source: trunk/LMDZ.COMMON/libf/evolution/pem.F90 @ 3842

Last change on this file since 3842 was 3842, checked in by jbclement, 44 hours ago

PEM:

  • Handling the situation in the layering algorithm when CO2 ice sublimation and H2O ice condensation happen simultaneously.
  • Correction of the incorporation of the sub-surface sublimation tendency into the overall tendency to be more robust.
  • Revision of the layering initialization in the case where there is no "startpem.nc" file.

JBC

File size: 68.7 KB
Line 
1!------------------------
2! I   Initialization
3!    I_a Read the "run.def"
4!    I_b Read the "start.nc" and "startfi.nc"
5!    I_c Subslope parametrisation
6!    I_d Read the PCM data and convert them to the physical grid
7!    I_e Initialization of the PEM variable and soil
8!    I_f Compute tendencies
9!    I_g Compute global surface pressure
10!    I_h Read the "startpem.nc"
11!    I_i Compute orbit criterion
12
13! II  Run
14!    II_a Update pressure, ice and tracers
15!    II_b Evolution of ice
16!    II_c Flow of glaciers
17!    II_d Update surface and soil temperatures
18!    II_e Outputs
19!    II_f Update the tendencies
20!    II_g Checking the stopping criterion
21
22! III Output
23!    III_a Update surface values for the PCM start files
24!    III_b Write the "restart.nc" and "restartfi.nc"
25!    III_c Write the "restartpem.nc"
26!------------------------
27
28PROGRAM pem
29
30use phyetat0_mod,               only: phyetat0
31use phyredem,                   only: physdem0, physdem1
32use netcdf,                     only: nf90_open, NF90_NOWRITE, nf90_get_var, nf90_inq_varid, nf90_close
33use turb_mod,                   only: q2, wstar
34use comslope_mod,               only: nslope, def_slope, def_slope_mean, subslope_dist, iflat, ini_comslope_h
35use logic_mod,                  only: iflag_phys
36use mod_const_mpi,              only: COMM_LMDZ
37use infotrac
38use geometry_mod,               only: latitude_deg
39use conf_pem_mod,               only: conf_pem
40use pemredem,                   only: pemdem0, pemdem1
41use glaciers_mod,               only: flow_co2glaciers, flow_h2oglaciers, co2ice_flow, h2oice_flow, inf_h2oice_threshold, &
42                                      metam_h2oice_threshold, metam_co2ice_threshold, metam_h2oice, metam_co2ice, computeTcondCO2
43use stopping_crit_mod,          only: stopping_crit_h2o_ice, stopping_crit_co2
44use constants_marspem_mod,      only: alpha_clap_co2, beta_clap_co2, alpha_clap_h2o, beta_clap_h2o, m_co2, m_noco2
45use evol_ice_mod,               only: evol_co2_ice, evol_h2o_ice
46use comsoil_h_PEM,              only: soil_pem, ini_comsoil_h_PEM, end_comsoil_h_PEM, nsoilmx_PEM, &
47                                      TI_PEM,               & ! Soil thermal inertia
48                                      tsoil_PEM, layer_PEM, & ! Soil temp, number of subsurface layers, soil mid layer depths
49                                      fluxgeo                 ! Geothermal flux for the PEM and PCM
50use adsorption_mod,             only: regolith_adsorption, adsorption_pem,        & ! Bool to check if adsorption, main subroutine
51                                      ini_adsorption_h_PEM, end_adsorption_h_PEM, & ! Allocate arrays
52                                      co2_adsorbed_phys, h2o_adsorbed_phys          ! Mass of co2 and h2O adsorbed
53use time_evol_mod,              only: dt, evol_orbit_pem, Max_iter_pem, convert_years, year_bp_ini
54use orbit_param_criterion_mod,  only: orbit_param_criterion
55use recomp_orb_param_mod,       only: recomp_orb_param
56use ice_table_mod,              only: icetable_depth, icetable_thickness, end_ice_table, ice_porefilling, &
57                                      ini_ice_table, icetable_equilibrium, icetable_dynamic, computeice_table_equilibrium, compute_massh2o_exchange_ssi
58use soil_thermalproperties_mod, only: update_soil_thermalproperties
59use time_phylmdz_mod,           only: daysec, dtphys
60use abort_pem_mod,              only: abort_pem
61use soil_settings_PEM_mod,      only: soil_settings_PEM
62use compute_tend_mod,           only: compute_tend
63use info_PEM_mod,               only: info_PEM
64use get_timelen_PCM_mod,        only: get_timelen_PCM
65use pemetat0_mod,               only: pemetat0
66use read_data_PCM_mod,          only: read_data_PCM
67use recomp_tend_mod,            only: recomp_tend_co2, recomp_tend_h2o
68use compute_soiltemp_mod,       only: compute_tsoil_pem, shift_tsoil2surf
69use writediagpem_mod,           only: writediagpem, writediagsoilpem
70use co2condens_mod,             only: CO2cond_ps
71use layering_mod,               only: layering, del_layering, make_layering, layering_algo, subsurface_ice_layering,            &
72                                      ptrarray, stratum, get_nb_str_max, nb_str_max, is_dust_lag, is_co2ice_str, is_h2oice_str, print_layering
73use dyn_ss_ice_m_mod,           only: dyn_ss_ice_m
74use parse_args_mod,             only: parse_args
75use job_timelimit_mod,          only: timelimit, antetime, timewall
76use paleoclimate_mod,           only: h2o_ice_depth, zdqsdif_ssi_tot
77
78#ifndef CPP_STD
79    use comsoil_h,          only: tsoil, nsoilmx, ini_comsoil_h, inertiedat, mlayer, inertiesoil, flux_geo, nqsoil, qsoil
80    use surfdat_h,          only: tsurf, qsurf, emis, emissiv, emisice, ini_surfdat_h,   &
81                                  albedodat, albedice, albedo_h2o_frost, albedo_h2o_cap, &
82                                  zmea, zstd, zsig, zgam, zthe, frost_albedo_threshold,  &
83                                  watercap, watercaptag, perennial_co2ice, albedo_perennialco2
84    use dimradmars_mod,     only: totcloudfrac, albedo
85    use dust_param_mod,     only: tauscaling
86    use tracer_mod,         only: noms, igcm_h2o_ice, igcm_co2, mmol, igcm_h2o_vap ! Tracer names and molar masses
87    use mod_phys_lmdz_para, only: is_parallel, is_sequential, is_mpi_root, is_omp_root, is_master
88    use planete_h,          only: aphelie, periheli, year_day, peri_day, obliquit, iniorbit
89    use surfini_mod,        only: surfini
90    use comcstfi_h,         only: mugaz
91#else
92    use tracer_h,           only: noms, igcm_h2o_ice, igcm_co2 ! Tracer names
93    use phys_state_var_mod, only: cloudfrac, totcloudfrac, albedo_snow_SPECTV,HICE,RNAT,   &
94                                  PCTSRF_SIC, TSLAB, TSEA_ICE, SEA_ICE, ALBEDO_BAREGROUND, &
95                                  ALBEDO_CO2_ICE_SPECTV, phys_state_var_init
96    use aerosol_mod,        only: iniaerosol
97    use planete_mod,        only: apoastr, periastr, year_day, peri_day, obliquit
98    use comcstfi_mod,       only: pi, rad, g, r, cpp, rcp, mugaz
99#endif
100
101#ifndef CPP_1D
102    use comconst_mod,             only: pi, rad, g, r, cpp, rcp => kappa
103    use iniphysiq_mod,            only: iniphysiq
104    use control_mod,              only: iphysiq, day_step, nsplit_phys
105#else
106    use comcstfi_h,               only: pi, rad, g, r, cpp, rcp
107    use time_phylmdz_mod,         only: iphysiq, steps_per_sol
108    use regular_lonlat_mod,       only: init_regular_lonlat
109    use physics_distribution_mod, only: init_physics_distribution
110    use mod_grid_phy_lmdz,        only: regular_lonlat
111    use init_testphys1d_mod,      only: init_testphys1d
112    use comvert_mod,              only: ap, bp
113    use writerestart1D_mod,       only: writerestart1D
114#endif
115
116implicit none
117
118include "dimensions.h"
119include "paramet.h"
120include "comgeom.h"
121include "iniprint.h"
122
123! Same variable names as in the PCM
124integer, parameter :: ngridmx = 2 + (jjm - 1)*iim - 1/jjm
125integer, parameter :: nlayer = llm ! Number of vertical layer
126integer            :: ngrid        ! Number of physical grid points
127integer            :: nq           ! Number of tracer
128integer            :: day_ini      ! First day of the simulation
129real               :: pday         ! Physical day
130real               :: time_phys    ! Same as in PCM
131real               :: ptimestep    ! Same as in PCM
132real               :: ztime_fin    ! Same as in PCM
133
134! Variables to read "start.nc"
135character(*), parameter :: start_name = "start.nc" ! Name of the file used to initialize the PEM
136
137! Dynamic variables
138real, dimension(ip1jm,llm)          :: vcov          ! vents covariants
139real, dimension(ip1jmp1,llm)        :: ucov          ! vents covariants
140real, dimension(ip1jmp1,llm)        :: teta          ! Potential temperature
141real, dimension(:,:,:), allocatable :: q             ! champs advectes
142real, dimension(:),     allocatable :: pdyn          ! pressure for the dynamic grid
143real, dimension(:),     allocatable :: ps_start      ! surface pressure in the start file
144real, dimension(:),     allocatable :: ps_start0     ! surface pressure in the start file at the beginning
145real, dimension(:),     allocatable :: ps_avg        ! (ngrid) Average surface pressure
146real, dimension(:),     allocatable :: ps_dev        ! (ngrid x timelen) Surface pressure deviation
147real, dimension(:,:),   allocatable :: ps_timeseries ! (ngrid x timelen) Instantaneous surface pressure
148real, dimension(ip1jmp1,llm)        :: masse         ! Air mass
149real, dimension(ip1jmp1)            :: phis          ! geopotentiel au sol
150real                                :: time_0
151
152! Variables to read starfi.nc
153character(*), parameter :: startfi_name = "startfi.nc" ! Name of the file used to initialize the PEM
154character(2)            :: str2
155integer                 :: ncid, status                           ! Variable for handling opening of files
156integer                 :: lonvarid, latvarid, areavarid, sdvarid ! Variable ID for Netcdf files
157integer                 :: apvarid, bpvarid                       ! Variable ID for Netcdf files
158
159! Variables to read starfi.nc and write restartfi.nc
160real, dimension(:), allocatable :: longitude     ! Longitude read in startfi_name and written in restartfi
161real, dimension(:), allocatable :: latitude      ! Latitude read in startfi_name and written in restartfi
162real, dimension(:), allocatable :: cell_area     ! Cell_area read in startfi_name and written in restartfi
163real                            :: total_surface ! Total surface of the planet
164
165! Variables for h2o ice evolution
166real, dimension(:,:),    allocatable  :: h2o_ice              ! h2o ice in the PEM
167real, dimension(:,:),    allocatable  :: d_h2oice             ! physical point x slope field: Tendency of evolution of perennial h2o ice
168real, dimension(:,:,:),  allocatable  :: min_h2o_ice          ! Minima of h2o ice at each point for the PCM years [kg/m^2]
169real                                  :: h2oice_ini_surf      ! Initial surface of sublimating h2o ice
170logical, dimension(:,:), allocatable  :: is_h2oice_sublim_ini ! Logical array to know if h2o ice is sublimating
171real                                  :: ps_avg_global_ini    ! constant: Global average pressure at initialization [Pa]
172real                                  :: ps_avg_global_old    ! constant: Global average pressure of previous time step
173real                                  :: ps_avg_global_new    ! constant: Global average pressure of current time step
174real,   dimension(:,:),   allocatable :: zplev_new            ! Grid points x Atmospheric field: mass of the atmospheric layers in the pem at current time step [kg/m^2]
175real,   dimension(:,:),   allocatable :: zplev_start0         ! Grid points x Atmospheric field: mass of the atmospheric layers in the start [kg/m^2]
176real,   dimension(:,:,:), allocatable :: zplev_timeseries_new ! Grid points x Atmospheric x Time: same as zplev_new, but in times series [kg/m ^2]
177real,   dimension(:,:,:), allocatable :: zplev_timeseries_old ! same but with the time series, for previous time step
178integer                               :: stopPEM              ! which criterion is reached? 0 = no stopping; 1 = h2o ice surf; 2 = no h2o ice; 3 = co2 ice surf; 4 = ps; 5 = orb param; 6 = end of simu
179real                                  :: A, B, mmean          ! Molar mass: intermediate A, B for computations of the  mean molar mass of the layer [mol/kg]
180real,   dimension(:,:),   allocatable :: q_h2o_PEM_phys       ! Grid points x Times: h2o mass mixing ratio computed in the PEM, first value comes from PCM [kg/kg]
181integer                               :: timelen              ! # time samples
182real                                  :: extra_mass           ! Intermediate variables Extra mass of a tracer if it is greater than 1
183
184! Variables for co2 ice evolution
185real,    dimension(:,:), allocatable :: co2_ice                ! co2 ice in the PEM
186real,    dimension(:,:), allocatable :: d_co2ice               ! physical point x slope field: Tendency of evolution of perennial co2 ice over a year
187real,    dimension(:,:), allocatable :: d_co2ice_ini           ! physical point x slope field: Tendency of evolution of perennial co2 ice over a year in the PCM
188logical, dimension(:,:), allocatable :: is_co2ice_ini          ! Was there co2 ice initially in the PEM?
189real,  dimension(:,:,:), allocatable :: min_co2_ice            ! Minimum of co2 ice at each point for the first year [kg/m^2]
190real                                 :: co2ice_sublim_surf_ini ! Initial surface of sublimating co2 ice
191logical, dimension(:,:), allocatable :: is_co2ice_sublim_ini   ! Logical array to know if co2 ice is sublimating
192real,    dimension(:,:), allocatable :: vmr_co2_PCM            ! Grid points x Times co2 volume mixing ratio retrieve from the PCM [m^3/m^3]
193real,    dimension(:,:), allocatable :: vmr_co2_PEM_phys       ! Grid points x Times co2 volume mixing ratio used in the PEM
194real,    dimension(:,:), allocatable :: q_co2_PEM_phys         ! Grid points x Times co2 mass mixing ratio in the first layer computed in the PEM, first value comes from PCM [kg/kg]
195real(kind = 16)                      :: totmass_co2ice, totmass_atmco2         ! Current total CO2 masses
196real(kind = 16)                      :: totmass_co2ice_ini, totmass_atmco2_ini ! Initial total CO2 masses
197
198! Variables for the evolution of layered layerings_map
199type(layering), dimension(:,:), allocatable :: layerings_map     ! Layering for each grid point and slope
200type(ptrarray), dimension(:,:), allocatable :: current           ! Current active stratum in the layering
201logical,        dimension(:,:), allocatable :: new_str, new_lag  ! Flags for the layering algorithm
202real,           dimension(:,:), allocatable :: h2o_ice_depth_old ! Old depth of subsurface ice layer
203
204! Variables for slopes
205integer(kind = 1), dimension(:,:), allocatable :: flag_co2flow ! (ngrid,nslope): Flag where there is a CO2 glacier flow
206integer(kind = 1), dimension(:,:), allocatable :: flag_h2oflow ! (ngrid,nslope): Flag where there is a H2O glacier flow
207
208! Variables for surface and soil
209real, dimension(:,:),     allocatable :: tsurf_avg                          ! Grid points x Slope field: Average surface temperature [K]
210real, dimension(:,:),     allocatable :: tsurf_dev                          ! Grid points x Slope field: Surface temperature deviation [K]
211real, dimension(:,:),     allocatable :: tsurf_avg_yr1                      ! Grid points x Slope field: Average surface temperature of first call of the PCM [K]
212real, dimension(:,:,:),   allocatable :: tsoil_avg                          ! Grid points x Soil x Slope field: Average Soil Temperature [K]
213real, dimension(:,:),     allocatable :: tsoil_avg_old                      ! Grid points x Soil field: Average Soil Temperature at the previous time step [K]
214real, dimension(:,:,:),   allocatable :: tsoil_dev                          ! Grid points x Soil x Slope field: Soil temperature deviation [K]
215real, dimension(:,:,:,:), allocatable :: tsoil_timeseries                   ! Grid points x Soil x Slope x Times field: Soil temperature timeseries [K]
216real, dimension(:,:,:,:), allocatable :: tsoil_PEM_timeseries               ! Grid points x Soil x Slope x Times field: Soil temperature timeseries for PEM [K]
217real, dimension(:,:,:,:), allocatable :: tsoil_PEM_timeseries_old           ! Grid points x Soil x Slope x Times field: Soil temperature timeseries for PEM at the previous time step [K]
218real, dimension(:,:,:,:), allocatable :: watersoil_density_timeseries       ! Grid points x Soil x Slope x Times Water soil density timeseries [kg /m^3]
219real, dimension(:,:),     allocatable :: watersurf_density_avg              ! Grid points x Slope: Average water surface density [kg/m^3]
220real, dimension(:,:,:,:), allocatable :: watersoil_density_PEM_timeseries   ! Grid points x Soil x Slope x Times: Water soil density timeseries for PEM [kg/m^3]
221real, dimension(:,:,:),   allocatable :: watersoil_density_PEM_avg          ! Grid points x Soil x Slopes: Average water soil density [kg/m^3]
222real, dimension(:),       allocatable :: delta_co2_adsorbed                 ! Physics: quantity of CO2 that is exchanged because of adsorption / desorption [kg/m^2]
223real, dimension(:),       allocatable :: delta_h2o_adsorbed                 ! Physics: quantity of H2O that is exchanged because of adsorption / desorption [kg/m^2]
224real(kind = 16)                       :: totmass_adsco2, totmass_adsco2_ini ! Total mass of CO2 that is exchanged because of adsorption / desoprtion over the planets [kg]
225real                                  :: totmass_adsh2o                     ! Total mass of H2O that is exchanged because of adsorption / desoprtion over the planets [kg]
226logical, dimension(:,:),  allocatable :: co2ice_disappeared                 ! logical to check if a co2 ice reservoir already disappeared at a previous timestep
227real, dimension(:,:),     allocatable :: icetable_thickness_old             ! ngrid x nslope: Thickness of the ice table at the previous iteration [m]
228real, dimension(:,:,:),   allocatable :: ice_porefilling_old                ! ngrid x nslope: Ice pore filling at the previous iteration [m]
229real, dimension(:),       allocatable :: delta_h2o_icetablesublim           ! ngrid x Total mass of the H2O that has sublimated / condenses from the ice table [kg]
230real, dimension(:),       allocatable :: porefill                           ! Pore filling (output) to compute the dynamic ice table
231real                                  :: ssi_depth                          ! Ice table depth (output) to compute the dynamic ice table
232real, dimension(:,:),     allocatable :: zshift_surf                        ! Elevation shift for the surface [m]
233real, dimension(:,:),     allocatable :: zlag                               ! Newly built lag thickness [m]
234real, dimension(:,:),     allocatable :: icetable_depth_old                 ! Old depth of the ice table
235
236! Some variables for the PEM run
237real, parameter       :: year_step = 1   ! Timestep for the pem
238real                  :: i_myear_leg     ! Number of iteration
239real                  :: n_myear_leg     ! Maximum number of iterations before stopping
240real                  :: i_myear         ! Global number of Martian years of the chained simulations
241real                  :: n_myear         ! Maximum number of Martian years of the chained simulations
242real                  :: timestep        ! Timestep [s]
243integer(kind = 8)     :: cr              ! Number of clock ticks per second (count rate)
244integer(kind = 8)     :: c1, c2          ! Counts of processor clock
245character(8)          :: date
246character(10)         :: time
247character(5)          :: zone
248integer, dimension(8) :: values
249character(128)        :: dir = ' '
250character(32)         :: logname = ' '
251character(32)         :: hostname = ' '
252
253#ifdef CPP_STD
254    real                                :: frost_albedo_threshold = 0.05 ! Frost albedo threeshold to convert fresh frost to old ice
255    real                                :: albedo_h2o_frost              ! Albedo of h2o frost
256    real, dimension(:),     allocatable :: tsurf_read_generic            ! Temporary variable to do the subslope transfert dimension when reading form generic
257    real, dimension(:,:),   allocatable :: qsurf_read_generic            ! Temporary variable to do the subslope transfert dimension when reading form generic
258    real, dimension(:,:),   allocatable :: tsoil_read_generic            ! Temporary variable to do the subslope transfert dimension when reading form generic
259    real, dimension(:),     allocatable :: emis_read_generic             ! Temporary variable to do the subslope transfert dimension when reading form generic
260    real, dimension(:,:),   allocatable :: albedo_read_generic           ! Temporary variable to do the subslope transfert dimension when reading form generic
261    real, dimension(:,:),   allocatable :: tsurf                         ! Subslope variable, only needed in the GENERIC case
262    real, dimension(:,:,:), allocatable :: qsurf                         ! Subslope variable, only needed in the GENERIC case
263    real, dimension(:,:,:), allocatable :: tsoil                         ! Subslope variable, only needed in the GENERIC case
264    real, dimension(:,:),   allocatable :: emis                          ! Subslope variable, only needed in the GENERIC case
265    real, dimension(:,:),   allocatable :: watercap                      ! Subslope variable, only needed in the GENERIC case =0 no watercap in generic model
266    logical, dimension(:),  allocatable :: watercaptag                   ! Subslope variable, only needed in the GENERIC case =false no watercaptag in generic model
267    real, dimension(:,:,:), allocatable :: albedo                        ! Subslope variable, only needed in the GENERIC case
268    real, dimension(:,:,:), allocatable :: inertiesoil                   ! Subslope variable, only needed in the GENERIC case
269#endif
270
271#ifdef CPP_1D
272    integer            :: nsplit_phys
273    integer, parameter :: jjm_value = jjm - 1
274    integer            :: day_step
275
276    ! Dummy variables to use the subroutine 'init_testphys1d'
277    logical                             :: therestart1D, therestartfi, prescribed_h2ovap
278    integer                             :: ndt, day0
279    real                                :: ptif, pks, day, gru, grv, h2ovap_relax_time
280    real, dimension(:),     allocatable :: zqsat
281    real, dimension(:,:,:), allocatable :: dq, dqdyn
282    real, dimension(nlayer)             :: play, w, q_prescribed_h2o_vap
283    real, dimension(nlayer + 1)         :: plev
284#else
285    integer, parameter                :: jjm_value = jjm
286    real, dimension(:),   allocatable :: ap ! Coefficient ap read in start_name and written in restart
287    real, dimension(:),   allocatable :: bp ! Coefficient bp read in start_name and written in restart
288    real, dimension(:,:), allocatable :: p  ! Grid points x Atmosphere: pressure to recompute and write in restart (ip1jmp1,llmp1)
289#endif
290
291! Loop variables
292integer :: i, l, ig, nnq, t, islope, ig_loop, islope_loop, isoil, icap
293logical :: num_str
294
295! CODE
296! Elapsed time with system clock
297call system_clock(count_rate = cr)
298call system_clock(c1)
299
300! Parse command-line options
301call parse_args()
302
303! Header
304write(*,*) '  *    .          .   +     .    *        .  +      .    .       .      '
305write(*,*) '           +         _______  ________  ____    ____      *           + '
306write(*,*) ' +   .        *     |_   __ \|_   __  ||_   \  /   _|          .       *'
307write(*,*) '          .     .     | |__) | | |_ \_|  |   \/   |  *        *      .  '
308write(*,*) '       .              |  ___/  |  _| _   | |\  /| |      .        .     '
309write(*,*) '.  *          *      _| |_    _| |__/ | _| |_\/_| |_                  * '
310write(*,*) '            +       |_____|  |________||_____||_____|   +     .         '
311write(*,*) '  .      *          .   *       .   +       *          .        +      .'
312
313! Some user info
314call date_and_time(date,time,zone,values)
315call getcwd(dir)      ! Current directory
316call getlog(logname)  ! User name
317call hostnm(hostname) ! Machine/station name
318write(*,*)
319write(*,*) '********* PEM information *********'
320write(*,*) '+ User     : '//trim(logname)
321write(*,*) '+ Machine  : '//trim(hostname)
322write(*,*) '+ Directory: '//trim(dir)
323write(*,'(a,i2,a,i2,a,i4)') ' + Date     : ',values(3),'/',values(2),'/',values(1)
324write(*,'(a,i2,a,i2,a,i2,a)') ' + Time     : ',values(5),':',values(6),':',values(7)
325
326! Parallel variables
327#ifndef CPP_STD
328    is_sequential = .true.
329    is_parallel = .false.
330    is_mpi_root = .true.
331    is_omp_root = .true.
332    is_master = .true.
333#endif
334
335! Some constants
336day_ini = 0
337time_phys = 0.
338ngrid = ngridmx
339A = (1./m_co2 - 1./m_noco2)
340B = 1./m_noco2
341year_day = 669
342daysec = 88775.
343timestep = year_day*daysec*year_step
344
345!----------------------------- INITIALIZATION --------------------------
346!------------------------
347! I   Initialization
348!    I_a Read the "run.def"
349!------------------------
350write(*,*)
351write(*,*) '********* PEM initialization *********'
352write(*,*) '> Reading "run.def" (PEM)'
353#ifndef CPP_1D
354    dtphys = daysec/48. ! Dummy value (overwritten in phyetat0)
355    call conf_gcm(99,.true.)
356    call infotrac_init
357    nq = nqtot
358    allocate(q(ip1jmp1,llm,nqtot))
359    allocate(longitude(ngrid),latitude(ngrid),cell_area(ngrid))
360#else
361    allocate(q(1,llm,nqtot),pdyn(1))
362    allocate(longitude(1),latitude(1),cell_area(1))
363
364    therestart1D = .false. ! Default value
365    inquire(file = 'start1D.txt',exist = therestart1D)
366    if (.not. therestart1D) then
367        write(*,*) 'There is no "start1D.txt" file!'
368        error stop 'Initialization cannot be done for the 1D PEM.'
369    endif
370    therestartfi = .false. ! Default value
371    inquire(file = 'startfi.nc',exist = therestartfi)
372    if (.not. therestartfi) then
373        write(*,*) 'There is no "startfi.nc" file!'
374        error stop 'Initialization cannot be done for the 1D PEM.'
375    endif
376
377    write(*,*) '> Reading "start1D.txt" and "startfi.nc"'
378    call init_testphys1d('start1D.txt','startfi.nc',therestart1D,therestartfi,ngrid,nlayer,610.,nq,q,         &
379                         time_0,pdyn(1),ucov,vcov,teta,ndt,ptif,pks,dtphys,zqsat,dq,dqdyn,day0,day,gru,grv,w, &
380                         play,plev,latitude,longitude,cell_area,prescribed_h2ovap,h2ovap_relax_time,q_prescribed_h2o_vap)
381    nsplit_phys = 1
382    day_step = steps_per_sol
383#endif
384
385call conf_pem(i_myear,n_myear)
386
387!------------------------
388! I   Initialization
389!    I_b Read of the "start.nc" and "starfi.nc"
390!------------------------
391! I_b.1 Read "start.nc"
392write(*,*) '> Reading "start.nc"'
393allocate(ps_start0(ngrid))
394#ifndef CPP_1D
395    allocate(pdyn(ip1jmp1))
396    call dynetat0(start_name,vcov,ucov,teta,q,masse,pdyn,phis,time_0)
397
398    call gr_dyn_fi(1,iip1,jjp1,ngridmx,pdyn,ps_start0)
399
400    call iniconst ! Initialization of dynamical constants (comconst_mod)
401    call inigeom ! Initialization of geometry
402
403    allocate(ap(nlayer + 1))
404    allocate(bp(nlayer + 1))
405    status = nf90_open(start_name,NF90_NOWRITE,ncid)
406    status = nf90_inq_varid(ncid,"ap",apvarid)
407    status = nf90_get_var(ncid,apvarid,ap)
408    status = nf90_inq_varid(ncid,"bp",bpvarid)
409    status = nf90_get_var(ncid,bpvarid,bp)
410    status = nf90_close(ncid)
411
412    ! Initialization of physics constants and variables (comcstfi_h)
413    call iniphysiq(iim,jjm,llm,(jjm - 1)*iim + 2,comm_lmdz,daysec,day_ini,dtphys/nsplit_phys,rlatu,rlatv,rlonu,rlonv,aire,cu,cv,rad,g,r,cpp,iflag_phys)
414#else
415    ps_start0(1) = pdyn(1)
416#endif
417deallocate(pdyn)
418
419! In the PCM, these values are given to the physic by the dynamic.
420! Here we simply read them in the "startfi.nc" file
421status = nf90_open(startfi_name,NF90_NOWRITE,ncid)
422status = nf90_inq_varid(ncid,"longitude",lonvarid)
423status = nf90_get_var(ncid,lonvarid,longitude)
424status = nf90_inq_varid(ncid,"latitude",latvarid)
425status = nf90_get_var(ncid,latvarid,latitude)
426status = nf90_inq_varid(ncid,"area",areavarid)
427status = nf90_get_var(ncid,areavarid,cell_area)
428status = nf90_inq_varid(ncid,"soildepth",sdvarid)
429status = nf90_get_var(ncid,sdvarid,mlayer)
430status = nf90_close(ncid)
431
432! I_b.2 Read the "startfi.nc"
433! First we read the initial state (starfi.nc)
434#ifndef CPP_STD
435    write(*,*) '> Reading "startfi.nc"'
436    call phyetat0(startfi_name,0,0,nsoilmx,ngrid,nlayer,nq,nqsoil,day_ini,time_phys,tsurf, &
437                  tsoil,albedo,emis,q2,qsurf,qsoil,tauscaling,totcloudfrac,wstar,          &
438                  watercap,perennial_co2ice,def_slope,def_slope_mean,subslope_dist)
439
440    ! Remove unphysical values of surface tracer
441    where (qsurf < 0.) qsurf = 0.
442
443    call surfini(ngrid,nslope,qsurf)
444#else
445    call phys_state_var_init(nq)
446    if (.not. allocated(noms)) allocate(noms(nq)) ! (because noms is an argument of physdem1 whether or not tracer is on)
447    call initracer(ngrid,nq)
448    call iniaerosol()
449    allocate(tsurf_read_generic(ngrid))
450    allocate(qsurf_read_generic(ngrid,nq))
451    allocate(tsoil_read_generic(ngrid,nsoilmx))
452    allocate(qsoil_read_generic(ngrid,nsoilmx,nqsoil,nslope))
453    allocate(emis_read_generic(ngrid))
454    allocate(albedo_read_generic(ngrid,2))
455    allocate(qsurf(ngrid,nq,1))
456    allocate(tsurf(ngrid,1))
457    allocate(tsoil(ngrid,nsoilmx,1))
458    allocate(emis(ngrid,1))
459    allocate(watercap(ngrid,1))
460    allocate(watercaptag(ngrid))
461    allocate(albedo(ngrid,2,1))
462    allocate(inertiesoil(ngrid,nsoilmx,1))
463    call phyetat0(.true.,ngrid,nlayer,startfi_name,0,0,nsoilmx,nq,nqsoil,day_ini,time_phys, &
464                  tsurf_read_generic,tsoil_read_generic,emis_read_generic,q2,               &
465                  qsurf_read_generic,qsoil_read_generic,cloudfrac,totcloudfrac,hice,        &
466                  rnat,pctsrf_sic,tslab,tsea_ice,sea_ice)
467    call surfini(ngrid,nq,qsurf_read_generic,albedo_read_generic,albedo_bareground,albedo_snow_SPECTV,albedo_co2_ice_SPECTV)
468
469    nslope = 1
470    call ini_comslope_h(ngrid,1)
471
472    qsurf(:,:,1) = qsurf_read_generic
473    tsurf(:,1) = tsurf_read_generic
474    tsoil(:,:,1) = tsoil_read_generic
475    emis(:,1) = emis_read_generic
476    watercap(:,1) = 0.
477    watercaptag(:) = .false.
478    albedo(:,1,1) = albedo_read_generic(:,1)
479    albedo(:,2,1) = albedo_read_generic(:,2)
480    inertiesoil(:,:,1) = inertiedat
481
482    if (nslope == 1) then
483        def_slope(1) = 0
484        def_slope(2) = 0
485        def_slope_mean = 0
486        subslope_dist(:,1) = 1.
487    endif
488
489    ! Remove unphysical values of surface tracer
490    qsurf(:,:,1) = qsurf_read_generic
491    where (qsurf < 0.) qsurf = 0.
492
493    deallocate(tsurf_read_generic,qsurf_read_generic,qsoil_read_generic,emis_read_generic)
494#endif
495
496do nnq = 1,nqtot  ! Why not using ini_tracer?
497    if (noms(nnq) == "h2o_ice") igcm_h2o_ice = nnq
498    if (noms(nnq) == "h2o_vap") then
499        igcm_h2o_vap = nnq
500        mmol(igcm_h2o_vap) = 18.
501    endif
502    if (noms(nnq) == "co2") igcm_co2 = nnq
503enddo
504
505!------------------------
506! I   Initialization
507!    I_c Subslope parametrisation
508!------------------------
509! Define some slope statistics
510iflat = 1
511do islope = 2,nslope
512    if (abs(def_slope_mean(islope)) < abs(def_slope_mean(iflat))) iflat = islope
513enddo
514write(*,*) 'Flat slope for islope = ',iflat
515write(*,*) 'Corresponding criterium = ',def_slope_mean(iflat)
516
517!------------------------
518! I   Initialization
519!    I_d Read the PCM data and convert them to the physical grid
520!------------------------
521! First we read the evolution of water and co2 ice (and the mass mixing ratio) over the first year of the PCM run, saving only the minimum value
522call get_timelen_PCM("data_PCM_Y1.nc",timelen)
523
524allocate(vmr_co2_PCM(ngrid,timelen),q_co2_PEM_phys(ngrid,timelen),q_h2o_PEM_phys(ngrid,timelen))
525allocate(ps_timeseries(ngrid,timelen),ps_avg(ngrid))
526allocate(min_co2_ice(ngrid,nslope,2),min_h2o_ice(ngrid,nslope,2))
527allocate(tsurf_avg_yr1(ngrid,nslope),tsurf_avg(ngrid,nslope))
528allocate(tsoil_avg(ngrid,nsoilmx,nslope),tsoil_timeseries(ngrid,nsoilmx,nslope,timelen))
529allocate(watersurf_density_avg(ngrid,nslope),watersoil_density_timeseries(ngrid,nsoilmx,nslope,timelen))
530
531call read_data_PCM("data_PCM_Y1.nc","data_PCM_Y2.nc",timelen,iim,jjm_value,ngrid,nslope,vmr_co2_PCM,ps_timeseries,ps_avg,tsurf_avg_yr1,tsurf_avg, &
532                   tsoil_avg,tsoil_timeseries,min_co2_ice,min_h2o_ice,q_co2_PEM_phys,q_h2o_PEM_phys,watersurf_density_avg,watersoil_density_timeseries)
533
534! Compute the deviation from the average
535allocate(ps_dev(ngrid),tsurf_dev(ngrid,nslope),tsoil_dev(ngrid,nsoilmx,nslope))
536ps_dev = ps_start0 - ps_avg
537tsurf_dev = tsurf - tsurf_avg
538tsoil_dev = tsoil - tsoil_avg(:,1:nsoilmx,:)
539
540!------------------------
541! I   Initialization
542!    I_e Initialization of the PEM variables and soil
543!------------------------
544call end_comsoil_h_PEM
545call ini_comsoil_h_PEM(ngrid,nslope)
546call end_adsorption_h_PEM
547call ini_adsorption_h_PEM(ngrid,nslope,nsoilmx_PEM)
548call end_ice_table
549call ini_ice_table(ngrid,nslope,nsoilmx_PEM)
550
551allocate(tsoil_PEM_timeseries(ngrid,nsoilmx_PEM,nslope,timelen),watersoil_density_PEM_avg(ngrid,nsoilmx_PEM,nslope),watersoil_density_PEM_timeseries(ngrid,nsoilmx_PEM,nslope,timelen))
552if (soil_pem) then
553    call soil_settings_PEM(ngrid,nslope,nsoilmx_PEM,nsoilmx,inertiesoil,TI_PEM)
554    tsoil_PEM(:,1:nsoilmx,:) = tsoil_avg
555    watersoil_density_PEM_timeseries(:,1:nsoilmx,:,:) = watersoil_density_timeseries
556    tsoil_PEM_timeseries(:,1:nsoilmx,:,:) = tsoil_timeseries
557    do l = nsoilmx + 1,nsoilmx_PEM
558        tsoil_PEM(:,l,:) = tsoil_avg(:,nsoilmx,:)
559        watersoil_density_PEM_timeseries(:,l,:,:) = watersoil_density_timeseries(:,nsoilmx,:,:)
560        tsoil_PEM_timeseries(:,l,:,:) = tsoil_timeseries(:,nsoilmx,:,:)
561    enddo
562    watersoil_density_PEM_avg = sum(watersoil_density_PEM_timeseries,4)/timelen
563endif !soil_pem
564deallocate(tsoil_avg,watersoil_density_timeseries,tsoil_timeseries)
565
566!------------------------
567! I   Initialization
568!    I_f Compute tendencies
569!------------------------
570allocate(d_co2ice(ngrid,nslope),d_h2oice(ngrid,nslope),d_co2ice_ini(ngrid,nslope))
571call compute_tend(ngrid,nslope,min_co2_ice,d_co2ice)
572call compute_tend(ngrid,nslope,min_h2o_ice,d_h2oice)
573d_co2ice_ini = d_co2ice
574deallocate(min_co2_ice,min_h2o_ice)
575
576!------------------------
577! I   Initialization
578!    I_g Compute global surface pressure
579!------------------------
580total_surface = sum(cell_area)
581ps_avg_global_ini = sum(cell_area*ps_avg)/total_surface
582ps_avg_global_new = ps_avg_global_ini
583write(*,*) "Total surface of the planet     =", total_surface
584write(*,*) "Initial global average pressure =", ps_avg_global_ini
585
586!------------------------
587! I   Initialization
588!    I_h Read the "startpem.nc"
589!------------------------
590write(*,*) '> Reading "startpem.nc"'
591allocate(co2_ice(ngrid,nslope),h2o_ice(ngrid,nslope),layerings_map(ngrid,nslope))
592allocate(delta_h2o_adsorbed(ngrid),delta_co2_adsorbed(ngrid),delta_h2o_icetablesublim(ngrid))
593delta_h2o_icetablesublim = 0.
594call pemetat0("startpem.nc",ngrid,nsoilmx,nsoilmx_PEM,nslope,timelen,timestep,TI_PEM,tsoil_PEM,icetable_depth,icetable_thickness,ice_porefilling, &
595              tsurf_avg_yr1,tsurf_avg,q_co2_PEM_phys,q_h2o_PEM_phys,ps_timeseries,ps_avg_global_ini,d_h2oice,d_co2ice,co2_ice,h2o_ice,            &
596              watersurf_density_avg,watersoil_density_PEM_avg,co2_adsorbed_phys,delta_co2_adsorbed,h2o_adsorbed_phys,delta_h2o_adsorbed,layerings_map)
597deallocate(tsurf_avg_yr1)
598
599! We save the places where h2o ice is sublimating
600! We compute the surface of h2o ice sublimating
601allocate(is_co2ice_sublim_ini(ngrid,nslope),is_h2oice_sublim_ini(ngrid,nslope),is_co2ice_ini(ngrid,nslope),co2ice_disappeared(ngrid,nslope))
602co2ice_sublim_surf_ini = 0.
603h2oice_ini_surf = 0.
604is_co2ice_sublim_ini = .false.
605is_h2oice_sublim_ini = .false.
606is_co2ice_ini = .false.
607co2ice_disappeared = .false.
608totmass_co2ice_ini = 0.
609totmass_atmco2_ini = 0.
610if (layering_algo) then
611    do ig = 1,ngrid
612        do islope = 1,nslope
613            if (is_co2ice_str(layerings_map(ig,islope)%top)) then
614                co2_ice(ig,islope) = layerings_map(ig,islope)%top%h_co2ice
615            else if (is_h2oice_str(layerings_map(ig,islope)%top)) then
616                h2o_ice(ig,islope) = layerings_map(ig,islope)%top%h_h2oice
617            else
618                call subsurface_ice_layering(layerings_map(ig,islope),h2o_ice_depth(ig,islope),h2o_ice(ig,islope),co2_ice(ig,islope))
619            endif
620        enddo
621    enddo
622    ! We put the sublimating tendency coming from subsurface ice into the overall tendency
623    where (h2o_ice_depth > 0. .and. zdqsdif_ssi_tot < -1.e-10) d_h2oice = zdqsdif_ssi_tot
624endif
625do i = 1,ngrid
626    totmass_atmco2_ini = totmass_atmco2_ini + cell_area(i)*ps_avg(i)/g
627    do islope = 1,nslope
628        totmass_co2ice_ini = totmass_co2ice_ini + co2_ice(i,islope)*cell_area(i)*subslope_dist(i,islope)/cos(pi*def_slope_mean(islope)/180.)
629        if (co2_ice(i,islope) > 0.) is_co2ice_ini(i,islope) = .true.
630        if (d_co2ice(i,islope) < 0. .and. co2_ice(i,islope) > 0.) then
631            is_co2ice_sublim_ini(i,islope) = .true.
632            co2ice_sublim_surf_ini = co2ice_sublim_surf_ini + cell_area(i)*subslope_dist(i,islope)
633        endif
634        if (d_h2oice(i,islope) < 0.) then
635            if (h2o_ice(i,islope) > 0.) then
636                is_h2oice_sublim_ini(i,islope) = .true.
637                h2oice_ini_surf = h2oice_ini_surf + cell_area(i)*subslope_dist(i,islope)
638            else if (h2o_ice_depth(i,islope) > 0.) then
639                is_h2oice_sublim_ini(i,islope) = .true.
640            endif
641        endif
642    enddo
643enddo
644write(*,*) "Total initial surface of CO2 ice sublimating =", co2ice_sublim_surf_ini
645write(*,*) "Total initial surface of H2O ice sublimating =", h2oice_ini_surf
646
647totmass_adsco2_ini = 0.
648totmass_adsh2o = 0.
649if (adsorption_pem) then
650    do ig = 1,ngrid
651        do islope = 1,nslope
652            do l = 1,nsoilmx_PEM - 1
653                if (l == 1) then
654                   totmass_adsco2_ini = totmass_adsco2_ini + co2_adsorbed_phys(ig,l,islope)*(layer_PEM(l))* &
655                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
656                   totmass_adsh2o = totmass_adsh2o + h2o_adsorbed_phys(ig,l,islope)*(layer_PEM(l))* &
657                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
658                else
659                   totmass_adsco2_ini = totmass_adsco2_ini + co2_adsorbed_phys(ig,l,islope)*(layer_PEM(l) - layer_PEM(l-1))* &
660                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
661                   totmass_adsh2o = totmass_adsh2o + h2o_adsorbed_phys(ig,l,islope)*(layer_PEM(l) - layer_PEM(l-1))* &
662                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
663                endif
664            enddo
665        enddo
666    enddo
667    totmass_adsco2 = totmass_adsco2_ini
668    write(*,*) "Tot mass of CO2 in the regolith =", totmass_adsco2
669    write(*,*) "Tot mass of H2O in the regolith =", totmass_adsh2o
670endif ! adsorption
671
672!------------------------
673! I   Initialization
674!    I_i Compute orbit criterion
675!------------------------
676#ifndef CPP_STD
677    call iniorbit(aphelie,periheli,year_day,peri_day,obliquit)
678#else
679    call iniorbit(apoastr,periastr,year_day,peri_day,obliquit)
680#endif
681
682n_myear_leg = Max_iter_pem
683if (evol_orbit_pem) call orbit_param_criterion(i_myear,n_myear_leg)
684
685!-------------------------- END INITIALIZATION -------------------------
686
687!-------------------------------- RUN ----------------------------------
688!------------------------
689! II  Run
690!    II_a Update pressure, ice and tracers
691!------------------------
692write(*,*)
693write(*,*) '********* PEM cycle *********'
694i_myear_leg = 0
695stopPEM = 0
696if (layering_algo) then
697    allocate(h2o_ice_depth_old(ngrid,nslope),new_str(ngrid,nslope),new_lag(ngrid,nslope),current(ngrid,nslope))
698    new_str = .true.
699    new_lag = .true.
700    do islope = 1,nslope
701        do ig = 1,ngrid
702            current(ig,islope)%p => layerings_map(ig,islope)%top
703        enddo
704    enddo
705endif
706
707do while (i_myear_leg < n_myear_leg .and. i_myear < n_myear)
708! II.a.1. Compute updated global pressure
709    write(*,'(a,f10.2)') ' **** Iteration of the PEM leg (Martian years): ', i_myear_leg + 1
710    write(*,*) "> Updating the surface pressure"
711    ps_avg_global_old = ps_avg_global_new
712    do i = 1,ngrid
713        do islope = 1,nslope
714            ps_avg_global_new = ps_avg_global_new - CO2cond_ps*g*cell_area(i)*d_co2ice(i,islope)*subslope_dist(i,islope)/cos(pi*def_slope_mean(islope)/180.)/total_surface
715        enddo
716    enddo
717    if (adsorption_pem) then
718        do i = 1,ngrid
719            ps_avg_global_new = ps_avg_global_new - g*cell_area(i)*delta_co2_adsorbed(i)/total_surface
720        enddo
721    endif
722    ps_avg = ps_avg*ps_avg_global_new/ps_avg_global_old
723    write(*,*) 'Global average pressure old time step:',ps_avg_global_old
724    write(*,*) 'Global average pressure new time step:',ps_avg_global_new
725
726! II.a.2. Pressure timeseries (the values are deleted when unused because of big memory consumption)
727    write(*,*) "> Updating the surface pressure timeseries for the new pressure"
728    allocate(zplev_timeseries_old(ngrid,nlayer + 1,timelen))
729    do l = 1,nlayer + 1
730        do ig = 1,ngrid
731            zplev_timeseries_old(ig,l,:) = ap(l) + bp(l)*ps_timeseries(ig,:)
732        enddo
733    enddo
734    ps_timeseries(:,:) = ps_timeseries(:,:)*ps_avg_global_new/ps_avg_global_old
735    write(*,*) "> Updating the pressure levels timeseries for the new pressure"
736    allocate(zplev_timeseries_new(ngrid,nlayer + 1,timelen))
737    do l = 1,nlayer + 1
738        do ig = 1,ngrid
739            zplev_timeseries_new(ig,l,:) = ap(l) + bp(l)*ps_timeseries(ig,:)
740        enddo
741    enddo
742
743! II.a.3. Tracers timeseries
744    write(*,*) "> Updating the tracer VMR timeseries for the new pressure"
745    allocate(vmr_co2_PEM_phys(ngrid,timelen))
746    l = 1
747    do ig = 1,ngrid
748        do t = 1,timelen
749            ! H2O
750            q_h2o_PEM_phys(ig,t) = q_h2o_PEM_phys(ig,t)*(zplev_timeseries_old(ig,l,t) - zplev_timeseries_old(ig,l + 1,t))/ &
751                                   (zplev_timeseries_new(ig,l,t) - zplev_timeseries_new(ig,l + 1,t))
752            if (q_h2o_PEM_phys(ig,t) < 0) then
753                q_h2o_PEM_phys(ig,t) = 1.e-30
754            else if (q_h2o_PEM_phys(ig,t) > 1) then
755                q_h2o_PEM_phys(ig,t) = 1.
756            endif
757            ! CO2
758            q_co2_PEM_phys(ig,t) = q_co2_PEM_phys(ig,t)*(zplev_timeseries_old(ig,l,t) - zplev_timeseries_old(ig,l + 1,t))/ &
759                                   (zplev_timeseries_new(ig,l,t) - zplev_timeseries_new(ig,l + 1,t))                       &
760                                + ((zplev_timeseries_new(ig,l,t) - zplev_timeseries_new(ig,l + 1,t))                       &
761                                -  (zplev_timeseries_old(ig,l,t) - zplev_timeseries_old(ig,l + 1,t)))/                     &
762                                   (zplev_timeseries_new(ig,l,t) - zplev_timeseries_new(ig,l + 1,t))
763            if (q_co2_PEM_phys(ig,t) < 0) then
764                q_co2_PEM_phys(ig,t) = 1.e-30
765            else if (q_co2_PEM_phys(ig,t) > 1) then
766                q_co2_PEM_phys(ig,t) = 1.
767            endif
768            mmean = 1./(A*q_co2_PEM_phys(ig,t) + B)
769            vmr_co2_PEM_phys(ig,t) = q_co2_PEM_phys(ig,t)*mmean/m_co2
770        enddo
771    enddo
772    deallocate(zplev_timeseries_new,zplev_timeseries_old)
773
774!------------------------
775! II  Run
776!    II_b Evolution of ice
777!------------------------
778    allocate(zshift_surf(ngrid,nslope),zlag(ngrid,nslope))
779    if (layering_algo) then
780        h2o_ice_depth_old = h2o_ice_depth
781        do islope = 1,nslope
782            do ig = 1,ngrid
783                call make_layering(layerings_map(ig,islope),d_co2ice(ig,islope),d_h2oice(ig,islope),new_str(ig,islope),zshift_surf(ig,islope),new_lag(ig,islope),zlag(ig,islope),current(ig,islope)%p)
784                !call print_layering(layerings_map(ig,islope))
785                co2_ice(ig,islope) = 0.
786                h2o_ice(ig,islope) = 0.
787                h2o_ice_depth(ig,islope) = 0.
788                if (is_co2ice_str(layerings_map(ig,islope)%top)) then
789                    co2_ice(ig,islope) = layerings_map(ig,islope)%top%h_co2ice
790                else if (is_h2oice_str(layerings_map(ig,islope)%top)) then
791                    h2o_ice(ig,islope) = layerings_map(ig,islope)%top%h_h2oice
792                else
793                    call subsurface_ice_layering(layerings_map(ig,islope),h2o_ice_depth(ig,islope),h2o_ice(ig,islope),co2_ice(ig,islope))
794                endif
795            enddo
796        enddo
797    else
798        zlag = 0.
799        call evol_h2o_ice(ngrid,nslope,cell_area,delta_h2o_adsorbed,delta_h2o_icetablesublim,h2o_ice,d_h2oice,zshift_surf,stopPEM)
800        call evol_co2_ice(ngrid,nslope,co2_ice,d_co2ice,zshift_surf)
801    endif
802
803!------------------------
804! II  Run
805!    II_c Flow of glaciers
806!------------------------
807    allocate(flag_co2flow(ngrid,nslope),flag_h2oflow(ngrid,nslope))
808    if (co2ice_flow .and. nslope > 1) then
809        call flow_co2glaciers(timelen,ngrid,nslope,iflat,subslope_dist,def_slope_mean,vmr_co2_PEM_phys, &
810                              ps_timeseries,ps_avg_global_old,ps_avg_global_new,co2_ice,flag_co2flow)
811        if (layering_algo) then
812            do islope = 1,nslope
813                do ig = 1,ngrid
814                    layerings_map(ig,islope)%top%h_co2ice = co2_ice(ig,islope)
815                enddo
816            enddo
817        endif
818    endif
819    if (h2oice_flow .and. nslope > 1) then
820        call flow_h2oglaciers(ngrid,nslope,iflat,subslope_dist,def_slope_mean,tsurf_avg,h2o_ice,flag_h2oflow)
821        if (layering_algo) then
822            do islope = 1,nslope
823                do ig = 1,ngrid
824!~                     layerings_map(ig,islope)%top%h_h2oice = h2o_ice(ig,islope)
825                enddo
826            enddo
827        endif
828    endif
829
830!------------------------
831! II  Run
832!    II_d Update surface and soil temperatures
833!------------------------
834! II_d.1 Update Tsurf
835    write(*,*) "> Updating surface temperature"
836    do ig = 1,ngrid
837        do islope = 1,nslope
838            ! CO2 ice disappeared so we look for the closest point without CO2 ice
839            if (is_co2ice_ini(ig,islope) .and. co2_ice(ig,islope) < 1.e-10 .and. .not. co2ice_disappeared(ig,islope)) then
840                co2ice_disappeared(ig,islope) = .true.
841                if (latitude_deg(ig) > 0.) then ! North hemisphere
842                    outer1: do ig_loop = ig,ngrid ! Go towards equator
843                        do islope_loop = islope - 1,1,-1 ! Go over the slopes (backward numbering - should be equator-ward)
844                            if (.not. is_co2ice_ini(ig_loop,islope_loop) .and. co2_ice(ig_loop,islope_loop) < 1.e-10) then
845                                tsurf_avg(ig,islope) = tsurf_avg(ig_loop,islope_loop)
846                                exit outer1
847                            endif
848                        enddo
849                        do islope_loop = islope + 1,nslope ! Go over the slopes (forward numbering - should be pole-ward)
850                            if (.not. is_co2ice_ini(ig_loop,islope_loop) .and. co2_ice(ig_loop,islope_loop) < 1.e-10) then
851                                tsurf_avg(ig,islope) = tsurf_avg(ig_loop,islope_loop)
852                                exit outer1
853                            endif
854                        enddo
855                    enddo outer1
856                else ! South hemisphere
857                    outer2: do ig_loop = ig,1,-1 ! Go towards equator
858                        do islope_loop = islope + 1,nslope ! Go over the slopes (forward numbering - should be equator-ward)
859                            if (.not. is_co2ice_ini(ig_loop,islope_loop) .and. co2_ice(ig_loop,islope_loop) < 1.e-10) then
860                                tsurf_avg(ig,islope) = tsurf_avg(ig_loop,islope_loop)
861                                exit outer2
862                            endif
863                        enddo
864                        do islope_loop = islope - 1,1,-1 ! Go over the slopes (backward numbering - should be pole-ward)
865                            if (.not. is_co2ice_ini(ig_loop,islope_loop) .and. co2_ice(ig_loop,islope_loop) < 1.e-10) then
866                                tsurf_avg(ig,islope) = tsurf_avg(ig_loop,islope_loop)
867                                exit outer2
868                            endif
869                        enddo
870                    enddo outer2
871                endif
872            else if (co2_ice(ig,islope) > 1.e-10 .and. d_co2ice(ig,islope) > 1.e-10) then ! Put tsurf as Tcond CO2
873                call computeTcondCO2(timelen,ngrid,nslope,vmr_co2_PEM_phys,ps_timeseries,ps_avg_global_ini,ps_avg_global_new,tsurf_avg)
874            endif
875        enddo
876    enddo
877
878    if (soil_pem) then
879! II_d.2 Shifting soil temperature to surface
880        call shift_tsoil2surf(ngrid,nsoilmx_PEM,nslope,zshift_surf,zlag,tsurf_avg,tsoil_PEM)
881
882! II_d.3 Update soil temperature
883        write(*,*)"> Updating soil temperature profile"
884        allocate(tsoil_avg_old(ngrid,nsoilmx_PEM),tsoil_PEM_timeseries_old(ngrid,nsoilmx_PEM,nslope,timelen))
885        tsoil_PEM_timeseries_old = tsoil_PEM_timeseries
886        do islope = 1,nslope
887            tsoil_avg_old = tsoil_PEM(:,:,islope)
888            call compute_tsoil_pem(ngrid,nsoilmx_PEM,.true.,TI_PEM(:,:,islope),timestep,tsurf_avg(:,islope),tsoil_PEM(:,:,islope))
889            call compute_tsoil_pem(ngrid,nsoilmx_PEM,.false.,TI_PEM(:,:,islope),timestep,tsurf_avg(:,islope),tsoil_PEM(:,:,islope))
890
891            do t = 1,timelen
892                do ig = 1,ngrid
893                    do isoil = 1,nsoilmx_PEM
894                        ! Update of soil temperature timeseries which is needed to compute the water soil density timeseries
895                        tsoil_PEM_timeseries(ig,isoil,islope,t) = tsoil_PEM_timeseries(ig,isoil,islope,t)*tsoil_PEM(ig,isoil,islope)/tsoil_avg_old(ig,isoil)
896                        ! Update of watersoil density
897                        watersoil_density_PEM_timeseries(ig,isoil,islope,t) = exp(beta_clap_h2o/tsoil_PEM_timeseries(ig,isoil,islope,t) + alpha_clap_h2o)/tsoil_PEM_timeseries(ig,isoil,islope,t)*mmol(igcm_h2o_vap)/(mugaz*r)
898                        if (isnan(tsoil_PEM(ig,isoil,islope))) call abort_pem("PEM - Update Tsoil","NaN detected in tsoil_PEM",1)
899                    enddo
900                enddo
901            enddo
902        enddo
903        watersoil_density_PEM_avg = sum(watersoil_density_PEM_timeseries,4)/timelen
904        deallocate(tsoil_avg_old)
905
906! II_d.4 Update the ice table
907        allocate(icetable_thickness_old(ngrid,nslope),ice_porefilling_old(ngrid,nsoilmx_PEM,nslope),icetable_depth_old(ngrid,nslope))
908        if (icetable_equilibrium) then
909            write(*,*) "> Updating ice table (equilibrium method)"
910            icetable_thickness_old = icetable_thickness
911            call computeice_table_equilibrium(ngrid,nslope,nsoilmx_PEM,watercaptag,watersurf_density_avg,watersoil_density_PEM_avg,TI_PEM(:,1,:),icetable_depth,icetable_thickness)
912            call compute_massh2o_exchange_ssi(ngrid,nslope,nsoilmx_PEM,icetable_thickness_old,ice_porefilling_old,tsurf_avg,tsoil_PEM,delta_h2o_icetablesublim) ! Mass of H2O exchange between the ssi and the atmosphere
913        else if (icetable_dynamic) then
914            write(*,*) "> Updating ice table (dynamic method)"
915            ice_porefilling_old = ice_porefilling
916            icetable_depth_old = icetable_depth
917            allocate(porefill(nsoilmx_PEM))
918            do ig = 1,ngrid
919                do islope = 1,nslope
920                    call dyn_ss_ice_m(icetable_depth(ig,islope),tsurf_avg(ig,islope),tsoil_PEM(ig,:,islope),nsoilmx_PEM,TI_PEM(ig,1,nslope),ps_avg(ig),(/sum(q_h2o_PEM_phys(ig,:))/size(q_h2o_PEM_phys,2)/),ice_porefilling(ig,:,islope),porefill,ssi_depth)
921                    icetable_depth(ig,islope) = ssi_depth
922                    ice_porefilling(ig,:,islope) = porefill
923                enddo
924            enddo
925            deallocate(porefill)
926            call compute_massh2o_exchange_ssi(ngrid,nslope,nsoilmx_PEM,icetable_thickness_old,ice_porefilling_old,tsurf_avg,tsoil_PEM,delta_h2o_icetablesublim) ! Mass of H2O exchange between the ssi and the atmosphere
927        endif
928        deallocate(icetable_thickness_old,ice_porefilling_old)
929
930! II_d.5 Update the soil thermal properties
931        call update_soil_thermalproperties(ngrid,nslope,nsoilmx_PEM,d_h2oice,h2o_ice,ps_avg_global_new,icetable_depth,icetable_thickness,ice_porefilling,icetable_equilibrium,icetable_dynamic,TI_PEM)
932
933! II_d.6 Update the mass of the regolith adsorbed
934        totmass_adsco2 = 0.
935        totmass_adsh2o = 0.
936        if (adsorption_pem) then
937            call regolith_adsorption(ngrid,nslope,nsoilmx_PEM,timelen,d_h2oice,d_co2ice,h2o_ice,co2_ice, &
938                                     tsoil_PEM,TI_PEM,ps_timeseries,q_co2_PEM_phys,q_h2o_PEM_phys,       &
939                                     h2o_adsorbed_phys,delta_h2o_adsorbed,co2_adsorbed_phys,delta_co2_adsorbed)
940            do ig = 1,ngrid
941                do islope = 1,nslope
942                    do l = 1,nsoilmx_PEM
943                        if (l == 1) then
944                            totmass_adsco2 = totmass_adsco2 + co2_adsorbed_phys(ig,l,islope)*(layer_PEM(l))* &
945                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
946                            totmass_adsh2o = totmass_adsh2o + h2o_adsorbed_phys(ig,l,islope)*(layer_PEM(l))* &
947                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
948                        else
949                            totmass_adsco2 = totmass_adsco2 + co2_adsorbed_phys(ig,l,islope)*(layer_PEM(l) - layer_PEM(l - 1))* &
950                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
951                            totmass_adsh2o = totmass_adsh2o + h2o_adsorbed_phys(ig,l,islope)*(layer_PEM(l) - layer_PEM(l - 1))* &
952                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
953                        endif
954                    enddo
955                enddo
956            enddo
957            write(*,*) "Total mass of CO2 in the regolith =", totmass_adsco2
958            write(*,*) "Total mass of H2O in the regolith =", totmass_adsh2o
959        endif
960    endif !soil_pem
961    deallocate(zshift_surf,zlag)
962
963!------------------------
964! II  Run
965!    II_e Outputs
966!------------------------
967    call writediagpem(ngrid,'ps_avg','Global average pressure','Pa',0,(/ps_avg_global_new/))
968    do islope = 1,nslope
969        write(str2(1:2),'(i2.2)') islope
970        call writediagpem(ngrid,'h2o_ice_slope'//str2,'H2O ice','kg.m-2',2,h2o_ice(:,islope))
971        call writediagpem(ngrid,'co2_ice_slope'//str2,'CO2 ice','kg.m-2',2,co2_ice(:,islope))
972        call writediagpem(ngrid,'d_h2oice_slope'//str2,'H2O ice tend','kg.m-2.year-1',2,d_h2oice(:,islope))
973        call writediagpem(ngrid,'d_co2ice_slope'//str2,'CO2 ice tend','kg.m-2.year-1',2,d_co2ice(:,islope))
974        call writediagpem(ngrid,'Flow_co2ice_slope'//str2,'CO2 ice flow','Boolean',2,real(flag_co2flow(:,islope)))
975        call writediagpem(ngrid,'Flow_h2oice_slope'//str2,'H2O ice flow','Boolean',2,real(flag_h2oflow(:,islope)))
976        call writediagpem(ngrid,'tsurf_slope'//str2,'tsurf','K',2,tsurf_avg(:,islope))
977        if (icetable_equilibrium) then
978            call writediagpem(ngrid,'ssi_depth_slope'//str2,'ice table depth','m',2,icetable_depth(:,islope))
979            call writediagpem(ngrid,'ssi_thick_slope'//str2,'ice table thickness','m',2,icetable_thickness(:,islope))
980        else if (icetable_dynamic) then
981            call writediagpem(ngrid,'ssi_depth_slope'//str2,'ice table depth','m',2,icetable_depth(:,islope))
982        endif
983
984        if (soil_pem) then
985            call writediagsoilpem(ngrid,'tsoil_PEM_slope'//str2,'tsoil','K',3,tsoil_PEM(:,:,islope))
986            call writediagsoilpem(ngrid,'inertiesoil_PEM_slope'//str2,'TI','K',3,TI_PEM(:,:,islope))
987            if (icetable_dynamic) call writediagsoilpem(ngrid,'ice_porefilling'//str2,'ice pore filling','-',3,ice_porefilling(:,:,islope))
988            if (adsorption_pem) then
989                call writediagsoilpem(ngrid,'co2_ads_slope'//str2,'co2_ads','K',3,co2_adsorbed_phys(:,:,islope))
990                call writediagsoilpem(ngrid,'h2o_ads_slope'//str2,'h2o_ads','K',3,h2o_adsorbed_phys(:,:,islope))
991            endif
992        endif
993    enddo
994    deallocate(flag_co2flow,flag_h2oflow)
995
996    ! Checking mass balance for CO2
997    totmass_co2ice = 0.
998    totmass_atmco2 = 0.
999    do ig = 1,ngrid
1000        totmass_atmco2 = totmass_atmco2 + cell_area(ig)*ps_avg(ig)/g
1001        do islope = 1,nslope
1002            totmass_co2ice = totmass_co2ice + co2_ice(ig,islope)*cell_area(ig)*subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)
1003        enddo
1004    enddo
1005    write(*,'(a,f8.3,a)') " > Relative total CO2 mass balance = ", 100.*(totmass_atmco2 + totmass_co2ice + totmass_adsco2 - totmass_atmco2_ini - totmass_co2ice_ini - totmass_adsco2_ini)/(totmass_atmco2_ini + totmass_co2ice_ini + totmass_adsco2_ini), ' %'
1006    if ((totmass_atmco2 + totmass_co2ice + totmass_adsco2 - totmass_atmco2_ini - totmass_co2ice_ini - totmass_adsco2_ini)/(totmass_atmco2_ini + totmass_co2ice_ini + totmass_adsco2_ini) > 0.01) then
1007        write(*,*) '  /!\ Warning: mass balance is not conseved!'
1008        write(*,'(a,f8.3,a)') '       Atmospheric CO2 mass balance = ', 100.*(totmass_atmco2 - totmass_atmco2_ini)/totmass_atmco2_ini, ' %'
1009        write(*,'(a,f8.3,a)') '       CO2 ice mass balance         = ', 100.*(totmass_co2ice - totmass_co2ice_ini)/totmass_co2ice_ini, ' %'
1010        write(*,'(a,f8.3,a)') '       Adsorbed CO2 mass balance    = ', 100.*(totmass_adsco2 - totmass_adsco2_ini)/totmass_adsco2_ini, ' %'
1011    endif
1012
1013!------------------------
1014! II  Run
1015!    II_f Update the tendencies
1016!------------------------
1017    call recomp_tend_co2(ngrid,nslope,timelen,d_co2ice,d_co2ice_ini,co2_ice,emis,vmr_co2_PCM,vmr_co2_PEM_phys,ps_timeseries,ps_avg_global_old,ps_avg_global_new)
1018    write(*,*) "> Updating the H2O sub-surface ice tendency due to lag layer"
1019    if (layering_algo) then
1020        do ig = 1,ngrid
1021            do islope = 1,nslope
1022                if (is_h2oice_sublim_ini(ig,islope) .and. h2o_ice_depth(ig,islope) > 0.) call recomp_tend_h2o(h2o_ice_depth_old(ig,islope),h2o_ice_depth(ig,islope),tsurf_avg(ig,islope),tsoil_PEM_timeseries_old(ig,:,islope,:),tsoil_PEM_timeseries(ig,:,islope,:),d_h2oice(ig,islope))
1023            enddo
1024        enddo
1025!~     else
1026!~         do ig = 1,ngrid
1027!~             do islope = 1,nslope
1028!~                 call recomp_tend_h2o(icetable_depth_old(ig,islope),icetable_depth(ig,islope),tsurf_avg(ig,islope),tsoil_PEM_timeseries_old(ig,:,islope,:),tsoil_PEM_timeseries(ig,:,islope,:),d_h2oice(ig,islope))
1029!~             enddo
1030!~         enddo
1031    endif
1032    if (soil_pem) deallocate(icetable_depth_old,tsoil_PEM_timeseries_old)
1033    deallocate(vmr_co2_PEM_phys)
1034
1035!------------------------
1036! II  Run
1037!    II_g Checking the stopping criterion
1038!------------------------
1039    write(*,*) "> Checking the stopping criteria"
1040    call stopping_crit_h2o_ice(cell_area,h2oice_ini_surf,is_h2oice_sublim_ini,h2o_ice,stopPEM,ngrid)
1041    call stopping_crit_co2(cell_area,co2ice_sublim_surf_ini,is_co2ice_sublim_ini,co2_ice,stopPEM,ngrid,ps_avg_global_ini,ps_avg_global_new,nslope)
1042    i_myear_leg = i_myear_leg + dt
1043    i_myear = i_myear + dt
1044    if (stopPEM <= 0 .and. i_myear_leg >= n_myear_leg) stopPEM = 5
1045    if (stopPEM <= 0 .and. i_myear >= n_myear) stopPEM = 6
1046    call system_clock(c2)
1047    if (stopPEM <= 0 .and. timewall .and. real((c2 - c1)/cr) >= timelimit - antetime) stopPEM = 7
1048    if (stopPEM > 0) then
1049        select case (stopPEM)
1050            case(1)
1051                write(*,'(a,i0,a)') " **** STOPPING because surface of h2o ice sublimating is too low: ", stopPEM, ". See message above."
1052            case(2)
1053                write(*,'(a,i0,a)') " **** STOPPING because tendencies on h2o ice = 0: ", stopPEM, ". See message above."
1054            case(3)
1055                write(*,'(a,i0,a)') " **** STOPPING because surface of co2 ice sublimating is too low: ", stopPEM, ". See message above."
1056            case(4)
1057                write(*,'(a,i0,a)') " **** STOPPING because surface global pressure changed too much: ", stopPEM, ". See message above."
1058            case(5)
1059                write(*,'(a,i0)') " **** STOPPING because maximum number of iterations is reached (possibly due to orbital parameters): ", stopPEM
1060            case(6)
1061                write(*,'(a,i0)') " **** STOPPING because maximum number of Martian years to be simulated is reached: ", stopPEM
1062            case(7)
1063                write(*,'(a,i0)') " **** STOPPING because the time limit for the PEM job will be reached soon: ", stopPEM
1064            case default
1065                write(*,'(a,i0)') " **** STOPPING with unknown stopping criterion code: ", stopPEM
1066        end select
1067        exit
1068    else
1069        write(*,'(a,f10.2,a)') ' **** The chained simulation has run for ',i_myear,' Martian years.'
1070        write(*,*) '**** The PEM can continue!'
1071        write(*,*) '****'
1072    endif
1073enddo ! big time iteration loop of the pem
1074deallocate(vmr_co2_PCM,q_co2_PEM_phys,q_h2o_PEM_phys,delta_co2_adsorbed)
1075deallocate(watersoil_density_PEM_avg,watersurf_density_avg)
1076deallocate(ps_timeseries,tsoil_PEM_timeseries,watersoil_density_PEM_timeseries)
1077deallocate(co2ice_disappeared,delta_h2o_adsorbed,delta_h2o_icetablesublim)
1078deallocate(d_co2ice,d_co2ice_ini,d_h2oice)
1079deallocate(is_co2ice_ini,is_co2ice_sublim_ini,is_h2oice_sublim_ini)
1080if (layering_algo) deallocate(h2o_ice_depth_old,new_str,new_lag,current)
1081!------------------------------ END RUN --------------------------------
1082
1083!------------------------------- OUTPUT --------------------------------
1084!------------------------
1085! III Output
1086!    III_a Update surface values for the PCM start files
1087!------------------------
1088write(*,*)
1089write(*,*) '********* PEM finalization *********'
1090! III_a.1 Ice update for start file
1091write(*,*) '> Reconstructing perennial ice and frost for the PCM'
1092watercap = 0.
1093perennial_co2ice = co2_ice
1094do ig = 1,ngrid
1095    ! H2O ice metamorphism
1096    !if (metam_h2oice .and. sum(qsurf(ig,igcm_h2o_ice,:)*subslope_dist(ig,:)/cos(pi*def_slope_mean(:)/180.)) > metam_h2oice_threshold) then
1097    !    h2o_ice(ig,:) = h2o_ice(ig,:) + qsurf(ig,igcm_h2o_ice,:) - metam_h2oice_threshold
1098    !    qsurf(ig,igcm_h2o_ice,:) = metam_h2oice_threshold
1099    !endif
1100
1101    ! Is H2O ice still considered as an infinite reservoir for the PCM?
1102    if (sum(h2o_ice(ig,:)*subslope_dist(ig,:)/cos(pi*def_slope_mean(:)/180.)) > inf_h2oice_threshold) then
1103        ! There is enough ice to be considered as an infinite reservoir
1104        watercaptag(ig) = .true.
1105    else
1106        ! Too little ice to be considered as an infinite reservoir so ice is transferred to the frost
1107        watercaptag(ig) = .false.
1108        qsurf(ig,igcm_h2o_ice,:) = qsurf(ig,igcm_h2o_ice,:) + h2o_ice(ig,:)
1109        h2o_ice(ig,:) = 0.
1110    endif
1111
1112    ! CO2 ice metamorphism
1113    !if (metam_co2ice .and. sum(qsurf(ig,igcm_co2,:)*subslope_dist(ig,:)/cos(pi*def_slope_mean(:)/180.)) > metam_co2ice_threshold) then
1114    !    perennial_co2ice(ig,:) = perennial_co2ice(ig,:) + qsurf(ig,igcm_co2,:) - metam_co2ice_threshold
1115    !    qsurf(ig,igcm_co2,:) = metam_co2ice_threshold
1116    !endif
1117enddo
1118
1119! III.a.3. Tsurf update for start file
1120write(*,*) '> Reconstructing the surface temperature for the PCM'
1121tsurf = tsurf_avg + tsurf_dev
1122deallocate(tsurf_dev)
1123
1124! III_a.4 Tsoil update for start file
1125if (soil_pem) then
1126    write(*,*) '> Reconstructing the soil temperature profile for the PCM'
1127    inertiesoil = TI_PEM(:,:nsoilmx,:)
1128    ! Tsurf has evolved and so the soil temperature profile needs to be adapted to match this new value
1129    do isoil = 1,nsoilmx
1130        tsoil_dev(:,isoil,:) = tsoil_dev(:,isoil,:)*(tsurf_avg(:,:) - tsoil_PEM(:,1,:))/tsoil_dev(:,1,:)
1131    enddo
1132    tsoil = tsoil_PEM(:,1:nsoilmx,:) + tsoil_dev
1133#ifndef CPP_STD
1134    flux_geo = fluxgeo
1135#endif
1136endif
1137deallocate(tsurf_avg,tsoil_dev)
1138
1139! III_a.5 Pressure update for start file
1140write(*,*) '> Reconstructing the pressure for the PCM'
1141allocate(ps_start(ngrid))
1142! The pressure deviation is rescaled as well to avoid disproportionate oscillations in case of huge average pressure drop
1143ps_start = ps_avg + ps_dev*ps_avg_global_new/ps_avg_global_ini
1144deallocate(ps_avg,ps_dev)
1145
1146! III_a.6 Tracers update for start file
1147write(*,*) '> Reconstructing the tracer VMR for the PCM'
1148allocate(zplev_start0(ngrid,nlayer + 1),zplev_new(ngrid,nlayer + 1))
1149do l = 1,nlayer + 1
1150    zplev_start0(:,l) = ap(l) + bp(l)*ps_start0
1151    zplev_new(:,l) = ap(l) + bp(l)*ps_start
1152enddo
1153
1154do nnq = 1,nqtot
1155    if (noms(nnq) /= "co2") then
1156        do l = 1,llm - 1
1157            do ig = 1,ngrid
1158                q(ig,l,nnq) = q(ig,l,nnq)*(zplev_start0(ig,l) - zplev_start0(ig,l + 1))/(zplev_new(ig,l) - zplev_new(ig,l + 1))
1159            enddo
1160            q(:,llm,nnq) = q(:,llm - 1,nnq)
1161        enddo
1162    else
1163        do l = 1,llm - 1
1164            do ig = 1,ngrid
1165                q(ig,l,nnq) = q(ig,l,nnq)*(zplev_start0(ig,l) - zplev_start0(ig,l + 1))/(zplev_new(ig,l) - zplev_new(ig,l + 1)) &
1166                              + ((zplev_new(ig,l) - zplev_new(ig,l + 1)) - (zplev_start0(ig,l) - zplev_start0(ig,l + 1)))/(zplev_new(ig,l) - zplev_new(ig,l + 1))
1167            enddo
1168            q(:,llm,nnq) = q(:,llm - 1,nnq)
1169        enddo
1170    endif
1171enddo
1172deallocate(zplev_start0)
1173
1174! Conserving the tracers mass for start file
1175do nnq = 1,nqtot
1176    do ig = 1,ngrid
1177        do l = 1,llm - 1
1178            if (q(ig,l,nnq) > 1 .and. (noms(nnq) /= "dust_number") .and. (noms(nnq) /= "ccn_number") .and. (noms(nnq) /= "stormdust_number") .and. (noms(nnq) /= "topdust_number")) then
1179                extra_mass = (q(ig,l,nnq) - 1)*(zplev_new(ig,l) - zplev_new(ig,l + 1))
1180                q(ig,l,nnq) = 1.
1181                q(ig,l + 1,nnq) = q(ig,l + 1,nnq) + extra_mass*(zplev_new(ig,l + 1) - zplev_new(ig,l + 2))
1182                write(*,*) 'extra ',noms(nnq),extra_mass, noms(nnq) /= "dust_number",noms(nnq) /= "ccn_number"
1183            endif
1184            if (q(ig,l,nnq) < 0) q(ig,l,nnq) = 1.e-30
1185        enddo
1186    enddo
1187enddo
1188deallocate(zplev_new)
1189
1190! III_a.7 Albedo update for start file
1191write(*,*) '> Reconstructing the albedo for the PCM'
1192do ig = 1,ngrid
1193    if (latitude(ig) < 0.) then
1194        icap = 2 ! Southern hemisphere
1195    else
1196        icap = 1 ! Northern hemisphere
1197    endif
1198    do islope = 1,nslope
1199        ! Bare ground
1200        albedo(ig,:,islope) = albedodat(ig)
1201        emis(ig,islope) = emissiv
1202
1203        ! CO2 ice/frost is treated after H20 ice/frost because it is considered dominant
1204        ! H2O ice
1205        if (h2o_ice(ig,islope) > 0.) then
1206            albedo(ig,:,islope) = albedo_h2o_cap
1207            emis(ig,islope) = 1.
1208        endif
1209        ! CO2 ice
1210        if (co2_ice(ig,islope) > 0.) then
1211            albedo(ig,:,islope) = albedo_perennialco2(icap)
1212            emis(ig,islope) = emisice(icap)
1213        endif
1214        ! H2O frost
1215        if (qsurf(ig,igcm_h2o_ice,islope) > 0.) then
1216            albedo(ig,:,islope) = albedo_h2o_frost
1217            emis(ig,islope) = 1.
1218        endif
1219        ! CO2 frost
1220        if (qsurf(ig,igcm_co2,islope) > 0.) then
1221            albedo(ig,:,islope) = albedice(icap)
1222            emis(ig,islope) = emisice(icap)
1223        endif
1224    enddo
1225enddo
1226
1227! III_a.8 Orbital parameters update for start file
1228write(*,*) '> Setting the new orbital parameters'
1229if (evol_orbit_pem) call recomp_orb_param(i_myear,i_myear_leg)
1230
1231!------------------------
1232! III Output
1233!    III_b Write "restart.nc" and "restartfi.nc"
1234!------------------------
1235! III_b.1 Write "restart.nc"
1236ptimestep = iphysiq*daysec/real(day_step)/nsplit_phys ! dtphys/nsplit_phys
1237pday = day_ini
1238ztime_fin = time_phys
1239#ifndef CPP_1D
1240    write(*,*) '> Writing "restart.nc"'
1241    ! Correction on teta due to surface pressure changes
1242    allocate(pdyn(ip1jmp1))
1243    call gr_fi_dyn(1,ngrid,iip1,jjp1,ps_start0/ps_start,pdyn)
1244    do i = 1,ip1jmp1
1245        teta(i,:) = teta(i,:)*pdyn(i)**rcp
1246    enddo
1247    ! Correction on atmospheric pressure
1248    allocate(p(ip1jmp1,nlayer + 1))
1249    call gr_fi_dyn(1,ngrid,iip1,jjp1,ps_start,pdyn)
1250    call pression(ip1jmp1,ap,bp,pdyn,p)
1251    ! Correction on the mass of atmosphere
1252    call massdair(p,masse)
1253    call dynredem0("restart.nc",day_ini,phis)
1254    call dynredem1("restart.nc",time_0,vcov,ucov,teta,q,masse,pdyn)
1255    deallocate(ap,bp,p,pdyn)
1256#else
1257    write(*,*) '> Writing "restart1D.txt"'
1258    call writerestart1D('restart1D.txt',ps_start(1),tsurf(1,:),nlayer,size(tsurf,2),teta,ucov,vcov,nq,noms,qsurf(1,:,:),q)
1259#endif
1260deallocate(ps_start0,ps_start)
1261
1262! III_b.2 Write the "restartfi.nc"
1263write(*,*) '> Writing "restartfi.nc"'
1264#ifndef CPP_STD
1265    call physdem0("restartfi.nc",longitude,latitude,nsoilmx,ngrid, &
1266                  nlayer,nq,ptimestep,pday,0.,cell_area,albedodat, &
1267                  inertiedat,def_slope,subslope_dist)
1268    call physdem1("restartfi.nc",nsoilmx,ngrid,nlayer,nq,nqsoil,      &
1269                  ptimestep,ztime_fin,tsurf,tsoil,inertiesoil,        &
1270                  albedo,emis,q2,qsurf,qsoil,tauscaling,totcloudfrac, &
1271                  wstar,watercap,perennial_co2ice)
1272#else
1273    if (allocated(noms)) deallocate(noms)
1274    deallocate(qsurf,tsurf,tsoil,emis,watercap,watercaptag,albedo,inertiesoil)
1275    call physdem0("restartfi.nc",longitude,latitude,nsoilmx,ngrid, &
1276                  nlayer,nq,ptimestep,pday,time_phys,cell_area,    &
1277                  albedo_bareground,inertiedat,zmea,zstd,zsig,zgam,zthe)
1278    call physdem1("restartfi.nc",nsoilmx,ngrid,nlayer,nq,nqsoil,       &
1279                  ptimestep,ztime_fin,tsurf,tsoil,emis,q2,qsurf,qsoil, &
1280                  cloudfrac,totcloudfrac,hice,rnat,pctsrf_sic,tslab,   &
1281                  tsea_ice,sea_ice)
1282#endif
1283
1284!------------------------
1285! III Output
1286!    III_c Write the "restartpem.nc"
1287!------------------------
1288write(*,*) '> Writing "restartpem.nc"'
1289if (layering_algo) nb_str_max = get_nb_str_max(layerings_map,ngrid,nslope) ! Get the maximum number of "stratum" in the layerings_mapication (layerings)
1290call pemdem0("restartpem.nc",longitude,latitude,cell_area,ngrid,nslope,def_slope,subslope_dist)
1291call pemdem1("restartpem.nc",i_myear,nsoilmx_PEM,ngrid,nslope,tsoil_PEM,TI_PEM,icetable_depth,icetable_thickness,ice_porefilling, &
1292             co2_adsorbed_phys,h2o_adsorbed_phys,h2o_ice,layerings_map)
1293
1294call info_PEM(i_myear_leg,stopPEM,i_myear,n_myear)
1295
1296write(*,*)
1297write(*,*) '****** PEM final information *******'
1298write(*,'(a,f16.4,a)') " + The PEM leg has run for ", i_myear_leg, " Martian years."
1299write(*,'(a,f16.4,a,f16.4,a)') " + The chained simulation has run for ", i_myear, " Martian years =", i_myear*convert_years, " Earth years."
1300write(*,'(a,f16.4,a)') " + The reached date is now ", (year_bp_ini + i_myear)*convert_years, " Earth years."
1301write(*,*) "+ PEM: so far, so good!"
1302write(*,*) '************************************'
1303
1304if (layering_algo) then
1305    do islope = 1,nslope
1306        do i = 1,ngrid
1307            call del_layering(layerings_map(i,islope))
1308        enddo
1309    enddo
1310endif
1311deallocate(q,longitude,latitude,cell_area,tsoil_PEM)
1312deallocate(co2_ice,h2o_ice,layerings_map)
1313!----------------------------- END OUTPUT ------------------------------
1314
1315END PROGRAM pem
Note: See TracBrowser for help on using the repository browser.