(ngrid,nslope),co2ice_disappeared(ngrid,nslope)) |
|---|
| 603 | co2ice_sublim_surf_ini = 0. |
|---|
| 604 | h2oice_ini_surf = 0. |
|---|
| 605 | is_co2ice_sublim_ini = .false. |
|---|
| 606 | is_h2oice_sublim_ini = .false. |
|---|
| 607 | is_co2ice_ini = .false. |
|---|
| 608 | co2ice_disappeared = .false. |
|---|
| 609 | totmass_co2ice_ini = 0. |
|---|
| 610 | totmass_atmco2_ini = 0. |
|---|
| 611 | if (layering_algo) then |
|---|
| 612 | do ig = 1,ngrid |
|---|
| 613 | do islope = 1,nslope |
|---|
| 614 | if (is_co2ice_str(layerings_map(ig,islope)%top)) then |
|---|
| 615 | co2_ice(ig,islope) = layerings_map(ig,islope)%top%h_co2ice |
|---|
| 616 | else if (is_h2oice_str(layerings_map(ig,islope)%top)) then |
|---|
| 617 | h2o_ice(ig,islope) = layerings_map(ig,islope)%top%h_h2oice |
|---|
| 618 | else |
|---|
| 619 | call subsurface_ice_layering(layerings_map(ig,islope),h2o_ice_depth(ig,islope),h2o_ice(ig,islope),co2_ice(ig,islope)) |
|---|
| 620 | endif |
|---|
| 621 | enddo |
|---|
| 622 | enddo |
|---|
| 623 | ! We put the sublimating tendency coming from subsurface ice into the overall tendency |
|---|
| 624 | where (h2o_ice_depth > 0. .and. zdqsdif_ssi_tot < -1.e-10) d_h2oice = zdqsdif_ssi_tot |
|---|
| 625 | endif |
|---|
| 626 | do i = 1,ngrid |
|---|
| 627 | totmass_atmco2_ini = totmass_atmco2_ini + cell_area(i)*ps_avg(i)/g |
|---|
| 628 | do islope = 1,nslope |
|---|
| 629 | totmass_co2ice_ini = totmass_co2ice_ini + co2_ice(i,islope)*cell_area(i)*subslope_dist(i,islope)/cos(pi*def_slope_mean(islope)/180.) |
|---|
| 630 | if (co2_ice(i,islope) > 0.) is_co2ice_ini(i,islope) = .true. |
|---|
| 631 | if (d_co2ice(i,islope) < 0. .and. co2_ice(i,islope) > 0.) then |
|---|
| 632 | is_co2ice_sublim_ini(i,islope) = .true. |
|---|
| 633 | co2ice_sublim_surf_ini = co2ice_sublim_surf_ini + cell_area(i)*subslope_dist(i,islope) |
|---|
| 634 | endif |
|---|
| 635 | if (d_h2oice(i,islope) < 0.) then |
|---|
| 636 | if (h2o_ice(i,islope) > 0.) then |
|---|
| 637 | is_h2oice_sublim_ini(i,islope) = .true. |
|---|
| 638 | h2oice_ini_surf = h2oice_ini_surf + cell_area(i)*subslope_dist(i,islope) |
|---|
| 639 | else if (h2o_ice_depth(i,islope) > 0.) then |
|---|
| 640 | is_h2oice_sublim_ini(i,islope) = .true. |
|---|
| 641 | endif |
|---|
| 642 | endif |
|---|
| 643 | enddo |
|---|
| 644 | enddo |
|---|
| 645 | write(*,*) "Total initial surface of CO2 ice sublimating =", co2ice_sublim_surf_ini |
|---|
| 646 | write(*,*) "Total initial surface of H2O ice sublimating =", h2oice_ini_surf |
|---|
| 647 | |
|---|
| 648 | totmass_adsco2_ini = 0. |
|---|
| 649 | totmass_adsh2o = 0. |
|---|
| 650 | if (adsorption_pem) then |
|---|
| 651 | do ig = 1,ngrid |
|---|
| 652 | do islope = 1,nslope |
|---|
| 653 | do l = 1,nsoilmx_PEM - 1 |
|---|
| 654 | if (l == 1) then |
|---|
| 655 | totmass_adsco2_ini = totmass_adsco2_ini + co2_adsorbed_phys(ig,l,islope)*(layer_PEM(l))* & |
|---|
| 656 | subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig) |
|---|
| 657 | totmass_adsh2o = totmass_adsh2o + h2o_adsorbed_phys(ig,l,islope)*(layer_PEM(l))* & |
|---|
| 658 | subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig) |
|---|
| 659 | else |
|---|
| 660 | totmass_adsco2_ini = totmass_adsco2_ini + co2_adsorbed_phys(ig,l,islope)*(layer_PEM(l) - layer_PEM(l-1))* & |
|---|
| 661 | subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig) |
|---|
| 662 | totmass_adsh2o = totmass_adsh2o + h2o_adsorbed_phys(ig,l,islope)*(layer_PEM(l) - layer_PEM(l-1))* & |
|---|
| 663 | subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig) |
|---|
| 664 | endif |
|---|
| 665 | enddo |
|---|
| 666 | enddo |
|---|
| 667 | enddo |
|---|
| 668 | totmass_adsco2 = totmass_adsco2_ini |
|---|
| 669 | write(*,*) "Tot mass of CO2 in the regolith =", totmass_adsco2 |
|---|
| 670 | write(*,*) "Tot mass of H2O in the regolith =", totmass_adsh2o |
|---|
| 671 | endif ! adsorption |
|---|
| 672 | |
|---|
| 673 | !------------------------ |
|---|
| 674 | ! I Initialization |
|---|
| 675 | ! I_i Compute orbit criterion |
|---|
| 676 | !------------------------ |
|---|
| 677 | #ifndef CPP_STD |
|---|
| 678 | call iniorbit(aphelie,periheli,year_day,peri_day,obliquit) |
|---|
| 679 | #else |
|---|
| 680 | call iniorbit(apoastr,periastr,year_day,peri_day,obliquit) |
|---|
| 681 | #endif |
|---|
| 682 | |
|---|
| 683 | n_myear_leg = Max_iter_pem |
|---|
| 684 | if (evol_orbit_pem) call orbit_param_criterion(i_myear,n_myear_leg) |
|---|
| 685 | |
|---|
| 686 | !-------------------------- END INITIALIZATION ------------------------- |
|---|
| 687 | |
|---|
| 688 | !-------------------------------- RUN ---------------------------------- |
|---|
| 689 | !------------------------ |
|---|
| 690 | ! II Run |
|---|
| 691 | ! II_a Update pressure, ice and tracers |
|---|
| 692 | !------------------------ |
|---|
| 693 | write(*,*) |
|---|
| 694 | write(*,*) '********* PEM cycle *********' |
|---|
| 695 | i_myear_leg = 0 |
|---|
| 696 | stopPEM = 0 |
|---|
| 697 | if (layering_algo) then |
|---|
| 698 | allocate(h2o_ice_depth_old(ngrid,nslope),new_str(ngrid,nslope),new_lag(ngrid,nslope),current(ngrid,nslope)) |
|---|
| 699 | new_str = .true. |
|---|
| 700 | new_lag = .true. |
|---|
| 701 | do islope = 1,nslope |
|---|
| 702 | do ig = 1,ngrid |
|---|
| 703 | current(ig,islope)%p => layerings_map(ig,islope)%top |
|---|
| 704 | enddo |
|---|
| 705 | enddo |
|---|
| 706 | endif |
|---|
| 707 | |
|---|
| 708 | do while (i_myear_leg < n_myear_leg .and. i_myear < n_myear) |
|---|
| 709 | ! II.a.1. Compute updated global pressure |
|---|
| 710 | write(*,'(a,f10.2)') ' **** Iteration of the PEM leg (Martian years): ', i_myear_leg + 1 |
|---|
| 711 | write(*,*) "> Updating the surface pressure" |
|---|
| 712 | ps_avg_global_old = ps_avg_global_new |
|---|
| 713 | do i = 1,ngrid |
|---|
| 714 | do islope = 1,nslope |
|---|
| 715 | ps_avg_global_new = ps_avg_global_new - CO2cond_ps*g*cell_area(i)*d_co2ice(i,islope)*subslope_dist(i,islope)/cos(pi*def_slope_mean(islope)/180.)/total_surface |
|---|
| 716 | enddo |
|---|
| 717 | enddo |
|---|
| 718 | if (adsorption_pem) then |
|---|
| 719 | do i = 1,ngrid |
|---|
| 720 | ps_avg_global_new = ps_avg_global_new - g*cell_area(i)*delta_co2_adsorbed(i)/total_surface |
|---|
| 721 | enddo |
|---|
| 722 | endif |
|---|
| 723 | ps_avg = ps_avg*ps_avg_global_new/ps_avg_global_old |
|---|
| 724 | write(*,*) 'Global average pressure old time step:',ps_avg_global_old |
|---|
| 725 | write(*,*) 'Global average pressure new time step:',ps_avg_global_new |
|---|
| 726 | |
|---|
| 727 | ! II.a.2. Pressure timeseries (the values are deleted when unused because of big memory consumption) |
|---|
| 728 | write(*,*) "> Updating the surface pressure timeseries for the new pressure" |
|---|
| 729 | allocate(zplev_timeseries_old(ngrid,nlayer + 1,timelen)) |
|---|
| 730 | do l = 1,nlayer + 1 |
|---|
| 731 | do ig = 1,ngrid |
|---|
| 732 | zplev_timeseries_old(ig,l,:) = ap(l) + bp(l)*ps_timeseries(ig,:) |
|---|
| 733 | enddo |
|---|
| 734 | enddo |
|---|
| 735 | ps_timeseries(:,:) = ps_timeseries(:,:)*ps_avg_global_new/ps_avg_global_old |
|---|
| 736 | write(*,*) "> Updating the pressure levels timeseries for the new pressure" |
|---|
| 737 | allocate(zplev_timeseries_new(ngrid,nlayer + 1,timelen)) |
|---|
| 738 | do l = 1,nlayer + 1 |
|---|
| 739 | do ig = 1,ngrid |
|---|
| 740 | zplev_timeseries_new(ig,l,:) = ap(l) + bp(l)*ps_timeseries(ig,:) |
|---|
| 741 | enddo |
|---|
| 742 | enddo |
|---|
| 743 | |
|---|
| 744 | ! II.a.3. Tracers timeseries |
|---|
| 745 | write(*,*) "> Updating the tracer VMR timeseries for the new pressure" |
|---|
| 746 | allocate(vmr_co2_PEM_phys(ngrid,timelen)) |
|---|
| 747 | l = 1 |
|---|
| 748 | do ig = 1,ngrid |
|---|
| 749 | do t = 1,timelen |
|---|
| 750 | ! H2O |
|---|
| 751 | q_h2o_PEM_phys(ig,t) = q_h2o_PEM_phys(ig,t)*(zplev_timeseries_old(ig,l,t) - zplev_timeseries_old(ig,l + 1,t))/ & |
|---|
| 752 | (zplev_timeseries_new(ig,l,t) - zplev_timeseries_new(ig,l + 1,t)) |
|---|
| 753 | if (q_h2o_PEM_phys(ig,t) < 0) then |
|---|
| 754 | q_h2o_PEM_phys(ig,t) = 1.e-30 |
|---|
| 755 | else if (q_h2o_PEM_phys(ig,t) > 1) then |
|---|
| 756 | q_h2o_PEM_phys(ig,t) = 1. |
|---|
| 757 | endif |
|---|
| 758 | ! CO2 |
|---|
| 759 | q_co2_PEM_phys(ig,t) = q_co2_PEM_phys(ig,t)*(zplev_timeseries_old(ig,l,t) - zplev_timeseries_old(ig,l + 1,t))/ & |
|---|
| 760 | (zplev_timeseries_new(ig,l,t) - zplev_timeseries_new(ig,l + 1,t)) & |
|---|
| 761 | + ((zplev_timeseries_new(ig,l,t) - zplev_timeseries_new(ig,l + 1,t)) & |
|---|
| 762 | - (zplev_timeseries_old(ig,l,t) - zplev_timeseries_old(ig,l + 1,t)))/ & |
|---|
| 763 | (zplev_timeseries_new(ig,l,t) - zplev_timeseries_new(ig,l + 1,t)) |
|---|
| 764 | if (q_co2_PEM_phys(ig,t) < 0) then |
|---|
| 765 | q_co2_PEM_phys(ig,t) = 1.e-30 |
|---|
| 766 | else if (q_co2_PEM_phys(ig,t) > 1) then |
|---|
| 767 | q_co2_PEM_phys(ig,t) = 1. |
|---|
| 768 | endif |
|---|
| 769 | mmean = 1./(A*q_co2_PEM_phys(ig,t) + B) |
|---|
| 770 | vmr_co2_PEM_phys(ig,t) = q_co2_PEM_phys(ig,t)*mmean/m_co2 |
|---|
| 771 | enddo |
|---|
| 772 | enddo |
|---|
| 773 | deallocate(zplev_timeseries_new,zplev_timeseries_old) |
|---|
| 774 | |
|---|
| 775 | !------------------------ |
|---|
| 776 | ! II Run |
|---|
| 777 | ! II_b Evolution of ice |
|---|
| 778 | !------------------------ |
|---|
| 779 | allocate(zshift_surf(ngrid,nslope),zlag(ngrid,nslope)) |
|---|
| 780 | if (layering_algo) then |
|---|
| 781 | h2o_ice_depth_old = h2o_ice_depth |
|---|
| 782 | do islope = 1,nslope |
|---|
| 783 | do ig = 1,ngrid |
|---|
| 784 | call make_layering(layerings_map(ig,islope),d_co2ice(ig,islope),d_h2oice(ig,islope),new_str(ig,islope),zshift_surf(ig,islope),new_lag(ig,islope),zlag(ig,islope),current(ig,islope)%p) |
|---|
| 785 | !call print_layering(layerings_map(ig,islope)) |
|---|
| 786 | co2_ice(ig,islope) = 0. |
|---|
| 787 | h2o_ice(ig,islope) = 0. |
|---|
| 788 | h2o_ice_depth(ig,islope) = 0. |
|---|
| 789 | if (is_co2ice_str(layerings_map(ig,islope)%top)) then |
|---|
| 790 | co2_ice(ig,islope) = layerings_map(ig,islope)%top%h_co2ice |
|---|
| 791 | else if (is_h2oice_str(layerings_map(ig,islope)%top)) then |
|---|
| 792 | h2o_ice(ig,islope) = layerings_map(ig,islope)%top%h_h2oice |
|---|
| 793 | else |
|---|
| 794 | call subsurface_ice_layering(layerings_map(ig,islope),h2o_ice_depth(ig,islope),h2o_ice(ig,islope),co2_ice(ig,islope)) |
|---|
| 795 | endif |
|---|
| 796 | enddo |
|---|
| 797 | enddo |
|---|
| 798 | else |
|---|
| 799 | zlag = 0. |
|---|
| 800 | call evol_h2o_ice(ngrid,nslope,cell_area,delta_h2o_adsorbed,delta_h2o_icetablesublim,h2o_ice,d_h2oice,zshift_surf,stopPEM) |
|---|
| 801 | call evol_co2_ice(ngrid,nslope,co2_ice,d_co2ice,zshift_surf) |
|---|
| 802 | endif |
|---|
| 803 | |
|---|
| 804 | !------------------------ |
|---|
| 805 | ! II Run |
|---|
| 806 | ! II_c Flow of glaciers |
|---|
| 807 | !------------------------ |
|---|
| 808 | allocate(flag_co2flow(ngrid,nslope),flag_h2oflow(ngrid,nslope)) |
|---|
| 809 | if (co2ice_flow .and. nslope > 1) then |
|---|
| 810 | call flow_co2glaciers(timelen,ngrid,nslope,iflat,subslope_dist,def_slope_mean,vmr_co2_PEM_phys, & |
|---|
| 811 | ps_timeseries,ps_avg_global_old,ps_avg_global_new,co2_ice,flag_co2flow) |
|---|
| 812 | if (layering_algo) then |
|---|
| 813 | do islope = 1,nslope |
|---|
| 814 | do ig = 1,ngrid |
|---|
| 815 | layerings_map(ig,islope)%top%h_co2ice = co2_ice(ig,islope) |
|---|
| 816 | enddo |
|---|
| 817 | enddo |
|---|
| 818 | endif |
|---|
| 819 | endif |
|---|
| 820 | if (h2oice_flow .and. nslope > 1) then |
|---|
| 821 | call flow_h2oglaciers(ngrid,nslope,iflat,subslope_dist,def_slope_mean,tsurf_avg,h2o_ice,flag_h2oflow) |
|---|
| 822 | if (layering_algo) then |
|---|
| 823 | do islope = 1,nslope |
|---|
| 824 | do ig = 1,ngrid |
|---|
| 825 | !~ layerings_map(ig,islope)%top%h_h2oice = h2o_ice(ig,islope) |
|---|
| 826 | enddo |
|---|
| 827 | enddo |
|---|
| 828 | endif |
|---|
| 829 | endif |
|---|
| 830 | |
|---|
| 831 | !------------------------ |
|---|
| 832 | ! II Run |
|---|
| 833 | ! II_d Update surface and soil temperatures |
|---|
| 834 | !------------------------ |
|---|
| 835 | ! II_d.1 Update Tsurf |
|---|
| 836 | write(*,*) "> Updating surface temperature" |
|---|
| 837 | do ig = 1,ngrid |
|---|
| 838 | do islope = 1,nslope |
|---|
| 839 | ! CO2 ice disappeared so we look for the closest point without CO2 ice |
|---|
| 840 | if (is_co2ice_ini(ig,islope) .and. co2_ice(ig,islope) < 1.e-10 .and. .not. co2ice_disappeared(ig,islope)) then |
|---|
| 841 | co2ice_disappeared(ig,islope) = .true. |
|---|
| 842 | if (latitude_deg(ig) > 0.) then ! North hemisphere |
|---|
| 843 | outer1: do ig_loop = ig,ngrid ! Go towards equator |
|---|
| 844 | do islope_loop = islope - 1,1,-1 ! Go over the slopes (backward numbering - should be equator-ward) |
|---|
| 845 | if (.not. is_co2ice_ini(ig_loop,islope_loop) .and. co2_ice(ig_loop,islope_loop) < 1.e-10) then |
|---|
| 846 | tsurf_avg(ig,islope) = tsurf_avg(ig_loop,islope_loop) |
|---|
| 847 | exit outer1 |
|---|
| 848 | endif |
|---|
| 849 | enddo |
|---|
| 850 | do islope_loop = islope + 1,nslope ! Go over the slopes (forward numbering - should be pole-ward) |
|---|
| 851 | if (.not. is_co2ice_ini(ig_loop,islope_loop) .and. co2_ice(ig_loop,islope_loop) < 1.e-10) then |
|---|
| 852 | tsurf_avg(ig,islope) = tsurf_avg(ig_loop,islope_loop) |
|---|
| 853 | exit outer1 |
|---|
| 854 | endif |
|---|
| 855 | enddo |
|---|
| 856 | enddo outer1 |
|---|
| 857 | else ! South hemisphere |
|---|
| 858 | outer2: do ig_loop = ig,1,-1 ! Go towards equator |
|---|
| 859 | do islope_loop = islope + 1,nslope ! Go over the slopes (forward numbering - should be equator-ward) |
|---|
| 860 | if (.not. is_co2ice_ini(ig_loop,islope_loop) .and. co2_ice(ig_loop,islope_loop) < 1.e-10) then |
|---|
| 861 | tsurf_avg(ig,islope) = tsurf_avg(ig_loop,islope_loop) |
|---|
| 862 | exit outer2 |
|---|
| 863 | endif |
|---|
| 864 | enddo |
|---|
| 865 | do islope_loop = islope - 1,1,-1 ! Go over the slopes (backward numbering - should be pole-ward) |
|---|
| 866 | if (.not. is_co2ice_ini(ig_loop,islope_loop) .and. co2_ice(ig_loop,islope_loop) < 1.e-10) then |
|---|
| 867 | tsurf_avg(ig,islope) = tsurf_avg(ig_loop,islope_loop) |
|---|
| 868 | exit outer2 |
|---|
| 869 | endif |
|---|
| 870 | enddo |
|---|
| 871 | enddo outer2 |
|---|
| 872 | endif |
|---|
| 873 | else if (co2_ice(ig,islope) > 1.e-10 .and. d_co2ice(ig,islope) > 1.e-10) then ! Put tsurf as Tcond CO2 |
|---|
| 874 | call computeTcondCO2(timelen,ngrid,nslope,vmr_co2_PEM_phys,ps_timeseries,ps_avg_global_ini,ps_avg_global_new,tsurf_avg) |
|---|
| 875 | endif |
|---|
| 876 | enddo |
|---|
| 877 | enddo |
|---|
| 878 | |
|---|
| 879 | if (soil_pem) then |
|---|
| 880 | ! II_d.2 Shifting soil temperature to surface |
|---|
| 881 | call shift_tsoil2surf(ngrid,nsoilmx_PEM,nslope,zshift_surf,zlag,tsurf_avg,tsoil_PEM) |
|---|
| 882 | |
|---|
| 883 | ! II_d.3 Update soil temperature |
|---|
| 884 | write(*,*)"> Updating soil temperature profile" |
|---|
| 885 | allocate(tsoil_avg_old(ngrid,nsoilmx_PEM),tsoil_PEM_timeseries_old(ngrid,nsoilmx_PEM,nslope,timelen)) |
|---|
| 886 | tsoil_PEM_timeseries_old = tsoil_PEM_timeseries |
|---|
| 887 | do islope = 1,nslope |
|---|
| 888 | tsoil_avg_old = tsoil_PEM(:,:,islope) |
|---|
| 889 | call compute_tsoil_pem(ngrid,nsoilmx_PEM,.true.,TI_PEM(:,:,islope),timestep,tsurf_avg(:,islope),tsoil_PEM(:,:,islope)) |
|---|
| 890 | call compute_tsoil_pem(ngrid,nsoilmx_PEM,.false.,TI_PEM(:,:,islope),timestep,tsurf_avg(:,islope),tsoil_PEM(:,:,islope)) |
|---|
| 891 | |
|---|
| 892 | do t = 1,timelen |
|---|
| 893 | do ig = 1,ngrid |
|---|
| 894 | do isoil = 1,nsoilmx_PEM |
|---|
| 895 | ! Update of soil temperature timeseries which is needed to compute the water soil density timeseries |
|---|
| 896 | tsoil_PEM_timeseries(ig,isoil,islope,t) = tsoil_PEM_timeseries(ig,isoil,islope,t)*tsoil_PEM(ig,isoil,islope)/tsoil_avg_old(ig,isoil) |
|---|
| 897 | ! Update of watersoil density |
|---|
| 898 | watersoil_density_PEM_timeseries(ig,isoil,islope,t) = exp(beta_clap_h2o/tsoil_PEM_timeseries(ig,isoil,islope,t) + alpha_clap_h2o)/tsoil_PEM_timeseries(ig,isoil,islope,t)*mmol(igcm_h2o_vap)/(mugaz*r) |
|---|
| 899 | if (isnan(tsoil_PEM(ig,isoil,islope))) call abort_pem("PEM - Update Tsoil","NaN detected in tsoil_PEM",1) |
|---|
| 900 | enddo |
|---|
| 901 | enddo |
|---|
| 902 | enddo |
|---|
| 903 | enddo |
|---|
| 904 | watersoil_density_PEM_avg = sum(watersoil_density_PEM_timeseries,4)/timelen |
|---|
| 905 | deallocate(tsoil_avg_old) |
|---|
| 906 | |
|---|
| 907 | ! II_d.4 Update the ice table |
|---|
| 908 | allocate(icetable_thickness_old(ngrid,nslope),ice_porefilling_old(ngrid,nsoilmx_PEM,nslope),icetable_depth_old(ngrid,nslope)) |
|---|
| 909 | if (icetable_equilibrium) then |
|---|
| 910 | write(*,*) "> Updating ice table (equilibrium method)" |
|---|
| 911 | icetable_thickness_old = icetable_thickness |
|---|
| 912 | call computeice_table_equilibrium(ngrid,nslope,nsoilmx_PEM,watercaptag,watersurf_density_avg,watersoil_density_PEM_avg,TI_PEM(:,1,:),icetable_depth,icetable_thickness) |
|---|
| 913 | call compute_massh2o_exchange_ssi(ngrid,nslope,nsoilmx_PEM,icetable_thickness_old,ice_porefilling_old,tsurf_avg,tsoil_PEM,delta_h2o_icetablesublim) ! Mass of H2O exchange between the ssi and the atmosphere |
|---|
| 914 | else if (icetable_dynamic) then |
|---|
| 915 | write(*,*) "> Updating ice table (dynamic method)" |
|---|
| 916 | ice_porefilling_old = ice_porefilling |
|---|
| 917 | icetable_depth_old = icetable_depth |
|---|
| 918 | allocate(porefill(nsoilmx_PEM)) |
|---|
| 919 | do ig = 1,ngrid |
|---|
| 920 | do islope = 1,nslope |
|---|
| 921 | call dyn_ss_ice_m(icetable_depth(ig,islope),tsurf_avg(ig,islope),tsoil_PEM(ig,:,islope),nsoilmx_PEM,TI_PEM(ig,1,nslope),ps_avg(ig),(/sum(q_h2o_PEM_phys(ig,:))/size(q_h2o_PEM_phys,2)/),ice_porefilling(ig,:,islope),porefill,ssi_depth) |
|---|
| 922 | icetable_depth(ig,islope) = ssi_depth |
|---|
| 923 | ice_porefilling(ig,:,islope) = porefill |
|---|
| 924 | enddo |
|---|
| 925 | enddo |
|---|
| 926 | deallocate(porefill) |
|---|
| 927 | call compute_massh2o_exchange_ssi(ngrid,nslope,nsoilmx_PEM,icetable_thickness_old,ice_porefilling_old,tsurf_avg,tsoil_PEM,delta_h2o_icetablesublim) ! Mass of H2O exchange between the ssi and the atmosphere |
|---|
| 928 | endif |
|---|
| 929 | deallocate(icetable_thickness_old,ice_porefilling_old) |
|---|
| 930 | |
|---|
| 931 | ! II_d.5 Update the soil thermal properties |
|---|
| 932 | call update_soil_thermalproperties(ngrid,nslope,nsoilmx_PEM,d_h2oice,h2o_ice,ps_avg_global_new,icetable_depth,icetable_thickness,ice_porefilling,icetable_equilibrium,icetable_dynamic,TI_PEM) |
|---|
| 933 | |
|---|
| 934 | ! II_d.6 Update the mass of the regolith adsorbed |
|---|
| 935 | totmass_adsco2 = 0. |
|---|
| 936 | totmass_adsh2o = 0. |
|---|
| 937 | if (adsorption_pem) then |
|---|
| 938 | call regolith_adsorption(ngrid,nslope,nsoilmx_PEM,timelen,d_h2oice,d_co2ice,h2o_ice,co2_ice, & |
|---|
| 939 | tsoil_PEM,TI_PEM,ps_timeseries,q_co2_PEM_phys,q_h2o_PEM_phys, & |
|---|
| 940 | h2o_adsorbed_phys,delta_h2o_adsorbed,co2_adsorbed_phys,delta_co2_adsorbed) |
|---|
| 941 | do ig = 1,ngrid |
|---|
| 942 | do islope = 1,nslope |
|---|
| 943 | do l = 1,nsoilmx_PEM |
|---|
| 944 | if (l == 1) then |
|---|
| 945 | totmass_adsco2 = totmass_adsco2 + co2_adsorbed_phys(ig,l,islope)*(layer_PEM(l))* & |
|---|
| 946 | subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig) |
|---|
| 947 | totmass_adsh2o = totmass_adsh2o + h2o_adsorbed_phys(ig,l,islope)*(layer_PEM(l))* & |
|---|
| 948 | subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig) |
|---|
| 949 | else |
|---|
| 950 | totmass_adsco2 = totmass_adsco2 + co2_adsorbed_phys(ig,l,islope)*(layer_PEM(l) - layer_PEM(l - 1))* & |
|---|
| 951 | subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig) |
|---|
| 952 | totmass_adsh2o = totmass_adsh2o + h2o_adsorbed_phys(ig,l,islope)*(layer_PEM(l) - layer_PEM(l - 1))* & |
|---|
| 953 | subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig) |
|---|
| 954 | endif |
|---|
| 955 | enddo |
|---|
| 956 | enddo |
|---|
| 957 | enddo |
|---|
| 958 | write(*,*) "Total mass of CO2 in the regolith =", totmass_adsco2 |
|---|
| 959 | write(*,*) "Total mass of H2O in the regolith =", totmass_adsh2o |
|---|
| 960 | endif |
|---|
| 961 | endif !soil_pem |
|---|
| 962 | deallocate(zshift_surf,zlag) |
|---|
| 963 | |
|---|
| 964 | !------------------------ |
|---|
| 965 | ! II Run |
|---|
| 966 | ! II_e Outputs |
|---|
| 967 | !------------------------ |
|---|
| 968 | call writediagpem(ngrid,'ps_avg','Global average pressure','Pa',0,(/ps_avg_global_new/)) |
|---|
| 969 | do islope = 1,nslope |
|---|
| 970 | write(str2(1:2),'(i2.2)') islope |
|---|
| 971 | call writediagpem(ngrid,'h2o_ice_slope'//str2,'H2O ice','kg.m-2',2,h2o_ice(:,islope)) |
|---|
| 972 | call writediagpem(ngrid,'co2_ice_slope'//str2,'CO2 ice','kg.m-2',2,co2_ice(:,islope)) |
|---|
| 973 | call writediagpem(ngrid,'d_h2oice_slope'//str2,'H2O ice tend','kg.m-2.year-1',2,d_h2oice(:,islope)) |
|---|
| 974 | call writediagpem(ngrid,'d_co2ice_slope'//str2,'CO2 ice tend','kg.m-2.year-1',2,d_co2ice(:,islope)) |
|---|
| 975 | call writediagpem(ngrid,'Flow_co2ice_slope'//str2,'CO2 ice flow','Boolean',2,real(flag_co2flow(:,islope))) |
|---|
| 976 | call writediagpem(ngrid,'Flow_h2oice_slope'//str2,'H2O ice flow','Boolean',2,real(flag_h2oflow(:,islope))) |
|---|
| 977 | call writediagpem(ngrid,'tsurf_slope'//str2,'tsurf','K',2,tsurf_avg(:,islope)) |
|---|
| 978 | if (icetable_equilibrium) then |
|---|
| 979 | call writediagpem(ngrid,'ssi_depth_slope'//str2,'ice table depth','m',2,icetable_depth(:,islope)) |
|---|
| 980 | call writediagpem(ngrid,'ssi_thick_slope'//str2,'ice table thickness','m',2,icetable_thickness(:,islope)) |
|---|
| 981 | else if (icetable_dynamic) then |
|---|
| 982 | call writediagpem(ngrid,'ssi_depth_slope'//str2,'ice table depth','m',2,icetable_depth(:,islope)) |
|---|
| 983 | endif |
|---|
| 984 | |
|---|
| 985 | if (soil_pem) then |
|---|
| 986 | call writediagsoilpem(ngrid,'tsoil_PEM_slope'//str2,'tsoil','K',3,tsoil_PEM(:,:,islope)) |
|---|
| 987 | call writediagsoilpem(ngrid,'inertiesoil_PEM_slope'//str2,'TI','K',3,TI_PEM(:,:,islope)) |
|---|
| 988 | if (icetable_dynamic) call writediagsoilpem(ngrid,'ice_porefilling'//str2,'ice pore filling','-',3,ice_porefilling(:,:,islope)) |
|---|
| 989 | if (adsorption_pem) then |
|---|
| 990 | call writediagsoilpem(ngrid,'co2_ads_slope'//str2,'co2_ads','K',3,co2_adsorbed_phys(:,:,islope)) |
|---|
| 991 | call writediagsoilpem(ngrid,'h2o_ads_slope'//str2,'h2o_ads','K',3,h2o_adsorbed_phys(:,:,islope)) |
|---|
| 992 | endif |
|---|
| 993 | endif |
|---|
| 994 | enddo |
|---|
| 995 | deallocate(flag_co2flow,flag_h2oflow) |
|---|
| 996 | |
|---|
| 997 | ! Checking mass balance for CO2 |
|---|
| 998 | if (abs(CO2cond_ps - 1.) < 1.e-10) then |
|---|
| 999 | totmass_co2ice = 0. |
|---|
| 1000 | totmass_atmco2 = 0. |
|---|
| 1001 | do ig = 1,ngrid |
|---|
| 1002 | totmass_atmco2 = totmass_atmco2 + cell_area(ig)*ps_avg(ig)/g |
|---|
| 1003 | do islope = 1,nslope |
|---|
| 1004 | totmass_co2ice = totmass_co2ice + co2_ice(ig,islope)*cell_area(ig)*subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.) |
|---|
| 1005 | enddo |
|---|
| 1006 | enddo |
|---|
| 1007 | totmass_ini = max(totmass_atmco2_ini + totmass_co2ice_ini + totmass_adsco2_ini,1.e-10) |
|---|
| 1008 | write(*,'(a,f8.3,a)') " > Relative total CO2 mass balance = ", 100.*(totmass_atmco2 + totmass_co2ice + totmass_adsco2 - totmass_atmco2_ini - totmass_co2ice_ini - totmass_adsco2_ini)/totmass_ini, ' %' |
|---|
| 1009 | if ((totmass_atmco2 + totmass_co2ice + totmass_adsco2 - totmass_atmco2_ini - totmass_co2ice_ini - totmass_adsco2_ini)/totmass_ini > 0.01) then |
|---|
| 1010 | write(*,*) ' /!\ Warning: mass balance is not conseved!' |
|---|
| 1011 | totmass_ini = max(totmass_atmco2_ini,1.e-10) |
|---|
| 1012 | write(*,'(a,f8.3,a)') ' Atmospheric CO2 mass balance = ', 100.*(totmass_atmco2 - totmass_atmco2_ini)/totmass_ini, ' %' |
|---|
| 1013 | totmass_ini = max(totmass_co2ice_ini,1.e-10) |
|---|
| 1014 | write(*,'(a,f8.3,a)') ' CO2 ice mass balance = ', 100.*(totmass_co2ice - totmass_co2ice_ini)/totmass_ini, ' %' |
|---|
| 1015 | totmass_ini = max(totmass_adsco2_ini,1.e-10) |
|---|
| 1016 | write(*,'(a,f8.3,a)') ' Adsorbed CO2 mass balance = ', 100.*(totmass_adsco2 - totmass_adsco2_ini)/totmass_ini, ' %' |
|---|
| 1017 | endif |
|---|
| 1018 | endif |
|---|
| 1019 | |
|---|
| 1020 | !------------------------ |
|---|
| 1021 | ! II Run |
|---|
| 1022 | ! II_f Update the tendencies |
|---|
| 1023 | !------------------------ |
|---|
| 1024 | call recomp_tend_co2(ngrid,nslope,timelen,d_co2ice,d_co2ice_ini,co2_ice,emis,vmr_co2_PCM,vmr_co2_PEM_phys,ps_timeseries,ps_avg_global_old,ps_avg_global_new) |
|---|
| 1025 | write(*,*) "> Updating the H2O sub-surface ice tendency due to lag layer" |
|---|
| 1026 | if (layering_algo) then |
|---|
| 1027 | do ig = 1,ngrid |
|---|
| 1028 | do islope = 1,nslope |
|---|
| 1029 | if (is_h2oice_sublim_ini(ig,islope) .and. h2o_ice_depth(ig,islope) > 0.) call recomp_tend_h2o(h2o_ice_depth_old(ig,islope),h2o_ice_depth(ig,islope),tsurf_avg(ig,islope),tsoil_PEM_timeseries_old(ig,:,islope,:),tsoil_PEM_timeseries(ig,:,islope,:),d_h2oice(ig,islope)) |
|---|
| 1030 | enddo |
|---|
| 1031 | enddo |
|---|
| 1032 | !~ else |
|---|
| 1033 | !~ do ig = 1,ngrid |
|---|
| 1034 | !~ do islope = 1,nslope |
|---|
| 1035 | !~ call recomp_tend_h2o(icetable_depth_old(ig,islope),icetable_depth(ig,islope),tsurf_avg(ig,islope),tsoil_PEM_timeseries_old(ig,:,islope,:),tsoil_PEM_timeseries(ig,:,islope,:),d_h2oice(ig,islope)) |
|---|
| 1036 | !~ enddo |
|---|
| 1037 | !~ enddo |
|---|
| 1038 | endif |
|---|
| 1039 | if (soil_pem) deallocate(icetable_depth_old,tsoil_PEM_timeseries_old) |
|---|
| 1040 | deallocate(vmr_co2_PEM_phys) |
|---|
| 1041 | |
|---|
| 1042 | !------------------------ |
|---|
| 1043 | ! II Run |
|---|
| 1044 | ! II_g Checking the stopping criterion |
|---|
| 1045 | !------------------------ |
|---|
| 1046 | write(*,*) "> Checking the stopping criteria" |
|---|
| 1047 | call stopping_crit_h2o_ice(cell_area,h2oice_ini_surf,is_h2oice_sublim_ini,h2o_ice,stopPEM,ngrid) |
|---|
| 1048 | call stopping_crit_co2(cell_area,co2ice_sublim_surf_ini,is_co2ice_sublim_ini,co2_ice,stopPEM,ngrid,ps_avg_global_ini,ps_avg_global_new,nslope) |
|---|
| 1049 | i_myear_leg = i_myear_leg + dt |
|---|
| 1050 | i_myear = i_myear + dt |
|---|
| 1051 | if (stopPEM <= 0 .and. i_myear_leg >= n_myear_leg) stopPEM = 5 |
|---|
| 1052 | if (stopPEM <= 0 .and. i_myear >= n_myear) stopPEM = 6 |
|---|
| 1053 | call system_clock(c2) |
|---|
| 1054 | if (stopPEM <= 0 .and. timewall .and. real((c2 - c1)/cr) >= timelimit - antetime) stopPEM = 7 |
|---|
| 1055 | if (stopPEM > 0) then |
|---|
| 1056 | select case (stopPEM) |
|---|
| 1057 | case(1) |
|---|
| 1058 | write(*,'(a,i0,a)') " **** STOPPING because surface of h2o ice sublimating is too low: ", stopPEM, ". See message above." |
|---|
| 1059 | case(2) |
|---|
| 1060 | write(*,'(a,i0,a)') " **** STOPPING because tendencies on h2o ice = 0: ", stopPEM, ". See message above." |
|---|
| 1061 | case(3) |
|---|
| 1062 | write(*,'(a,i0,a)') " **** STOPPING because surface of co2 ice sublimating is too low: ", stopPEM, ". See message above." |
|---|
| 1063 | case(4) |
|---|
| 1064 | write(*,'(a,i0,a)') " **** STOPPING because surface global pressure changed too much: ", stopPEM, ". See message above." |
|---|
| 1065 | case(5) |
|---|
| 1066 | write(*,'(a,i0)') " **** STOPPING because maximum number of iterations is reached (possibly due to orbital parameters): ", stopPEM |
|---|
| 1067 | case(6) |
|---|
| 1068 | write(*,'(a,i0)') " **** STOPPING because maximum number of Martian years to be simulated is reached: ", stopPEM |
|---|
| 1069 | case(7) |
|---|
| 1070 | write(*,'(a,i0)') " **** STOPPING because the time limit for the PEM job will be reached soon: ", stopPEM |
|---|
| 1071 | case default |
|---|
| 1072 | write(*,'(a,i0)') " **** STOPPING with unknown stopping criterion code: ", stopPEM |
|---|
| 1073 | end select |
|---|
| 1074 | exit |
|---|
| 1075 | else |
|---|
| 1076 | write(*,'(a,f10.2,a)') ' **** The chained simulation has run for ',i_myear,' Martian years.' |
|---|
| 1077 | write(*,*) '**** The PEM can continue!' |
|---|
| 1078 | write(*,*) '****' |
|---|
| 1079 | endif |
|---|
| 1080 | enddo ! big time iteration loop of the pem |
|---|
| 1081 | deallocate(vmr_co2_PCM,q_co2_PEM_phys,q_h2o_PEM_phys,delta_co2_adsorbed) |
|---|
| 1082 | deallocate(watersoil_density_PEM_avg,watersurf_density_avg) |
|---|
| 1083 | deallocate(ps_timeseries,tsoil_PEM_timeseries,watersoil_density_PEM_timeseries) |
|---|
| 1084 | deallocate(co2ice_disappeared,delta_h2o_adsorbed,delta_h2o_icetablesublim) |
|---|
| 1085 | deallocate(d_co2ice,d_co2ice_ini,d_h2oice) |
|---|
| 1086 | deallocate(is_co2ice_ini,is_co2ice_sublim_ini,is_h2oice_sublim_ini) |
|---|
| 1087 | if (layering_algo) deallocate(h2o_ice_depth_old,new_str,new_lag,current) |
|---|
| 1088 | !------------------------------ END RUN -------------------------------- |
|---|
| 1089 | |
|---|
| 1090 | !------------------------------- OUTPUT -------------------------------- |
|---|
| 1091 | !------------------------ |
|---|
| 1092 | ! III Output |
|---|
| 1093 | ! III_a Update surface values for the PCM start files |
|---|
| 1094 | !------------------------ |
|---|
| 1095 | write(*,*) |
|---|
| 1096 | write(*,*) '********* PEM finalization *********' |
|---|
| 1097 | ! III_a.1 Ice update for start file |
|---|
| 1098 | write(*,*) '> Reconstructing perennial ice and frost for the PCM' |
|---|
| 1099 | watercap = 0. |
|---|
| 1100 | perennial_co2ice = co2_ice |
|---|
| 1101 | do ig = 1,ngrid |
|---|
| 1102 | ! H2O ice metamorphism |
|---|
| 1103 | !if (metam_h2oice .and. sum(qsurf(ig,igcm_h2o_ice,:)*subslope_dist(ig,:)/cos(pi*def_slope_mean(:)/180.)) > metam_h2oice_threshold) then |
|---|
| 1104 | ! h2o_ice(ig,:) = h2o_ice(ig,:) + qsurf(ig,igcm_h2o_ice,:) - metam_h2oice_threshold |
|---|
| 1105 | ! qsurf(ig,igcm_h2o_ice,:) = metam_h2oice_threshold |
|---|
| 1106 | !endif |
|---|
| 1107 | |
|---|
| 1108 | ! Is H2O ice still considered as an infinite reservoir for the PCM? |
|---|
| 1109 | if (sum(h2o_ice(ig,:)*subslope_dist(ig,:)/cos(pi*def_slope_mean(:)/180.)) > inf_h2oice_threshold) then |
|---|
| 1110 | ! There is enough ice to be considered as an infinite reservoir |
|---|
| 1111 | watercaptag(ig) = .true. |
|---|
| 1112 | else |
|---|
| 1113 | ! Too little ice to be considered as an infinite reservoir so ice is transferred to the frost |
|---|
| 1114 | watercaptag(ig) = .false. |
|---|
| 1115 | qsurf(ig,igcm_h2o_ice,:) = qsurf(ig,igcm_h2o_ice,:) + h2o_ice(ig,:) |
|---|
| 1116 | h2o_ice(ig,:) = 0. |
|---|
| 1117 | endif |
|---|
| 1118 | |
|---|
| 1119 | ! CO2 ice metamorphism |
|---|
| 1120 | !if (metam_co2ice .and. sum(qsurf(ig,igcm_co2,:)*subslope_dist(ig,:)/cos(pi*def_slope_mean(:)/180.)) > metam_co2ice_threshold) then |
|---|
| 1121 | ! perennial_co2ice(ig,:) = perennial_co2ice(ig,:) + qsurf(ig,igcm_co2,:) - metam_co2ice_threshold |
|---|
| 1122 | ! qsurf(ig,igcm_co2,:) = metam_co2ice_threshold |
|---|
| 1123 | !endif |
|---|
| 1124 | enddo |
|---|
| 1125 | |
|---|
| 1126 | ! III.a.3. Tsurf update for start file |
|---|
| 1127 | write(*,*) '> Reconstructing the surface temperature for the PCM' |
|---|
| 1128 | tsurf = tsurf_avg + tsurf_dev |
|---|
| 1129 | deallocate(tsurf_dev) |
|---|
| 1130 | |
|---|
| 1131 | ! III_a.4 Tsoil update for start file |
|---|
| 1132 | if (soil_pem) then |
|---|
| 1133 | write(*,*) '> Reconstructing the soil temperature profile for the PCM' |
|---|
| 1134 | inertiesoil = TI_PEM(:,:nsoilmx,:) |
|---|
| 1135 | ! Tsurf has evolved and so the soil temperature profile needs to be adapted to match this new value |
|---|
| 1136 | do isoil = 1,nsoilmx |
|---|
| 1137 | tsoil_dev(:,isoil,:) = tsoil_dev(:,isoil,:)*(tsurf_avg(:,:) - tsoil_PEM(:,1,:))/tsoil_dev(:,1,:) |
|---|
| 1138 | enddo |
|---|
| 1139 | tsoil = tsoil_PEM(:,1:nsoilmx,:) + tsoil_dev |
|---|
| 1140 | #ifndef CPP_STD |
|---|
| 1141 | flux_geo = fluxgeo |
|---|
| 1142 | #endif |
|---|
| 1143 | endif |
|---|
| 1144 | deallocate(tsurf_avg,tsoil_dev) |
|---|
| 1145 | |
|---|
| 1146 | ! III_a.5 Pressure update for start file |
|---|
| 1147 | write(*,*) '> Reconstructing the pressure for the PCM' |
|---|
| 1148 | allocate(ps_start(ngrid)) |
|---|
| 1149 | ! The pressure deviation is rescaled as well to avoid disproportionate oscillations in case of huge average pressure drop |
|---|
| 1150 | ps_start = ps_avg + ps_dev*ps_avg_global_new/ps_avg_global_ini |
|---|
| 1151 | deallocate(ps_avg,ps_dev) |
|---|
| 1152 | |
|---|
| 1153 | ! III_a.6 Tracers update for start file |
|---|
| 1154 | write(*,*) '> Reconstructing the tracer VMR for the PCM' |
|---|
| 1155 | allocate(zplev_start0(ngrid,nlayer + 1),zplev_new(ngrid,nlayer + 1)) |
|---|
| 1156 | do l = 1,nlayer + 1 |
|---|
| 1157 | zplev_start0(:,l) = ap(l) + bp(l)*ps_start0 |
|---|
| 1158 | zplev_new(:,l) = ap(l) + bp(l)*ps_start |
|---|
| 1159 | enddo |
|---|
| 1160 | |
|---|
| 1161 | do nnq = 1,nqtot |
|---|
| 1162 | if (noms(nnq) /= "co2") then |
|---|
| 1163 | do l = 1,llm - 1 |
|---|
| 1164 | do ig = 1,ngrid |
|---|
| 1165 | q(ig,l,nnq) = q(ig,l,nnq)*(zplev_start0(ig,l) - zplev_start0(ig,l + 1))/(zplev_new(ig,l) - zplev_new(ig,l + 1)) |
|---|
| 1166 | enddo |
|---|
| 1167 | q(:,llm,nnq) = q(:,llm - 1,nnq) |
|---|
| 1168 | enddo |
|---|
| 1169 | else |
|---|
| 1170 | do l = 1,llm - 1 |
|---|
| 1171 | do ig = 1,ngrid |
|---|
| 1172 | q(ig,l,nnq) = q(ig,l,nnq)*(zplev_start0(ig,l) - zplev_start0(ig,l + 1))/(zplev_new(ig,l) - zplev_new(ig,l + 1)) & |
|---|
| 1173 | + ((zplev_new(ig,l) - zplev_new(ig,l + 1)) - (zplev_start0(ig,l) - zplev_start0(ig,l + 1)))/(zplev_new(ig,l) - zplev_new(ig,l + 1)) |
|---|
| 1174 | enddo |
|---|
| 1175 | q(:,llm,nnq) = q(:,llm - 1,nnq) |
|---|
| 1176 | enddo |
|---|
| 1177 | endif |
|---|
| 1178 | enddo |
|---|
| 1179 | deallocate(zplev_start0) |
|---|
| 1180 | |
|---|
| 1181 | ! Conserving the tracers mass for start file |
|---|
| 1182 | do nnq = 1,nqtot |
|---|
| 1183 | do ig = 1,ngrid |
|---|
| 1184 | do l = 1,llm - 1 |
|---|
| 1185 | if (q(ig,l,nnq) > 1 .and. (noms(nnq) /= "dust_number") .and. (noms(nnq) /= "ccn_number") .and. (noms(nnq) /= "stormdust_number") .and. (noms(nnq) /= "topdust_number")) then |
|---|
| 1186 | extra_mass = (q(ig,l,nnq) - 1)*(zplev_new(ig,l) - zplev_new(ig,l + 1)) |
|---|
| 1187 | q(ig,l,nnq) = 1. |
|---|
| 1188 | q(ig,l + 1,nnq) = q(ig,l + 1,nnq) + extra_mass*(zplev_new(ig,l + 1) - zplev_new(ig,l + 2)) |
|---|
| 1189 | write(*,*) 'extra ',noms(nnq),extra_mass, noms(nnq) /= "dust_number",noms(nnq) /= "ccn_number" |
|---|
| 1190 | endif |
|---|
| 1191 | if (q(ig,l,nnq) < 0) q(ig,l,nnq) = 1.e-30 |
|---|
| 1192 | enddo |
|---|
| 1193 | enddo |
|---|
| 1194 | enddo |
|---|
| 1195 | deallocate(zplev_new) |
|---|
| 1196 | |
|---|
| 1197 | ! III_a.7 Albedo update for start file |
|---|
| 1198 | write(*,*) '> Reconstructing the albedo for the PCM' |
|---|
| 1199 | do ig = 1,ngrid |
|---|
| 1200 | if (latitude(ig) < 0.) then |
|---|
| 1201 | icap = 2 ! Southern hemisphere |
|---|
| 1202 | else |
|---|
| 1203 | icap = 1 ! Northern hemisphere |
|---|
| 1204 | endif |
|---|
| 1205 | do islope = 1,nslope |
|---|
| 1206 | ! Bare ground |
|---|
| 1207 | albedo(ig,:,islope) = albedodat(ig) |
|---|
| 1208 | emis(ig,islope) = emissiv |
|---|
| 1209 | |
|---|
| 1210 | ! CO2 ice/frost is treated after H20 ice/frost because it is considered dominant |
|---|
| 1211 | ! H2O ice |
|---|
| 1212 | if (h2o_ice(ig,islope) > 0.) then |
|---|
| 1213 | albedo(ig,:,islope) = albedo_h2o_cap |
|---|
| 1214 | emis(ig,islope) = 1. |
|---|
| 1215 | endif |
|---|
| 1216 | ! CO2 ice |
|---|
| 1217 | if (co2_ice(ig,islope) > 0.) then |
|---|
| 1218 | albedo(ig,:,islope) = albedo_perennialco2(icap) |
|---|
| 1219 | emis(ig,islope) = emisice(icap) |
|---|
| 1220 | endif |
|---|
| 1221 | ! H2O frost |
|---|
| 1222 | if (qsurf(ig,igcm_h2o_ice,islope) > 0.) then |
|---|
| 1223 | albedo(ig,:,islope) = albedo_h2o_frost |
|---|
| 1224 | emis(ig,islope) = 1. |
|---|
| 1225 | endif |
|---|
| 1226 | ! CO2 frost |
|---|
| 1227 | if (qsurf(ig,igcm_co2,islope) > 0.) then |
|---|
| 1228 | albedo(ig,:,islope) = albedice(icap) |
|---|
| 1229 | emis(ig,islope) = emisice(icap) |
|---|
| 1230 | endif |
|---|
| 1231 | enddo |
|---|
| 1232 | enddo |
|---|
| 1233 | |
|---|
| 1234 | ! III_a.8 Orbital parameters update for start file |
|---|
| 1235 | write(*,*) '> Setting the new orbital parameters' |
|---|
| 1236 | if (evol_orbit_pem) call recomp_orb_param(i_myear,i_myear_leg) |
|---|
| 1237 | |
|---|
| 1238 | !------------------------ |
|---|
| 1239 | ! III Output |
|---|
| 1240 | ! III_b Write "restart.nc" and "restartfi.nc" |
|---|
| 1241 | !------------------------ |
|---|
| 1242 | ! III_b.1 Write "restart.nc" |
|---|
| 1243 | ptimestep = iphysiq*daysec/real(day_step)/nsplit_phys ! dtphys/nsplit_phys |
|---|
| 1244 | pday = day_ini |
|---|
| 1245 | ztime_fin = time_phys |
|---|
| 1246 | #ifndef CPP_1D |
|---|
| 1247 | write(*,*) '> Writing "restart.nc"' |
|---|
| 1248 | ! Correction on teta due to surface pressure changes |
|---|
| 1249 | allocate(pdyn(ip1jmp1)) |
|---|
| 1250 | call gr_fi_dyn(1,ngrid,iip1,jjp1,ps_start0/ps_start,pdyn) |
|---|
| 1251 | do i = 1,ip1jmp1 |
|---|
| 1252 | teta(i,:) = teta(i,:)*pdyn(i)**rcp |
|---|
| 1253 | enddo |
|---|
| 1254 | ! Correction on atmospheric pressure |
|---|
| 1255 | allocate(p(ip1jmp1,nlayer + 1)) |
|---|
| 1256 | call gr_fi_dyn(1,ngrid,iip1,jjp1,ps_start,pdyn) |
|---|
| 1257 | call pression(ip1jmp1,ap,bp,pdyn,p) |
|---|
| 1258 | ! Correction on the mass of atmosphere |
|---|
| 1259 | call massdair(p,masse) |
|---|
| 1260 | call dynredem0("restart.nc",day_ini,phis) |
|---|
| 1261 | call dynredem1("restart.nc",time_0,vcov,ucov,teta,q,masse,pdyn) |
|---|
| 1262 | deallocate(ap,bp,p,pdyn) |
|---|
| 1263 | #else |
|---|
| 1264 | write(*,*) '> Writing "restart1D.txt"' |
|---|
| 1265 | call writerestart1D('restart1D.txt',ps_start(1),tsurf(1,:),nlayer,size(tsurf,2),teta,ucov,vcov,nq,noms,qsurf(1,:,:),q) |
|---|
| 1266 | #endif |
|---|
| 1267 | deallocate(ps_start0,ps_start) |
|---|
| 1268 | |
|---|
| 1269 | ! III_b.2 Write the "restartfi.nc" |
|---|
| 1270 | write(*,*) '> Writing "restartfi.nc"' |
|---|
| 1271 | #ifndef CPP_STD |
|---|
| 1272 | call physdem0("restartfi.nc",longitude,latitude,nsoilmx,ngrid, & |
|---|
| 1273 | nlayer,nq,ptimestep,pday,0.,cell_area,albedodat, & |
|---|
| 1274 | inertiedat,def_slope,subslope_dist) |
|---|
| 1275 | call physdem1("restartfi.nc",nsoilmx,ngrid,nlayer,nq,nqsoil, & |
|---|
| 1276 | ptimestep,ztime_fin,tsurf,tsoil,inertiesoil, & |
|---|
| 1277 | albedo,emis,q2,qsurf,qsoil,tauscaling,totcloudfrac, & |
|---|
| 1278 | wstar,watercap,perennial_co2ice) |
|---|
| 1279 | #else |
|---|
| 1280 | if (allocated(noms)) deallocate(noms) |
|---|
| 1281 | deallocate(qsurf,tsurf,tsoil,emis,watercap,watercaptag,albedo,inertiesoil) |
|---|
| 1282 | call physdem0("restartfi.nc",longitude,latitude,nsoilmx,ngrid, & |
|---|
| 1283 | nlayer,nq,ptimestep,pday,time_phys,cell_area, & |
|---|
| 1284 | albedo_bareground,inertiedat,zmea,zstd,zsig,zgam,zthe) |
|---|
| 1285 | call physdem1("restartfi.nc",nsoilmx,ngrid,nlayer,nq,nqsoil, & |
|---|
| 1286 | ptimestep,ztime_fin,tsurf,tsoil,emis,q2,qsurf,qsoil, & |
|---|
| 1287 | cloudfrac,totcloudfrac,hice,rnat,pctsrf_sic,tslab, & |
|---|
| 1288 | tsea_ice,sea_ice) |
|---|
| 1289 | #endif |
|---|
| 1290 | |
|---|
| 1291 | !------------------------ |
|---|
| 1292 | ! III Output |
|---|
| 1293 | ! III_c Write the "restartpem.nc" |
|---|
| 1294 | !------------------------ |
|---|
| 1295 | write(*,*) '> Writing "restartpem.nc"' |
|---|
| 1296 | if (layering_algo) nb_str_max = get_nb_str_max(layerings_map,ngrid,nslope) ! Get the maximum number of "stratum" in the layerings_mapication (layerings) |
|---|
| 1297 | call pemdem0("restartpem.nc",longitude,latitude,cell_area,ngrid,nslope,def_slope,subslope_dist) |
|---|
| 1298 | call pemdem1("restartpem.nc",i_myear,nsoilmx_PEM,ngrid,nslope,tsoil_PEM,TI_PEM,icetable_depth,icetable_thickness,ice_porefilling, & |
|---|
| 1299 | co2_adsorbed_phys,h2o_adsorbed_phys,h2o_ice,layerings_map) |
|---|
| 1300 | |
|---|
| 1301 | call info_PEM(i_myear_leg,stopPEM,i_myear,n_myear) |
|---|
| 1302 | |
|---|
| 1303 | write(*,*) |
|---|
| 1304 | write(*,*) '****** PEM final information *******' |
|---|
| 1305 | write(*,'(a,f16.4,a)') " + The PEM leg has run for ", i_myear_leg, " Martian years." |
|---|
| 1306 | write(*,'(a,f16.4,a,f16.4,a)') " + The chained simulation has run for ", i_myear, " Martian years =", i_myear*convert_years, " Earth years." |
|---|
| 1307 | write(*,'(a,f16.4,a)') " + The reached date is now ", (year_bp_ini + i_myear)*convert_years, " Earth years." |
|---|
| 1308 | write(*,*) "+ PEM: so far, so good!" |
|---|
| 1309 | write(*,*) '************************************' |
|---|
| 1310 | |
|---|
| 1311 | if (layering_algo) then |
|---|
| 1312 | do islope = 1,nslope |
|---|
| 1313 | do i = 1,ngrid |
|---|
| 1314 | call del_layering(layerings_map(i,islope)) |
|---|
| 1315 | enddo |
|---|
| 1316 | enddo |
|---|
| 1317 | endif |
|---|
| 1318 | deallocate(q,longitude,latitude,cell_area,tsoil_PEM) |
|---|
| 1319 | deallocate(co2_ice,h2o_ice,layerings_map) |
|---|
| 1320 | !----------------------------- END OUTPUT ------------------------------ |
|---|
| 1321 | |
|---|
| 1322 | END PROGRAM pem |
|---|