source: trunk/LMDZ.COMMON/libf/evolution/pem.F90 @ 3836

Last change on this file since 3836 was 3836, checked in by jbclement, 8 days ago

COMMON:
Rework related to the command-line parsing:

  • Replace ad-hoc argument parsing with a unified 'parse_args' subroutine, allowing easier extension to other programs and options across models;;
  • Use of '--version' (with ab optional output file) to print compilation/version details;
  • Addition of 'job_timelimit_mod' module to handle SLURM/PBS job time-limit via '--jobid' (currently only used in the PEM), allowing easier extension to other programs;
  • Replace manual SSO handling with 'parse_args' for the Mars start2archive;
  • Clean-up related legacy code in the programs supporting the version option.

JBC

File size: 68.6 KB
Line 
1!------------------------
2! I   Initialization
3!    I_a Read the "run.def"
4!    I_b Read the "start.nc" and "startfi.nc"
5!    I_c Subslope parametrisation
6!    I_d Read the PCM data and convert them to the physical grid
7!    I_e Initialization of the PEM variable and soil
8!    I_f Compute tendencies
9!    I_g Compute global surface pressure
10!    I_h Read the "startpem.nc"
11!    I_i Compute orbit criterion
12
13! II  Run
14!    II_a Update pressure, ice and tracers
15!    II_b Evolution of ice
16!    II_c Flow of glaciers
17!    II_d Update surface and soil temperatures
18!    II_e Outputs
19!    II_f Update the tendencies
20!    II_g Checking the stopping criterion
21
22! III Output
23!    III_a Update surface values for the PCM start files
24!    III_b Write the "restart.nc" and "restartfi.nc"
25!    III_c Write the "restartpem.nc"
26!------------------------
27
28PROGRAM pem
29
30use phyetat0_mod,               only: phyetat0
31use phyredem,                   only: physdem0, physdem1
32use netcdf,                     only: nf90_open, NF90_NOWRITE, nf90_get_var, nf90_inq_varid, nf90_close
33use turb_mod,                   only: q2, wstar
34use comslope_mod,               only: nslope, def_slope, def_slope_mean, subslope_dist, iflat, ini_comslope_h
35use logic_mod,                  only: iflag_phys
36use mod_const_mpi,              only: COMM_LMDZ
37use infotrac
38use geometry_mod,               only: latitude_deg
39use conf_pem_mod,               only: conf_pem
40use pemredem,                   only: pemdem0, pemdem1
41use glaciers_mod,               only: flow_co2glaciers, flow_h2oglaciers, co2ice_flow, h2oice_flow, inf_h2oice_threshold, &
42                                      metam_h2oice_threshold, metam_co2ice_threshold, metam_h2oice, metam_co2ice, computeTcondCO2
43use stopping_crit_mod,          only: stopping_crit_h2o_ice, stopping_crit_co2
44use constants_marspem_mod,      only: alpha_clap_co2, beta_clap_co2, alpha_clap_h2o, beta_clap_h2o, m_co2, m_noco2
45use evol_ice_mod,               only: evol_co2_ice, evol_h2o_ice
46use comsoil_h_PEM,              only: soil_pem, ini_comsoil_h_PEM, end_comsoil_h_PEM, nsoilmx_PEM, &
47                                      TI_PEM,               & ! Soil thermal inertia
48                                      tsoil_PEM, layer_PEM, & ! Soil temp, number of subsurface layers, soil mid layer depths
49                                      fluxgeo                 ! Geothermal flux for the PEM and PCM
50use adsorption_mod,             only: regolith_adsorption, adsorption_pem,        & ! Bool to check if adsorption, main subroutine
51                                      ini_adsorption_h_PEM, end_adsorption_h_PEM, & ! Allocate arrays
52                                      co2_adsorbed_phys, h2o_adsorbed_phys          ! Mass of co2 and h2O adsorbed
53use time_evol_mod,              only: dt, evol_orbit_pem, Max_iter_pem, convert_years, year_bp_ini
54use orbit_param_criterion_mod,  only: orbit_param_criterion
55use recomp_orb_param_mod,       only: recomp_orb_param
56use ice_table_mod,              only: icetable_depth, icetable_thickness, end_ice_table, ice_porefilling, &
57                                      ini_ice_table, icetable_equilibrium, icetable_dynamic, computeice_table_equilibrium, compute_massh2o_exchange_ssi
58use soil_thermalproperties_mod, only: update_soil_thermalproperties
59use time_phylmdz_mod,           only: daysec, dtphys
60use abort_pem_mod,              only: abort_pem
61use soil_settings_PEM_mod,      only: soil_settings_PEM
62use compute_tend_mod,           only: compute_tend
63use info_PEM_mod,               only: info_PEM
64use get_timelen_PCM_mod,        only: get_timelen_PCM
65use pemetat0_mod,               only: pemetat0
66use read_data_PCM_mod,          only: read_data_PCM
67use recomp_tend_mod,            only: recomp_tend_co2, recomp_tend_h2o
68use compute_soiltemp_mod,       only: compute_tsoil_pem, shift_tsoil2surf
69use writediagpem_mod,           only: writediagpem, writediagsoilpem
70use co2condens_mod,             only: CO2cond_ps
71use layering_mod,               only: layering, del_layering, make_layering, layering_algo, subsurface_ice_layering,            &
72                                      ptrarray, stratum, get_nb_str_max, nb_str_max, is_dust_lag, is_co2ice_str, is_h2oice_str, &
73                                      print_layering
74use dyn_ss_ice_m_mod,           only: dyn_ss_ice_m
75use parse_args_mod,             only: parse_args
76use job_timelimit_mod,          only: timelimit, antetime, timewall
77use paleoclimate_mod,           only: h2o_ice_depth, zdqsdif_ssi_tot
78
79#ifndef CPP_STD
80    use comsoil_h,          only: tsoil, nsoilmx, ini_comsoil_h, inertiedat, mlayer, inertiesoil, flux_geo, nqsoil, qsoil
81    use surfdat_h,          only: tsurf, qsurf, emis, emissiv, emisice, ini_surfdat_h,   &
82                                  albedodat, albedice, albedo_h2o_frost, albedo_h2o_cap, &
83                                  zmea, zstd, zsig, zgam, zthe, frost_albedo_threshold,  &
84                                  watercap, watercaptag, perennial_co2ice, albedo_perennialco2
85    use dimradmars_mod,     only: totcloudfrac, albedo
86    use dust_param_mod,     only: tauscaling
87    use tracer_mod,         only: noms, igcm_h2o_ice, igcm_co2, mmol, igcm_h2o_vap ! Tracer names and molar masses
88    use mod_phys_lmdz_para, only: is_parallel, is_sequential, is_mpi_root, is_omp_root, is_master
89    use planete_h,          only: aphelie, periheli, year_day, peri_day, obliquit, iniorbit
90    use surfini_mod,        only: surfini
91    use comcstfi_h,         only: mugaz
92#else
93    use tracer_h,           only: noms, igcm_h2o_ice, igcm_co2 ! Tracer names
94    use phys_state_var_mod, only: cloudfrac, totcloudfrac, albedo_snow_SPECTV,HICE,RNAT,   &
95                                  PCTSRF_SIC, TSLAB, TSEA_ICE, SEA_ICE, ALBEDO_BAREGROUND, &
96                                  ALBEDO_CO2_ICE_SPECTV, phys_state_var_init
97    use aerosol_mod,        only: iniaerosol
98    use planete_mod,        only: apoastr, periastr, year_day, peri_day, obliquit
99    use comcstfi_mod,       only: pi, rad, g, r, cpp, rcp, mugaz
100#endif
101
102#ifndef CPP_1D
103    use comconst_mod,             only: pi, rad, g, r, cpp, rcp => kappa
104    use iniphysiq_mod,            only: iniphysiq
105    use control_mod,              only: iphysiq, day_step, nsplit_phys
106#else
107    use comcstfi_h,               only: pi, rad, g, r, cpp, rcp
108    use time_phylmdz_mod,         only: iphysiq, steps_per_sol
109    use regular_lonlat_mod,       only: init_regular_lonlat
110    use physics_distribution_mod, only: init_physics_distribution
111    use mod_grid_phy_lmdz,        only: regular_lonlat
112    use init_testphys1d_mod,      only: init_testphys1d
113    use comvert_mod,              only: ap, bp
114    use writerestart1D_mod,       only: writerestart1D
115#endif
116
117implicit none
118
119include "dimensions.h"
120include "paramet.h"
121include "comgeom.h"
122include "iniprint.h"
123
124! Same variable names as in the PCM
125integer, parameter :: ngridmx = 2 + (jjm - 1)*iim - 1/jjm
126integer, parameter :: nlayer = llm ! Number of vertical layer
127integer            :: ngrid        ! Number of physical grid points
128integer            :: nq           ! Number of tracer
129integer            :: day_ini      ! First day of the simulation
130real               :: pday         ! Physical day
131real               :: time_phys    ! Same as in PCM
132real               :: ptimestep    ! Same as in PCM
133real               :: ztime_fin    ! Same as in PCM
134
135! Variables to read "start.nc"
136character(*), parameter :: start_name = "start.nc" ! Name of the file used to initialize the PEM
137
138! Dynamic variables
139real, dimension(ip1jm,llm)          :: vcov          ! vents covariants
140real, dimension(ip1jmp1,llm)        :: ucov          ! vents covariants
141real, dimension(ip1jmp1,llm)        :: teta          ! Potential temperature
142real, dimension(:,:,:), allocatable :: q             ! champs advectes
143real, dimension(:),     allocatable :: pdyn          ! pressure for the dynamic grid
144real, dimension(:),     allocatable :: ps_start      ! surface pressure in the start file
145real, dimension(:),     allocatable :: ps_start0     ! surface pressure in the start file at the beginning
146real, dimension(:),     allocatable :: ps_avg        ! (ngrid) Average surface pressure
147real, dimension(:),     allocatable :: ps_dev        ! (ngrid x timelen) Surface pressure deviation
148real, dimension(:,:),   allocatable :: ps_timeseries ! (ngrid x timelen) Instantaneous surface pressure
149real, dimension(ip1jmp1,llm)        :: masse         ! Air mass
150real, dimension(ip1jmp1)            :: phis          ! geopotentiel au sol
151real                                :: time_0
152
153! Variables to read starfi.nc
154character(*), parameter :: startfi_name = "startfi.nc" ! Name of the file used to initialize the PEM
155character(2)            :: str2
156integer                 :: ncid, status                           ! Variable for handling opening of files
157integer                 :: lonvarid, latvarid, areavarid, sdvarid ! Variable ID for Netcdf files
158integer                 :: apvarid, bpvarid                       ! Variable ID for Netcdf files
159
160! Variables to read starfi.nc and write restartfi.nc
161real, dimension(:), allocatable :: longitude     ! Longitude read in startfi_name and written in restartfi
162real, dimension(:), allocatable :: latitude      ! Latitude read in startfi_name and written in restartfi
163real, dimension(:), allocatable :: cell_area     ! Cell_area read in startfi_name and written in restartfi
164real                            :: total_surface ! Total surface of the planet
165
166! Variables for h2o ice evolution
167real, dimension(:,:),    allocatable  :: h2o_ice              ! h2o ice in the PEM
168real, dimension(:,:),    allocatable  :: d_h2oice             ! physical point x slope field: Tendency of evolution of perennial h2o ice
169real, dimension(:,:,:),  allocatable  :: min_h2o_ice          ! Minima of h2o ice at each point for the PCM years [kg/m^2]
170real                                  :: h2oice_ini_surf      ! Initial surface of sublimating h2o ice
171logical, dimension(:,:), allocatable  :: is_h2oice_sublim_ini ! Logical array to know if h2o ice is sublimating
172real                                  :: ps_avg_global_ini    ! constant: Global average pressure at initialization [Pa]
173real                                  :: ps_avg_global_old    ! constant: Global average pressure of previous time step
174real                                  :: ps_avg_global_new    ! constant: Global average pressure of current time step
175real,   dimension(:,:),   allocatable :: zplev_new            ! Grid points x Atmospheric field: mass of the atmospheric layers in the pem at current time step [kg/m^2]
176real,   dimension(:,:),   allocatable :: zplev_start0         ! Grid points x Atmospheric field: mass of the atmospheric layers in the start [kg/m^2]
177real,   dimension(:,:,:), allocatable :: zplev_timeseries_new ! Grid points x Atmospheric x Time: same as zplev_new, but in times series [kg/m ^2]
178real,   dimension(:,:,:), allocatable :: zplev_timeseries_old ! same but with the time series, for previous time step
179integer                               :: stopPEM              ! which criterion is reached? 0 = no stopping; 1 = h2o ice surf; 2 = no h2o ice; 3 = co2 ice surf; 4 = ps; 5 = orb param; 6 = end of simu
180real                                  :: A, B, mmean          ! Molar mass: intermediate A, B for computations of the  mean molar mass of the layer [mol/kg]
181real,   dimension(:,:),   allocatable :: q_h2o_PEM_phys       ! Grid points x Times: h2o mass mixing ratio computed in the PEM, first value comes from PCM [kg/kg]
182integer                               :: timelen              ! # time samples
183real                                  :: extra_mass           ! Intermediate variables Extra mass of a tracer if it is greater than 1
184
185! Variables for co2 ice evolution
186real,    dimension(:,:), allocatable :: co2_ice                ! co2 ice in the PEM
187real,    dimension(:,:), allocatable :: d_co2ice               ! physical point x slope field: Tendency of evolution of perennial co2 ice over a year
188real,    dimension(:,:), allocatable :: d_co2ice_ini           ! physical point x slope field: Tendency of evolution of perennial co2 ice over a year in the PCM
189logical, dimension(:,:), allocatable :: is_co2ice_ini          ! Was there co2 ice initially in the PEM?
190real,  dimension(:,:,:), allocatable :: min_co2_ice            ! Minimum of co2 ice at each point for the first year [kg/m^2]
191real                                 :: co2ice_sublim_surf_ini ! Initial surface of sublimating co2 ice
192logical, dimension(:,:), allocatable :: is_co2ice_sublim_ini   ! Logical array to know if co2 ice is sublimating
193real,    dimension(:,:), allocatable :: vmr_co2_PCM            ! Grid points x Times co2 volume mixing ratio retrieve from the PCM [m^3/m^3]
194real,    dimension(:,:), allocatable :: vmr_co2_PEM_phys       ! Grid points x Times co2 volume mixing ratio used in the PEM
195real,    dimension(:,:), allocatable :: q_co2_PEM_phys         ! Grid points x Times co2 mass mixing ratio in the first layer computed in the PEM, first value comes from PCM [kg/kg]
196real(kind = 16)                      :: totmass_co2ice, totmass_atmco2         ! Current total CO2 masses
197real(kind = 16)                      :: totmass_co2ice_ini, totmass_atmco2_ini ! Initial total CO2 masses
198
199! Variables for the evolution of layered layerings_map
200type(layering), dimension(:,:), allocatable :: layerings_map     ! Layering for each grid point and slope
201type(ptrarray), dimension(:,:), allocatable :: current           ! Current active stratum in the layering
202logical,        dimension(:,:), allocatable :: new_str, new_lag  ! Flags for the layering algorithm
203real,           dimension(:,:), allocatable :: h2o_ice_depth_old ! Old depth of subsurface ice layer
204
205! Variables for slopes
206integer(kind = 1), dimension(:,:), allocatable :: flag_co2flow ! (ngrid,nslope): Flag where there is a CO2 glacier flow
207integer(kind = 1), dimension(:,:), allocatable :: flag_h2oflow ! (ngrid,nslope): Flag where there is a H2O glacier flow
208
209! Variables for surface and soil
210real, dimension(:,:),     allocatable :: tsurf_avg                          ! Grid points x Slope field: Average surface temperature [K]
211real, dimension(:,:),     allocatable :: tsurf_dev                          ! Grid points x Slope field: Surface temperature deviation [K]
212real, dimension(:,:),     allocatable :: tsurf_avg_yr1                      ! Grid points x Slope field: Average surface temperature of first call of the PCM [K]
213real, dimension(:,:,:),   allocatable :: tsoil_avg                          ! Grid points x Soil x Slope field: Average Soil Temperature [K]
214real, dimension(:,:),     allocatable :: tsoil_avg_old                      ! Grid points x Soil field: Average Soil Temperature at the previous time step [K]
215real, dimension(:,:,:),   allocatable :: tsoil_dev                          ! Grid points x Soil x Slope field: Soil temperature deviation [K]
216real, dimension(:,:,:,:), allocatable :: tsoil_timeseries                   ! Grid points x Soil x Slope x Times field: Soil temperature timeseries [K]
217real, dimension(:,:,:,:), allocatable :: tsoil_PEM_timeseries               ! Grid points x Soil x Slope x Times field: Soil temperature timeseries for PEM [K]
218real, dimension(:,:,:,:), allocatable :: tsoil_PEM_timeseries_old           ! Grid points x Soil x Slope x Times field: Soil temperature timeseries for PEM at the previous time step [K]
219real, dimension(:,:,:,:), allocatable :: watersoil_density_timeseries       ! Grid points x Soil x Slope x Times Water soil density timeseries [kg /m^3]
220real, dimension(:,:),     allocatable :: watersurf_density_avg              ! Grid points x Slope: Average water surface density [kg/m^3]
221real, dimension(:,:,:,:), allocatable :: watersoil_density_PEM_timeseries   ! Grid points x Soil x Slope x Times: Water soil density timeseries for PEM [kg/m^3]
222real, dimension(:,:,:),   allocatable :: watersoil_density_PEM_avg          ! Grid points x Soil x Slopes: Average water soil density [kg/m^3]
223real, dimension(:),       allocatable :: delta_co2_adsorbed                 ! Physics: quantity of CO2 that is exchanged because of adsorption / desorption [kg/m^2]
224real, dimension(:),       allocatable :: delta_h2o_adsorbed                 ! Physics: quantity of H2O that is exchanged because of adsorption / desorption [kg/m^2]
225real(kind = 16)                       :: totmass_adsco2, totmass_adsco2_ini ! Total mass of CO2 that is exchanged because of adsorption / desoprtion over the planets [kg]
226real                                  :: totmass_adsh2o                     ! Total mass of H2O that is exchanged because of adsorption / desoprtion over the planets [kg]
227logical, dimension(:,:),  allocatable :: co2ice_disappeared                 ! logical to check if a co2 ice reservoir already disappeared at a previous timestep
228real, dimension(:,:),     allocatable :: icetable_thickness_old             ! ngrid x nslope: Thickness of the ice table at the previous iteration [m]
229real, dimension(:,:,:),   allocatable :: ice_porefilling_old                ! ngrid x nslope: Ice pore filling at the previous iteration [m]
230real, dimension(:),       allocatable :: delta_h2o_icetablesublim           ! ngrid x Total mass of the H2O that has sublimated / condenses from the ice table [kg]
231real, dimension(:),       allocatable :: porefill                           ! Pore filling (output) to compute the dynamic ice table
232real                                  :: ssi_depth                          ! Ice table depth (output) to compute the dynamic ice table
233real, dimension(:,:),     allocatable :: zshift_surf                        ! Elevation shift for the surface [m]
234real, dimension(:,:),     allocatable :: zlag                               ! Newly built lag thickness [m]
235real, dimension(:,:),     allocatable :: icetable_depth_old                 ! Old depth of the ice table
236
237! Some variables for the PEM run
238real, parameter       :: year_step = 1   ! Timestep for the pem
239real                  :: i_myear_leg     ! Number of iteration
240real                  :: n_myear_leg     ! Maximum number of iterations before stopping
241real                  :: i_myear         ! Global number of Martian years of the chained simulations
242real                  :: n_myear         ! Maximum number of Martian years of the chained simulations
243real                  :: timestep        ! Timestep [s]
244integer(kind = 8)     :: cr              ! Number of clock ticks per second (count rate)
245integer(kind = 8)     :: c1, c2          ! Counts of processor clock
246character(8)          :: date
247character(10)         :: time
248character(5)          :: zone
249integer, dimension(8) :: values
250character(128)        :: dir = ' '
251character(32)         :: logname = ' '
252character(32)         :: hostname = ' '
253
254#ifdef CPP_STD
255    real                                :: frost_albedo_threshold = 0.05 ! Frost albedo threeshold to convert fresh frost to old ice
256    real                                :: albedo_h2o_frost              ! Albedo of h2o frost
257    real, dimension(:),     allocatable :: tsurf_read_generic            ! Temporary variable to do the subslope transfert dimension when reading form generic
258    real, dimension(:,:),   allocatable :: qsurf_read_generic            ! Temporary variable to do the subslope transfert dimension when reading form generic
259    real, dimension(:,:),   allocatable :: tsoil_read_generic            ! Temporary variable to do the subslope transfert dimension when reading form generic
260    real, dimension(:),     allocatable :: emis_read_generic             ! Temporary variable to do the subslope transfert dimension when reading form generic
261    real, dimension(:,:),   allocatable :: albedo_read_generic           ! Temporary variable to do the subslope transfert dimension when reading form generic
262    real, dimension(:,:),   allocatable :: tsurf                         ! Subslope variable, only needed in the GENERIC case
263    real, dimension(:,:,:), allocatable :: qsurf                         ! Subslope variable, only needed in the GENERIC case
264    real, dimension(:,:,:), allocatable :: tsoil                         ! Subslope variable, only needed in the GENERIC case
265    real, dimension(:,:),   allocatable :: emis                          ! Subslope variable, only needed in the GENERIC case
266    real, dimension(:,:),   allocatable :: watercap                      ! Subslope variable, only needed in the GENERIC case =0 no watercap in generic model
267    logical, dimension(:),  allocatable :: watercaptag                   ! Subslope variable, only needed in the GENERIC case =false no watercaptag in generic model
268    real, dimension(:,:,:), allocatable :: albedo                        ! Subslope variable, only needed in the GENERIC case
269    real, dimension(:,:,:), allocatable :: inertiesoil                   ! Subslope variable, only needed in the GENERIC case
270#endif
271
272#ifdef CPP_1D
273    integer            :: nsplit_phys
274    integer, parameter :: jjm_value = jjm - 1
275    integer            :: day_step
276
277    ! Dummy variables to use the subroutine 'init_testphys1d'
278    logical                             :: therestart1D, therestartfi, prescribed_h2ovap
279    integer                             :: ndt, day0
280    real                                :: ptif, pks, day, gru, grv, h2ovap_relax_time
281    real, dimension(:),     allocatable :: zqsat
282    real, dimension(:,:,:), allocatable :: dq, dqdyn
283    real, dimension(nlayer)             :: play, w, q_prescribed_h2o_vap
284    real, dimension(nlayer + 1)         :: plev
285#else
286    integer, parameter                :: jjm_value = jjm
287    real, dimension(:),   allocatable :: ap ! Coefficient ap read in start_name and written in restart
288    real, dimension(:),   allocatable :: bp ! Coefficient bp read in start_name and written in restart
289    real, dimension(:,:), allocatable :: p  ! Grid points x Atmosphere: pressure to recompute and write in restart (ip1jmp1,llmp1)
290#endif
291
292! Loop variables
293integer :: i, l, ig, nnq, t, islope, ig_loop, islope_loop, isoil, icap
294logical :: num_str
295
296! CODE
297write(*,*) '  *    .          .   +     .    *        .  +      .    .       .      '
298write(*,*) '           +         _______  ________  ____    ____      *           + '
299write(*,*) ' +   .        *     |_   __ \|_   __  ||_   \  /   _|          .       *'
300write(*,*) '          .     .     | |__) | | |_ \_|  |   \/   |  *        *      .  '
301write(*,*) '       .              |  ___/  |  _| _   | |\  /| |      .        .     '
302write(*,*) '.  *          *      _| |_    _| |__/ | _| |_\/_| |_                  * '
303write(*,*) '            +       |_____|  |________||_____||_____|   +     .         '
304write(*,*) '  .      *          .   *       .   +       *          .        +      .'
305
306! Elapsed time with system clock
307call system_clock(count_rate = cr)
308call system_clock(c1)
309call parse_args()
310
311! Some user info
312call date_and_time(date,time,zone,values)
313call getcwd(dir)      ! Current directory
314call getlog(logname)  ! User name
315call hostnm(hostname) ! Machine/station name
316write(*,*)
317write(*,*) '********* PEM information *********'
318write(*,*) '+ User     : '//trim(logname)
319write(*,*) '+ Machine  : '//trim(hostname)
320write(*,*) '+ Directory: '//trim(dir)
321write(*,'(a,i2,a,i2,a,i4)') ' + Date     : ',values(3),'/',values(2),'/',values(1)
322write(*,'(a,i2,a,i2,a,i2,a)') ' + Time     : ',values(5),':',values(6),':',values(7)
323
324! Parallel variables
325#ifndef CPP_STD
326    is_sequential = .true.
327    is_parallel = .false.
328    is_mpi_root = .true.
329    is_omp_root = .true.
330    is_master = .true.
331#endif
332
333! Some constants
334day_ini = 0
335time_phys = 0.
336ngrid = ngridmx
337A = (1./m_co2 - 1./m_noco2)
338B = 1./m_noco2
339year_day = 669
340daysec = 88775.
341timestep = year_day*daysec*year_step
342
343!----------------------------- INITIALIZATION --------------------------
344!------------------------
345! I   Initialization
346!    I_a Read the "run.def"
347!------------------------
348write(*,*)
349write(*,*) '********* PEM initialization *********'
350write(*,*) '> Reading "run.def" (PEM)'
351#ifndef CPP_1D
352    dtphys = daysec/48. ! Dummy value (overwritten in phyetat0)
353    call conf_gcm(99,.true.)
354    call infotrac_init
355    nq = nqtot
356    allocate(q(ip1jmp1,llm,nqtot))
357    allocate(longitude(ngrid),latitude(ngrid),cell_area(ngrid))
358#else
359    allocate(q(1,llm,nqtot),pdyn(1))
360    allocate(longitude(1),latitude(1),cell_area(1))
361
362    therestart1D = .false. ! Default value
363    inquire(file = 'start1D.txt',exist = therestart1D)
364    if (.not. therestart1D) then
365        write(*,*) 'There is no "start1D.txt" file!'
366        error stop 'Initialization cannot be done for the 1D PEM.'
367    endif
368    therestartfi = .false. ! Default value
369    inquire(file = 'startfi.nc',exist = therestartfi)
370    if (.not. therestartfi) then
371        write(*,*) 'There is no "startfi.nc" file!'
372        error stop 'Initialization cannot be done for the 1D PEM.'
373    endif
374
375    write(*,*) '> Reading "start1D.txt" and "startfi.nc"'
376    call init_testphys1d('start1D.txt','startfi.nc',therestart1D,therestartfi,ngrid,nlayer,610.,nq,q,         &
377                         time_0,pdyn(1),ucov,vcov,teta,ndt,ptif,pks,dtphys,zqsat,dq,dqdyn,day0,day,gru,grv,w, &
378                         play,plev,latitude,longitude,cell_area,prescribed_h2ovap,h2ovap_relax_time,q_prescribed_h2o_vap)
379    nsplit_phys = 1
380    day_step = steps_per_sol
381#endif
382
383call conf_pem(i_myear,n_myear)
384
385!------------------------
386! I   Initialization
387!    I_b Read of the "start.nc" and "starfi.nc"
388!------------------------
389! I_b.1 Read "start.nc"
390write(*,*) '> Reading "start.nc"'
391allocate(ps_start0(ngrid))
392#ifndef CPP_1D
393    allocate(pdyn(ip1jmp1))
394    call dynetat0(start_name,vcov,ucov,teta,q,masse,pdyn,phis,time_0)
395
396    call gr_dyn_fi(1,iip1,jjp1,ngridmx,pdyn,ps_start0)
397
398    call iniconst ! Initialization of dynamical constants (comconst_mod)
399    call inigeom ! Initialization of geometry
400
401    allocate(ap(nlayer + 1))
402    allocate(bp(nlayer + 1))
403    status = nf90_open(start_name,NF90_NOWRITE,ncid)
404    status = nf90_inq_varid(ncid,"ap",apvarid)
405    status = nf90_get_var(ncid,apvarid,ap)
406    status = nf90_inq_varid(ncid,"bp",bpvarid)
407    status = nf90_get_var(ncid,bpvarid,bp)
408    status = nf90_close(ncid)
409
410    ! Initialization of physics constants and variables (comcstfi_h)
411    call iniphysiq(iim,jjm,llm,(jjm - 1)*iim + 2,comm_lmdz,daysec,day_ini,dtphys/nsplit_phys,rlatu,rlatv,rlonu,rlonv,aire,cu,cv,rad,g,r,cpp,iflag_phys)
412#else
413    ps_start0(1) = pdyn(1)
414#endif
415deallocate(pdyn)
416
417! In the PCM, these values are given to the physic by the dynamic.
418! Here we simply read them in the "startfi.nc" file
419status = nf90_open(startfi_name,NF90_NOWRITE,ncid)
420status = nf90_inq_varid(ncid,"longitude",lonvarid)
421status = nf90_get_var(ncid,lonvarid,longitude)
422status = nf90_inq_varid(ncid,"latitude",latvarid)
423status = nf90_get_var(ncid,latvarid,latitude)
424status = nf90_inq_varid(ncid,"area",areavarid)
425status = nf90_get_var(ncid,areavarid,cell_area)
426status = nf90_inq_varid(ncid,"soildepth",sdvarid)
427status = nf90_get_var(ncid,sdvarid,mlayer)
428status = nf90_close(ncid)
429
430! I_b.2 Read the "startfi.nc"
431! First we read the initial state (starfi.nc)
432#ifndef CPP_STD
433    write(*,*) '> Reading "startfi.nc"'
434    call phyetat0(startfi_name,0,0,nsoilmx,ngrid,nlayer,nq,nqsoil,day_ini,time_phys,tsurf, &
435                  tsoil,albedo,emis,q2,qsurf,qsoil,tauscaling,totcloudfrac,wstar,          &
436                  watercap,perennial_co2ice,def_slope,def_slope_mean,subslope_dist)
437
438    ! Remove unphysical values of surface tracer
439    where (qsurf < 0.) qsurf = 0.
440
441    call surfini(ngrid,nslope,qsurf)
442#else
443    call phys_state_var_init(nq)
444    if (.not. allocated(noms)) allocate(noms(nq)) ! (because noms is an argument of physdem1 whether or not tracer is on)
445    call initracer(ngrid,nq)
446    call iniaerosol()
447    allocate(tsurf_read_generic(ngrid))
448    allocate(qsurf_read_generic(ngrid,nq))
449    allocate(tsoil_read_generic(ngrid,nsoilmx))
450    allocate(qsoil_read_generic(ngrid,nsoilmx,nqsoil,nslope))
451    allocate(emis_read_generic(ngrid))
452    allocate(albedo_read_generic(ngrid,2))
453    allocate(qsurf(ngrid,nq,1))
454    allocate(tsurf(ngrid,1))
455    allocate(tsoil(ngrid,nsoilmx,1))
456    allocate(emis(ngrid,1))
457    allocate(watercap(ngrid,1))
458    allocate(watercaptag(ngrid))
459    allocate(albedo(ngrid,2,1))
460    allocate(inertiesoil(ngrid,nsoilmx,1))
461    call phyetat0(.true.,ngrid,nlayer,startfi_name,0,0,nsoilmx,nq,nqsoil,day_ini,time_phys, &
462                  tsurf_read_generic,tsoil_read_generic,emis_read_generic,q2,               &
463                  qsurf_read_generic,qsoil_read_generic,cloudfrac,totcloudfrac,hice,        &
464                  rnat,pctsrf_sic,tslab,tsea_ice,sea_ice)
465    call surfini(ngrid,nq,qsurf_read_generic,albedo_read_generic,albedo_bareground,albedo_snow_SPECTV,albedo_co2_ice_SPECTV)
466
467    nslope = 1
468    call ini_comslope_h(ngrid,1)
469
470    qsurf(:,:,1) = qsurf_read_generic
471    tsurf(:,1) = tsurf_read_generic
472    tsoil(:,:,1) = tsoil_read_generic
473    emis(:,1) = emis_read_generic
474    watercap(:,1) = 0.
475    watercaptag(:) = .false.
476    albedo(:,1,1) = albedo_read_generic(:,1)
477    albedo(:,2,1) = albedo_read_generic(:,2)
478    inertiesoil(:,:,1) = inertiedat
479
480    if (nslope == 1) then
481        def_slope(1) = 0
482        def_slope(2) = 0
483        def_slope_mean = 0
484        subslope_dist(:,1) = 1.
485    endif
486
487    ! Remove unphysical values of surface tracer
488    qsurf(:,:,1) = qsurf_read_generic
489    where (qsurf < 0.) qsurf = 0.
490
491    deallocate(tsurf_read_generic,qsurf_read_generic,qsoil_read_generic,emis_read_generic)
492#endif
493
494do nnq = 1,nqtot  ! Why not using ini_tracer?
495    if (noms(nnq) == "h2o_ice") igcm_h2o_ice = nnq
496    if (noms(nnq) == "h2o_vap") then
497        igcm_h2o_vap = nnq
498        mmol(igcm_h2o_vap) = 18.
499    endif
500    if (noms(nnq) == "co2") igcm_co2 = nnq
501enddo
502
503!------------------------
504! I   Initialization
505!    I_c Subslope parametrisation
506!------------------------
507! Define some slope statistics
508iflat = 1
509do islope = 2,nslope
510    if (abs(def_slope_mean(islope)) < abs(def_slope_mean(iflat))) iflat = islope
511enddo
512write(*,*) 'Flat slope for islope = ',iflat
513write(*,*) 'Corresponding criterium = ',def_slope_mean(iflat)
514
515!------------------------
516! I   Initialization
517!    I_d Read the PCM data and convert them to the physical grid
518!------------------------
519! First we read the evolution of water and co2 ice (and the mass mixing ratio) over the first year of the PCM run, saving only the minimum value
520call get_timelen_PCM("data_PCM_Y1.nc",timelen)
521
522allocate(vmr_co2_PCM(ngrid,timelen),q_co2_PEM_phys(ngrid,timelen),q_h2o_PEM_phys(ngrid,timelen))
523allocate(ps_timeseries(ngrid,timelen),ps_avg(ngrid))
524allocate(min_co2_ice(ngrid,nslope,2),min_h2o_ice(ngrid,nslope,2))
525allocate(tsurf_avg_yr1(ngrid,nslope),tsurf_avg(ngrid,nslope))
526allocate(tsoil_avg(ngrid,nsoilmx,nslope),tsoil_timeseries(ngrid,nsoilmx,nslope,timelen))
527allocate(watersurf_density_avg(ngrid,nslope),watersoil_density_timeseries(ngrid,nsoilmx,nslope,timelen))
528
529call read_data_PCM("data_PCM_Y1.nc","data_PCM_Y2.nc",timelen,iim,jjm_value,ngrid,nslope,vmr_co2_PCM,ps_timeseries,ps_avg,tsurf_avg_yr1,tsurf_avg, &
530                   tsoil_avg,tsoil_timeseries,min_co2_ice,min_h2o_ice,q_co2_PEM_phys,q_h2o_PEM_phys,watersurf_density_avg,watersoil_density_timeseries)
531
532! Compute the deviation from the average
533allocate(ps_dev(ngrid),tsurf_dev(ngrid,nslope),tsoil_dev(ngrid,nsoilmx,nslope))
534ps_dev = ps_start0 - ps_avg
535tsurf_dev = tsurf - tsurf_avg
536tsoil_dev = tsoil - tsoil_avg(:,1:nsoilmx,:)
537
538!------------------------
539! I   Initialization
540!    I_e Initialization of the PEM variables and soil
541!------------------------
542call end_comsoil_h_PEM
543call ini_comsoil_h_PEM(ngrid,nslope)
544call end_adsorption_h_PEM
545call ini_adsorption_h_PEM(ngrid,nslope,nsoilmx_PEM)
546call end_ice_table
547call ini_ice_table(ngrid,nslope,nsoilmx_PEM)
548
549allocate(tsoil_PEM_timeseries(ngrid,nsoilmx_PEM,nslope,timelen),watersoil_density_PEM_avg(ngrid,nsoilmx_PEM,nslope),watersoil_density_PEM_timeseries(ngrid,nsoilmx_PEM,nslope,timelen))
550if (soil_pem) then
551    call soil_settings_PEM(ngrid,nslope,nsoilmx_PEM,nsoilmx,inertiesoil,TI_PEM)
552    tsoil_PEM(:,1:nsoilmx,:) = tsoil_avg
553    watersoil_density_PEM_timeseries(:,1:nsoilmx,:,:) = watersoil_density_timeseries
554    tsoil_PEM_timeseries(:,1:nsoilmx,:,:) = tsoil_timeseries
555    do l = nsoilmx + 1,nsoilmx_PEM
556        tsoil_PEM(:,l,:) = tsoil_avg(:,nsoilmx,:)
557        watersoil_density_PEM_timeseries(:,l,:,:) = watersoil_density_timeseries(:,nsoilmx,:,:)
558        tsoil_PEM_timeseries(:,l,:,:) = tsoil_timeseries(:,nsoilmx,:,:)
559    enddo
560    watersoil_density_PEM_avg = sum(watersoil_density_PEM_timeseries,4)/timelen
561endif !soil_pem
562deallocate(tsoil_avg,watersoil_density_timeseries,tsoil_timeseries)
563
564!------------------------
565! I   Initialization
566!    I_f Compute tendencies
567!------------------------
568allocate(d_co2ice(ngrid,nslope),d_h2oice(ngrid,nslope),d_co2ice_ini(ngrid,nslope))
569call compute_tend(ngrid,nslope,min_co2_ice,d_co2ice)
570call compute_tend(ngrid,nslope,min_h2o_ice,d_h2oice)
571d_co2ice_ini = d_co2ice
572deallocate(min_co2_ice,min_h2o_ice)
573
574!------------------------
575! I   Initialization
576!    I_g Compute global surface pressure
577!------------------------
578total_surface = sum(cell_area)
579ps_avg_global_ini = sum(cell_area*ps_avg)/total_surface
580ps_avg_global_new = ps_avg_global_ini
581write(*,*) "Total surface of the planet     =", total_surface
582write(*,*) "Initial global average pressure =", ps_avg_global_ini
583
584!------------------------
585! I   Initialization
586!    I_h Read the "startpem.nc"
587!------------------------
588write(*,*) '> Reading "startpem.nc"'
589allocate(co2_ice(ngrid,nslope),h2o_ice(ngrid,nslope),layerings_map(ngrid,nslope))
590allocate(delta_h2o_adsorbed(ngrid),delta_co2_adsorbed(ngrid),delta_h2o_icetablesublim(ngrid))
591delta_h2o_icetablesublim = 0.
592call pemetat0("startpem.nc",ngrid,nsoilmx,nsoilmx_PEM,nslope,timelen,timestep,TI_PEM,tsoil_PEM,icetable_depth,icetable_thickness,ice_porefilling, &
593              tsurf_avg_yr1,tsurf_avg,q_co2_PEM_phys,q_h2o_PEM_phys,ps_timeseries,ps_avg_global_ini,d_h2oice,d_co2ice,co2_ice,h2o_ice,            &
594              watersurf_density_avg,watersoil_density_PEM_avg,co2_adsorbed_phys,delta_co2_adsorbed,h2o_adsorbed_phys,delta_h2o_adsorbed,layerings_map)
595deallocate(tsurf_avg_yr1)
596
597! We save the places where h2o ice is sublimating
598! We compute the surface of h2o ice sublimating
599allocate(is_co2ice_sublim_ini(ngrid,nslope),is_h2oice_sublim_ini(ngrid,nslope),is_co2ice_ini(ngrid,nslope),co2ice_disappeared(ngrid,nslope))
600co2ice_sublim_surf_ini = 0.
601h2oice_ini_surf = 0.
602is_co2ice_sublim_ini = .false.
603is_h2oice_sublim_ini = .false.
604is_co2ice_ini = .false.
605co2ice_disappeared = .false.
606totmass_co2ice_ini = 0.
607totmass_atmco2_ini = 0.
608if (layering_algo) then
609    do ig = 1,ngrid
610        do islope = 1,nslope
611            if (is_co2ice_str(layerings_map(ig,islope)%top)) then
612                co2_ice(ig,islope) = layerings_map(ig,islope)%top%h_co2ice
613            else if (is_h2oice_str(layerings_map(ig,islope)%top)) then
614                h2o_ice(ig,islope) = layerings_map(ig,islope)%top%h_h2oice
615            else
616                call subsurface_ice_layering(layerings_map(ig,islope),h2o_ice_depth(ig,islope),h2o_ice(ig,islope),co2_ice(ig,islope))
617            endif
618        enddo
619    enddo
620    ! We put the sublimating tendency coming from subsurface ice into the overall tendency
621    where (zdqsdif_ssi_tot < 0.)
622        d_h2oice = zdqsdif_ssi_tot
623    end where
624endif
625do i = 1,ngrid
626    totmass_atmco2_ini = totmass_atmco2_ini + cell_area(i)*ps_avg(i)/g
627    do islope = 1,nslope
628        totmass_co2ice_ini = totmass_co2ice_ini + co2_ice(i,islope)*cell_area(i)*subslope_dist(i,islope)/cos(pi*def_slope_mean(islope)/180.)
629        if (co2_ice(i,islope) > 0.) is_co2ice_ini(i,islope) = .true.
630        if (d_co2ice(i,islope) < 0. .and. co2_ice(i,islope) > 0.) then
631            is_co2ice_sublim_ini(i,islope) = .true.
632            co2ice_sublim_surf_ini = co2ice_sublim_surf_ini + cell_area(i)*subslope_dist(i,islope)
633        endif
634        if (d_h2oice(i,islope) < 0.) then
635            if (h2o_ice(i,islope) > 0.) then
636                is_h2oice_sublim_ini(i,islope) = .true.
637                h2oice_ini_surf = h2oice_ini_surf + cell_area(i)*subslope_dist(i,islope)
638            else if (h2o_ice_depth(i,islope) > 0.) then
639                is_h2oice_sublim_ini(i,islope) = .true.
640            endif
641        endif
642    enddo
643enddo
644write(*,*) "Total initial surface of CO2 ice sublimating =", co2ice_sublim_surf_ini
645write(*,*) "Total initial surface of H2O ice sublimating =", h2oice_ini_surf
646
647totmass_adsco2_ini = 0.
648totmass_adsh2o = 0.
649if (adsorption_pem) then
650    do ig = 1,ngrid
651        do islope = 1,nslope
652            do l = 1,nsoilmx_PEM - 1
653                if (l == 1) then
654                   totmass_adsco2_ini = totmass_adsco2_ini + co2_adsorbed_phys(ig,l,islope)*(layer_PEM(l))* &
655                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
656                   totmass_adsh2o = totmass_adsh2o + h2o_adsorbed_phys(ig,l,islope)*(layer_PEM(l))* &
657                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
658                else
659                   totmass_adsco2_ini = totmass_adsco2_ini + co2_adsorbed_phys(ig,l,islope)*(layer_PEM(l) - layer_PEM(l-1))* &
660                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
661                   totmass_adsh2o = totmass_adsh2o + h2o_adsorbed_phys(ig,l,islope)*(layer_PEM(l) - layer_PEM(l-1))* &
662                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
663                endif
664            enddo
665        enddo
666    enddo
667    totmass_adsco2 = totmass_adsco2_ini
668    write(*,*) "Tot mass of CO2 in the regolith =", totmass_adsco2
669    write(*,*) "Tot mass of H2O in the regolith =", totmass_adsh2o
670endif ! adsorption
671
672!------------------------
673! I   Initialization
674!    I_i Compute orbit criterion
675!------------------------
676#ifndef CPP_STD
677    call iniorbit(aphelie,periheli,year_day,peri_day,obliquit)
678#else
679    call iniorbit(apoastr,periastr,year_day,peri_day,obliquit)
680#endif
681
682n_myear_leg = Max_iter_pem
683if (evol_orbit_pem) call orbit_param_criterion(i_myear,n_myear_leg)
684
685!-------------------------- END INITIALIZATION -------------------------
686
687!-------------------------------- RUN ----------------------------------
688!------------------------
689! II  Run
690!    II_a Update pressure, ice and tracers
691!------------------------
692write(*,*)
693write(*,*) '********* PEM cycle *********'
694i_myear_leg = 0
695stopPEM = 0
696if (layering_algo) then
697    allocate(h2o_ice_depth_old(ngrid,nslope),new_str(ngrid,nslope),new_lag(ngrid,nslope),current(ngrid,nslope))
698    new_str = .true.
699    new_lag = .true.
700    do islope = 1,nslope
701        do ig = 1,ngrid
702            current(ig,islope)%p => layerings_map(ig,islope)%top
703        enddo
704    enddo
705endif
706
707do while (i_myear_leg < n_myear_leg .and. i_myear < n_myear)
708! II.a.1. Compute updated global pressure
709    write(*,'(a,f10.2)') ' **** Iteration of the PEM leg (Martian years): ', i_myear_leg + 1
710    write(*,*) "> Updating the surface pressure"
711    ps_avg_global_old = ps_avg_global_new
712    do i = 1,ngrid
713        do islope = 1,nslope
714            ps_avg_global_new = ps_avg_global_new - CO2cond_ps*g*cell_area(i)*d_co2ice(i,islope)*subslope_dist(i,islope)/cos(pi*def_slope_mean(islope)/180.)/total_surface
715        enddo
716    enddo
717    if (adsorption_pem) then
718        do i = 1,ngrid
719            ps_avg_global_new = ps_avg_global_new - g*cell_area(i)*delta_co2_adsorbed(i)/total_surface
720        enddo
721    endif
722    ps_avg = ps_avg*ps_avg_global_new/ps_avg_global_old
723    write(*,*) 'Global average pressure old time step:',ps_avg_global_old
724    write(*,*) 'Global average pressure new time step:',ps_avg_global_new
725
726! II.a.2. Pressure timeseries (the values are deleted when unused because of big memory consumption)
727    write(*,*) "> Updating the surface pressure timeseries for the new pressure"
728    allocate(zplev_timeseries_old(ngrid,nlayer + 1,timelen))
729    do l = 1,nlayer + 1
730        do ig = 1,ngrid
731            zplev_timeseries_old(ig,l,:) = ap(l) + bp(l)*ps_timeseries(ig,:)
732        enddo
733    enddo
734    ps_timeseries(:,:) = ps_timeseries(:,:)*ps_avg_global_new/ps_avg_global_old
735    write(*,*) "> Updating the pressure levels timeseries for the new pressure"
736    allocate(zplev_timeseries_new(ngrid,nlayer + 1,timelen))
737    do l = 1,nlayer + 1
738        do ig = 1,ngrid
739            zplev_timeseries_new(ig,l,:) = ap(l) + bp(l)*ps_timeseries(ig,:)
740        enddo
741    enddo
742
743! II.a.3. Tracers timeseries
744    write(*,*) "> Updating the tracer VMR timeseries for the new pressure"
745    allocate(vmr_co2_PEM_phys(ngrid,timelen))
746    l = 1
747    do ig = 1,ngrid
748        do t = 1,timelen
749            ! H2O
750            q_h2o_PEM_phys(ig,t) = q_h2o_PEM_phys(ig,t)*(zplev_timeseries_old(ig,l,t) - zplev_timeseries_old(ig,l + 1,t))/ &
751                                   (zplev_timeseries_new(ig,l,t) - zplev_timeseries_new(ig,l + 1,t))
752            if (q_h2o_PEM_phys(ig,t) < 0) then
753                q_h2o_PEM_phys(ig,t) = 1.e-30
754            else if (q_h2o_PEM_phys(ig,t) > 1) then
755                q_h2o_PEM_phys(ig,t) = 1.
756            endif
757            ! CO2
758            q_co2_PEM_phys(ig,t) = q_co2_PEM_phys(ig,t)*(zplev_timeseries_old(ig,l,t) - zplev_timeseries_old(ig,l + 1,t))/ &
759                                   (zplev_timeseries_new(ig,l,t) - zplev_timeseries_new(ig,l + 1,t))                       &
760                                + ((zplev_timeseries_new(ig,l,t) - zplev_timeseries_new(ig,l + 1,t))                       &
761                                -  (zplev_timeseries_old(ig,l,t) - zplev_timeseries_old(ig,l + 1,t)))/                     &
762                                   (zplev_timeseries_new(ig,l,t) - zplev_timeseries_new(ig,l + 1,t))
763            if (q_co2_PEM_phys(ig,t) < 0) then
764                q_co2_PEM_phys(ig,t) = 1.e-30
765            else if (q_co2_PEM_phys(ig,t) > 1) then
766                q_co2_PEM_phys(ig,t) = 1.
767            endif
768            mmean = 1./(A*q_co2_PEM_phys(ig,t) + B)
769            vmr_co2_PEM_phys(ig,t) = q_co2_PEM_phys(ig,t)*mmean/m_co2
770        enddo
771    enddo
772    deallocate(zplev_timeseries_new,zplev_timeseries_old)
773
774!------------------------
775! II  Run
776!    II_b Evolution of ice
777!------------------------
778    allocate(zshift_surf(ngrid,nslope),zlag(ngrid,nslope))
779    if (layering_algo) then
780        h2o_ice_depth_old = h2o_ice_depth
781        do islope = 1,nslope
782            do ig = 1,ngrid
783                call make_layering(layerings_map(ig,islope),d_co2ice(ig,islope),d_h2oice(ig,islope),new_str(ig,islope),zshift_surf(ig,islope),new_lag(ig,islope),zlag(ig,islope),current(ig,islope)%p)
784                co2_ice(ig,islope) = 0.
785                h2o_ice(ig,islope) = 0.
786                h2o_ice_depth(ig,islope) = 0.
787                if (is_co2ice_str(layerings_map(ig,islope)%top)) then
788                    co2_ice(ig,islope) = layerings_map(ig,islope)%top%h_co2ice
789                else if (is_h2oice_str(layerings_map(ig,islope)%top)) then
790                    h2o_ice(ig,islope) = layerings_map(ig,islope)%top%h_h2oice
791                else
792                    call subsurface_ice_layering(layerings_map(ig,islope),h2o_ice_depth(ig,islope),h2o_ice(ig,islope),co2_ice(ig,islope))
793                endif
794            enddo
795        enddo
796    else
797        zlag = 0.
798        call evol_h2o_ice(ngrid,nslope,cell_area,delta_h2o_adsorbed,delta_h2o_icetablesublim,h2o_ice,d_h2oice,zshift_surf,stopPEM)
799        call evol_co2_ice(ngrid,nslope,co2_ice,d_co2ice,zshift_surf)
800    endif
801
802!------------------------
803! II  Run
804!    II_c Flow of glaciers
805!------------------------
806    allocate(flag_co2flow(ngrid,nslope),flag_h2oflow(ngrid,nslope))
807    if (co2ice_flow .and. nslope > 1) then
808        call flow_co2glaciers(timelen,ngrid,nslope,iflat,subslope_dist,def_slope_mean,vmr_co2_PEM_phys, &
809                              ps_timeseries,ps_avg_global_old,ps_avg_global_new,co2_ice,flag_co2flow)
810        if (layering_algo) then
811            do islope = 1,nslope
812                do ig = 1,ngrid
813                    layerings_map(ig,islope)%top%h_co2ice = co2_ice(ig,islope)
814                enddo
815            enddo
816        endif
817    endif
818    if (h2oice_flow .and. nslope > 1) then
819        call flow_h2oglaciers(ngrid,nslope,iflat,subslope_dist,def_slope_mean,tsurf_avg,h2o_ice,flag_h2oflow)
820        if (layering_algo) then
821            do islope = 1,nslope
822                do ig = 1,ngrid
823!~                     layerings_map(ig,islope)%top%h_h2oice = h2o_ice(ig,islope)
824                enddo
825            enddo
826        endif
827    endif
828
829!------------------------
830! II  Run
831!    II_d Update surface and soil temperatures
832!------------------------
833! II_d.1 Update Tsurf
834    write(*,*) "> Updating surface temperature"
835    do ig = 1,ngrid
836        do islope = 1,nslope
837            ! CO2 ice disappeared so we look for the closest point without CO2 ice
838            if (is_co2ice_ini(ig,islope) .and. co2_ice(ig,islope) < 1.e-10 .and. .not. co2ice_disappeared(ig,islope)) then
839                co2ice_disappeared(ig,islope) = .true.
840                if (latitude_deg(ig) > 0.) then ! North hemisphere
841                    outer1: do ig_loop = ig,ngrid ! Go towards equator
842                        do islope_loop = islope - 1,1,-1 ! Go over the slopes (backward numbering - should be equator-ward)
843                            if (.not. is_co2ice_ini(ig_loop,islope_loop) .and. co2_ice(ig_loop,islope_loop) < 1.e-10) then
844                                tsurf_avg(ig,islope) = tsurf_avg(ig_loop,islope_loop)
845                                exit outer1
846                            endif
847                        enddo
848                        do islope_loop = islope + 1,nslope ! Go over the slopes (forward numbering - should be pole-ward)
849                            if (.not. is_co2ice_ini(ig_loop,islope_loop) .and. co2_ice(ig_loop,islope_loop) < 1.e-10) then
850                                tsurf_avg(ig,islope) = tsurf_avg(ig_loop,islope_loop)
851                                exit outer1
852                            endif
853                        enddo
854                    enddo outer1
855                else ! South hemisphere
856                    outer2: do ig_loop = ig,1,-1 ! Go towards equator
857                        do islope_loop = islope + 1,nslope ! Go over the slopes (forward numbering - should be equator-ward)
858                            if (.not. is_co2ice_ini(ig_loop,islope_loop) .and. co2_ice(ig_loop,islope_loop) < 1.e-10) then
859                                tsurf_avg(ig,islope) = tsurf_avg(ig_loop,islope_loop)
860                                exit outer2
861                            endif
862                        enddo
863                        do islope_loop = islope - 1,1,-1 ! Go over the slopes (backward numbering - should be pole-ward)
864                            if (.not. is_co2ice_ini(ig_loop,islope_loop) .and. co2_ice(ig_loop,islope_loop) < 1.e-10) then
865                                tsurf_avg(ig,islope) = tsurf_avg(ig_loop,islope_loop)
866                                exit outer2
867                            endif
868                        enddo
869                    enddo outer2
870                endif
871            else if (co2_ice(ig,islope) > 1.e-10 .and. d_co2ice(ig,islope) > 1.e-10) then ! Put tsurf as Tcond CO2
872                call computeTcondCO2(timelen,ngrid,nslope,vmr_co2_PEM_phys,ps_timeseries,ps_avg_global_ini,ps_avg_global_new,tsurf_avg)
873            endif
874        enddo
875    enddo
876
877    if (soil_pem) then
878! II_d.2 Shifting soil temperature to surface
879        call shift_tsoil2surf(ngrid,nsoilmx_PEM,nslope,zshift_surf,zlag,tsurf_avg,tsoil_PEM)
880
881! II_d.3 Update soil temperature
882        write(*,*)"> Updating soil temperature profile"
883        allocate(tsoil_avg_old(ngrid,nsoilmx_PEM),tsoil_PEM_timeseries_old(ngrid,nsoilmx_PEM,nslope,timelen))
884        tsoil_PEM_timeseries_old = tsoil_PEM_timeseries
885        do islope = 1,nslope
886            tsoil_avg_old = tsoil_PEM(:,:,islope)
887            call compute_tsoil_pem(ngrid,nsoilmx_PEM,.true.,TI_PEM(:,:,islope),timestep,tsurf_avg(:,islope),tsoil_PEM(:,:,islope))
888            call compute_tsoil_pem(ngrid,nsoilmx_PEM,.false.,TI_PEM(:,:,islope),timestep,tsurf_avg(:,islope),tsoil_PEM(:,:,islope))
889
890            do t = 1,timelen
891                do ig = 1,ngrid
892                    do isoil = 1,nsoilmx_PEM
893                        ! Update of soil temperature timeseries which is needed to compute the water soil density timeseries
894                        tsoil_PEM_timeseries(ig,isoil,islope,t) = tsoil_PEM_timeseries(ig,isoil,islope,t)*tsoil_PEM(ig,isoil,islope)/tsoil_avg_old(ig,isoil)
895                        ! Update of watersoil density
896                        watersoil_density_PEM_timeseries(ig,isoil,islope,t) = exp(beta_clap_h2o/tsoil_PEM_timeseries(ig,isoil,islope,t) + alpha_clap_h2o)/tsoil_PEM_timeseries(ig,isoil,islope,t)*mmol(igcm_h2o_vap)/(mugaz*r)
897                        if (isnan(tsoil_PEM(ig,isoil,islope))) call abort_pem("PEM - Update Tsoil","NaN detected in tsoil_PEM",1)
898                    enddo
899                enddo
900            enddo
901        enddo
902        watersoil_density_PEM_avg = sum(watersoil_density_PEM_timeseries,4)/timelen
903        deallocate(tsoil_avg_old)
904
905! II_d.4 Update the ice table
906        allocate(icetable_thickness_old(ngrid,nslope),ice_porefilling_old(ngrid,nsoilmx_PEM,nslope),icetable_depth_old(ngrid,nslope))
907        if (icetable_equilibrium) then
908            write(*,*) "> Updating ice table (equilibrium method)"
909            icetable_thickness_old = icetable_thickness
910            call computeice_table_equilibrium(ngrid,nslope,nsoilmx_PEM,watercaptag,watersurf_density_avg,watersoil_density_PEM_avg,TI_PEM(:,1,:),icetable_depth,icetable_thickness)
911            call compute_massh2o_exchange_ssi(ngrid,nslope,nsoilmx_PEM,icetable_thickness_old,ice_porefilling_old,tsurf_avg,tsoil_PEM,delta_h2o_icetablesublim) ! Mass of H2O exchange between the ssi and the atmosphere
912        else if (icetable_dynamic) then
913            write(*,*) "> Updating ice table (dynamic method)"
914            ice_porefilling_old = ice_porefilling
915            icetable_depth_old = icetable_depth
916            allocate(porefill(nsoilmx_PEM))
917            do ig = 1,ngrid
918                do islope = 1,nslope
919                    call dyn_ss_ice_m(icetable_depth(ig,islope),tsurf_avg(ig,islope),tsoil_PEM(ig,:,islope),nsoilmx_PEM,TI_PEM(ig,1,nslope),ps_avg(ig),(/sum(q_h2o_PEM_phys(ig,:))/size(q_h2o_PEM_phys,2)/),ice_porefilling(ig,:,islope),porefill,ssi_depth)
920                    icetable_depth(ig,islope) = ssi_depth
921                    ice_porefilling(ig,:,islope) = porefill
922                enddo
923            enddo
924            deallocate(porefill)
925            call compute_massh2o_exchange_ssi(ngrid,nslope,nsoilmx_PEM,icetable_thickness_old,ice_porefilling_old,tsurf_avg,tsoil_PEM,delta_h2o_icetablesublim) ! Mass of H2O exchange between the ssi and the atmosphere
926        endif
927        deallocate(icetable_thickness_old,ice_porefilling_old)
928
929! II_d.5 Update the soil thermal properties
930        call update_soil_thermalproperties(ngrid,nslope,nsoilmx_PEM,d_h2oice,h2o_ice,ps_avg_global_new,icetable_depth,icetable_thickness,ice_porefilling,icetable_equilibrium,icetable_dynamic,TI_PEM)
931
932! II_d.6 Update the mass of the regolith adsorbed
933        totmass_adsco2 = 0.
934        totmass_adsh2o = 0.
935        if (adsorption_pem) then
936            call regolith_adsorption(ngrid,nslope,nsoilmx_PEM,timelen,d_h2oice,d_co2ice,h2o_ice,co2_ice, &
937                                     tsoil_PEM,TI_PEM,ps_timeseries,q_co2_PEM_phys,q_h2o_PEM_phys,       &
938                                     h2o_adsorbed_phys,delta_h2o_adsorbed,co2_adsorbed_phys,delta_co2_adsorbed)
939            do ig = 1,ngrid
940                do islope = 1,nslope
941                    do l = 1,nsoilmx_PEM
942                        if (l == 1) then
943                            totmass_adsco2 = totmass_adsco2 + co2_adsorbed_phys(ig,l,islope)*(layer_PEM(l))* &
944                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
945                            totmass_adsh2o = totmass_adsh2o + h2o_adsorbed_phys(ig,l,islope)*(layer_PEM(l))* &
946                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
947                        else
948                            totmass_adsco2 = totmass_adsco2 + co2_adsorbed_phys(ig,l,islope)*(layer_PEM(l) - layer_PEM(l - 1))* &
949                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
950                            totmass_adsh2o = totmass_adsh2o + h2o_adsorbed_phys(ig,l,islope)*(layer_PEM(l) - layer_PEM(l - 1))* &
951                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
952                        endif
953                    enddo
954                enddo
955            enddo
956            write(*,*) "Total mass of CO2 in the regolith =", totmass_adsco2
957            write(*,*) "Total mass of H2O in the regolith =", totmass_adsh2o
958        endif
959    endif !soil_pem
960    deallocate(zshift_surf,zlag)
961
962!------------------------
963! II  Run
964!    II_e Outputs
965!------------------------
966    call writediagpem(ngrid,'ps_avg','Global average pressure','Pa',0,(/ps_avg_global_new/))
967    do islope = 1,nslope
968        write(str2(1:2),'(i2.2)') islope
969        call writediagpem(ngrid,'h2o_ice_slope'//str2,'H2O ice','kg.m-2',2,h2o_ice(:,islope))
970        call writediagpem(ngrid,'co2_ice_slope'//str2,'CO2 ice','kg.m-2',2,co2_ice(:,islope))
971        call writediagpem(ngrid,'d_h2oice_slope'//str2,'H2O ice tend','kg.m-2.year-1',2,d_h2oice(:,islope))
972        call writediagpem(ngrid,'d_co2ice_slope'//str2,'CO2 ice tend','kg.m-2.year-1',2,d_co2ice(:,islope))
973        call writediagpem(ngrid,'Flow_co2ice_slope'//str2,'CO2 ice flow','Boolean',2,real(flag_co2flow(:,islope)))
974        call writediagpem(ngrid,'Flow_h2oice_slope'//str2,'H2O ice flow','Boolean',2,real(flag_h2oflow(:,islope)))
975        call writediagpem(ngrid,'tsurf_slope'//str2,'tsurf','K',2,tsurf_avg(:,islope))
976        if (icetable_equilibrium) then
977            call writediagpem(ngrid,'ssi_depth_slope'//str2,'ice table depth','m',2,icetable_depth(:,islope))
978            call writediagpem(ngrid,'ssi_thick_slope'//str2,'ice table thickness','m',2,icetable_thickness(:,islope))
979        else if (icetable_dynamic) then
980            call writediagpem(ngrid,'ssi_depth_slope'//str2,'ice table depth','m',2,icetable_depth(:,islope))
981        endif
982
983        if (soil_pem) then
984            call writediagsoilpem(ngrid,'tsoil_PEM_slope'//str2,'tsoil','K',3,tsoil_PEM(:,:,islope))
985            call writediagsoilpem(ngrid,'inertiesoil_PEM_slope'//str2,'TI','K',3,TI_PEM(:,:,islope))
986            if (icetable_dynamic) call writediagsoilpem(ngrid,'ice_porefilling'//str2,'ice pore filling','-',3,ice_porefilling(:,:,islope))
987            if (adsorption_pem) then
988                call writediagsoilpem(ngrid,'co2_ads_slope'//str2,'co2_ads','K',3,co2_adsorbed_phys(:,:,islope))
989                call writediagsoilpem(ngrid,'h2o_ads_slope'//str2,'h2o_ads','K',3,h2o_adsorbed_phys(:,:,islope))
990            endif
991        endif
992    enddo
993    deallocate(flag_co2flow,flag_h2oflow)
994
995    ! Checking mass balance for CO2
996    totmass_co2ice = 0.
997    totmass_atmco2 = 0.
998    do ig = 1,ngrid
999        totmass_atmco2 = totmass_atmco2 + cell_area(ig)*ps_avg(ig)/g
1000        do islope = 1,nslope
1001            totmass_co2ice = totmass_co2ice + co2_ice(ig,islope)*cell_area(ig)*subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)
1002        enddo
1003    enddo
1004    write(*,'(a,f8.3,a)') " > Relative total CO2 mass balance = ", 100.*(totmass_atmco2 + totmass_co2ice + totmass_adsco2 - totmass_atmco2_ini - totmass_co2ice_ini - totmass_adsco2_ini)/(totmass_atmco2_ini + totmass_co2ice_ini + totmass_adsco2_ini), ' %'
1005    if ((totmass_atmco2 + totmass_co2ice + totmass_adsco2 - totmass_atmco2_ini - totmass_co2ice_ini - totmass_adsco2_ini)/(totmass_atmco2_ini + totmass_co2ice_ini + totmass_adsco2_ini) > 0.01) then
1006        write(*,*) '  /!\ Warning: mass balance is not conseved!'
1007        write(*,'(a,f8.3,a)') '       Atmospheric CO2 mass balance = ', 100.*(totmass_atmco2 - totmass_atmco2_ini)/totmass_atmco2_ini, ' %'
1008        write(*,'(a,f8.3,a)') '       CO2 ice mass balance         = ', 100.*(totmass_co2ice - totmass_co2ice_ini)/totmass_co2ice_ini, ' %'
1009        write(*,'(a,f8.3,a)') '       Adsorbed CO2 mass balance    = ', 100.*(totmass_adsco2 - totmass_adsco2_ini)/totmass_adsco2_ini, ' %'
1010    endif
1011
1012!------------------------
1013! II  Run
1014!    II_f Update the tendencies
1015!------------------------
1016    call recomp_tend_co2(ngrid,nslope,timelen,d_co2ice,d_co2ice_ini,co2_ice,emis,vmr_co2_PCM,vmr_co2_PEM_phys,ps_timeseries,ps_avg_global_old,ps_avg_global_new)
1017    write(*,*) "> Updating the H2O sub-surface ice tendency due to lag layer"
1018    if (layering_algo) then
1019        do ig = 1,ngrid
1020            do islope = 1,nslope
1021                if (is_h2oice_sublim_ini(ig,islope) .and. h2o_ice_depth(ig,islope) > 0.) call recomp_tend_h2o(h2o_ice_depth_old(ig,islope),h2o_ice_depth(ig,islope),tsurf_avg(ig,islope),tsoil_PEM_timeseries_old(ig,:,islope,:),tsoil_PEM_timeseries(ig,:,islope,:),d_h2oice(ig,islope))
1022            enddo
1023        enddo
1024!~     else
1025!~         do ig = 1,ngrid
1026!~             do islope = 1,nslope
1027!~                 call recomp_tend_h2o(icetable_depth_old(ig,islope),icetable_depth(ig,islope),tsurf_avg(ig,islope),tsoil_PEM_timeseries_old(ig,:,islope,:),tsoil_PEM_timeseries(ig,:,islope,:),d_h2oice(ig,islope))
1028!~             enddo
1029!~         enddo
1030    endif
1031    if (soil_pem) deallocate(icetable_depth_old,tsoil_PEM_timeseries_old)
1032    deallocate(vmr_co2_PEM_phys)
1033
1034!------------------------
1035! II  Run
1036!    II_g Checking the stopping criterion
1037!------------------------
1038    write(*,*) "> Checking the stopping criteria"
1039    call stopping_crit_h2o_ice(cell_area,h2oice_ini_surf,is_h2oice_sublim_ini,h2o_ice,stopPEM,ngrid)
1040    call stopping_crit_co2(cell_area,co2ice_sublim_surf_ini,is_co2ice_sublim_ini,co2_ice,stopPEM,ngrid,ps_avg_global_ini,ps_avg_global_new,nslope)
1041    i_myear_leg = i_myear_leg + dt
1042    i_myear = i_myear + dt
1043    if (stopPEM <= 0 .and. i_myear_leg >= n_myear_leg) stopPEM = 5
1044    if (stopPEM <= 0 .and. i_myear >= n_myear) stopPEM = 6
1045    call system_clock(c2)
1046    if (stopPEM <= 0 .and. timewall .and. real((c2 - c1)/cr) >= timelimit - antetime) stopPEM = 7
1047    if (stopPEM > 0) then
1048        select case (stopPEM)
1049            case(1)
1050                write(*,'(a,i0,a)') " **** STOPPING because surface of h2o ice sublimating is too low: ", stopPEM, ". See message above."
1051            case(2)
1052                write(*,'(a,i0,a)') " **** STOPPING because tendencies on h2o ice = 0: ", stopPEM, ". See message above."
1053            case(3)
1054                write(*,'(a,i0,a)') " **** STOPPING because surface of co2 ice sublimating is too low: ", stopPEM, ". See message above."
1055            case(4)
1056                write(*,'(a,i0,a)') " **** STOPPING because surface global pressure changed too much: ", stopPEM, ". See message above."
1057            case(5)
1058                write(*,'(a,i0)') " **** STOPPING because maximum number of iterations is reached (possibly due to orbital parameters): ", stopPEM
1059            case(6)
1060                write(*,'(a,i0)') " **** STOPPING because maximum number of Martian years to be simulated is reached: ", stopPEM
1061            case(7)
1062                write(*,'(a,i0)') " **** STOPPING because the time limit for the PEM job will be reached soon: ", stopPEM
1063            case default
1064                write(*,'(a,i0)') " **** STOPPING with unknown stopping criterion code: ", stopPEM
1065        end select
1066        exit
1067    else
1068        write(*,'(a,f10.2,a)') ' **** The chained simulation has run for ',i_myear,' Martian years.'
1069        write(*,*) '**** The PEM can continue!'
1070        write(*,*) '****'
1071    endif
1072enddo ! big time iteration loop of the pem
1073deallocate(vmr_co2_PCM,q_co2_PEM_phys,q_h2o_PEM_phys,delta_co2_adsorbed)
1074deallocate(watersoil_density_PEM_avg,watersurf_density_avg)
1075deallocate(ps_timeseries,tsoil_PEM_timeseries,watersoil_density_PEM_timeseries)
1076deallocate(co2ice_disappeared,delta_h2o_adsorbed,delta_h2o_icetablesublim)
1077deallocate(d_co2ice,d_co2ice_ini,d_h2oice)
1078deallocate(is_co2ice_ini,is_co2ice_sublim_ini,is_h2oice_sublim_ini)
1079if (layering_algo) deallocate(h2o_ice_depth_old,new_str,new_lag,current)
1080!------------------------------ END RUN --------------------------------
1081
1082!------------------------------- OUTPUT --------------------------------
1083!------------------------
1084! III Output
1085!    III_a Update surface values for the PCM start files
1086!------------------------
1087write(*,*)
1088write(*,*) '********* PEM finalization *********'
1089! III_a.1 Ice update for start file
1090write(*,*) '> Reconstructing perennial ice and frost for the PCM'
1091watercap = 0.
1092perennial_co2ice = co2_ice
1093do ig = 1,ngrid
1094    ! H2O ice metamorphism
1095    !if (metam_h2oice .and. sum(qsurf(ig,igcm_h2o_ice,:)*subslope_dist(ig,:)/cos(pi*def_slope_mean(:)/180.)) > metam_h2oice_threshold) then
1096    !    h2o_ice(ig,:) = h2o_ice(ig,:) + qsurf(ig,igcm_h2o_ice,:) - metam_h2oice_threshold
1097    !    qsurf(ig,igcm_h2o_ice,:) = metam_h2oice_threshold
1098    !endif
1099
1100    ! Is H2O ice still considered as an infinite reservoir for the PCM?
1101    if (sum(h2o_ice(ig,:)*subslope_dist(ig,:)/cos(pi*def_slope_mean(:)/180.)) > inf_h2oice_threshold) then
1102        ! There is enough ice to be considered as an infinite reservoir
1103        watercaptag(ig) = .true.
1104    else
1105        ! Too little ice to be considered as an infinite reservoir so ice is transferred to the frost
1106        watercaptag(ig) = .false.
1107        qsurf(ig,igcm_h2o_ice,:) = qsurf(ig,igcm_h2o_ice,:) + h2o_ice(ig,:)
1108        h2o_ice(ig,:) = 0.
1109    endif
1110
1111    ! CO2 ice metamorphism
1112    !if (metam_co2ice .and. sum(qsurf(ig,igcm_co2,:)*subslope_dist(ig,:)/cos(pi*def_slope_mean(:)/180.)) > metam_co2ice_threshold) then
1113    !    perennial_co2ice(ig,:) = perennial_co2ice(ig,:) + qsurf(ig,igcm_co2,:) - metam_co2ice_threshold
1114    !    qsurf(ig,igcm_co2,:) = metam_co2ice_threshold
1115    !endif
1116enddo
1117
1118! III.a.3. Tsurf update for start file
1119write(*,*) '> Reconstructing the surface temperature for the PCM'
1120tsurf = tsurf_avg + tsurf_dev
1121deallocate(tsurf_dev)
1122
1123! III_a.4 Tsoil update for start file
1124if (soil_pem) then
1125    write(*,*) '> Reconstructing the soil temperature profile for the PCM'
1126    inertiesoil = TI_PEM(:,:nsoilmx,:)
1127    ! Tsurf has evolved and so the soil temperature profile needs to be adapted to match this new value
1128    do isoil = 1,nsoilmx
1129        tsoil_dev(:,isoil,:) = tsoil_dev(:,isoil,:)*(tsurf_avg(:,:) - tsoil_PEM(:,1,:))/tsoil_dev(:,1,:)
1130    enddo
1131    tsoil = tsoil_PEM(:,1:nsoilmx,:) + tsoil_dev
1132#ifndef CPP_STD
1133    flux_geo = fluxgeo
1134#endif
1135endif
1136deallocate(tsurf_avg,tsoil_dev)
1137
1138! III_a.5 Pressure update for start file
1139write(*,*) '> Reconstructing the pressure for the PCM'
1140allocate(ps_start(ngrid))
1141! The pressure deviation is rescaled as well to avoid disproportionate oscillations in case of huge average pressure drop
1142ps_start = ps_avg + ps_dev*ps_avg_global_new/ps_avg_global_ini
1143deallocate(ps_avg,ps_dev)
1144
1145! III_a.6 Tracers update for start file
1146write(*,*) '> Reconstructing the tracer VMR for the PCM'
1147allocate(zplev_start0(ngrid,nlayer + 1),zplev_new(ngrid,nlayer + 1))
1148do l = 1,nlayer + 1
1149    zplev_start0(:,l) = ap(l) + bp(l)*ps_start0
1150    zplev_new(:,l) = ap(l) + bp(l)*ps_start
1151enddo
1152
1153do nnq = 1,nqtot
1154    if (noms(nnq) /= "co2") then
1155        do l = 1,llm - 1
1156            do ig = 1,ngrid
1157                q(ig,l,nnq) = q(ig,l,nnq)*(zplev_start0(ig,l) - zplev_start0(ig,l + 1))/(zplev_new(ig,l) - zplev_new(ig,l + 1))
1158            enddo
1159            q(:,llm,nnq) = q(:,llm - 1,nnq)
1160        enddo
1161    else
1162        do l = 1,llm - 1
1163            do ig = 1,ngrid
1164                q(ig,l,nnq) = q(ig,l,nnq)*(zplev_start0(ig,l) - zplev_start0(ig,l + 1))/(zplev_new(ig,l) - zplev_new(ig,l + 1)) &
1165                              + ((zplev_new(ig,l) - zplev_new(ig,l + 1)) - (zplev_start0(ig,l) - zplev_start0(ig,l + 1)))/(zplev_new(ig,l) - zplev_new(ig,l + 1))
1166            enddo
1167            q(:,llm,nnq) = q(:,llm - 1,nnq)
1168        enddo
1169    endif
1170enddo
1171deallocate(zplev_start0)
1172
1173! Conserving the tracers mass for start file
1174do nnq = 1,nqtot
1175    do ig = 1,ngrid
1176        do l = 1,llm - 1
1177            if (q(ig,l,nnq) > 1 .and. (noms(nnq) /= "dust_number") .and. (noms(nnq) /= "ccn_number") .and. (noms(nnq) /= "stormdust_number") .and. (noms(nnq) /= "topdust_number")) then
1178                extra_mass = (q(ig,l,nnq) - 1)*(zplev_new(ig,l) - zplev_new(ig,l + 1))
1179                q(ig,l,nnq) = 1.
1180                q(ig,l + 1,nnq) = q(ig,l + 1,nnq) + extra_mass*(zplev_new(ig,l + 1) - zplev_new(ig,l + 2))
1181                write(*,*) 'extra ',noms(nnq),extra_mass, noms(nnq) /= "dust_number",noms(nnq) /= "ccn_number"
1182            endif
1183            if (q(ig,l,nnq) < 0) q(ig,l,nnq) = 1.e-30
1184        enddo
1185    enddo
1186enddo
1187deallocate(zplev_new)
1188
1189! III_a.7 Albedo update for start file
1190write(*,*) '> Reconstructing the albedo for the PCM'
1191do ig = 1,ngrid
1192    if (latitude(ig) < 0.) then
1193        icap = 2 ! Southern hemisphere
1194    else
1195        icap = 1 ! Northern hemisphere
1196    endif
1197    do islope = 1,nslope
1198        ! Bare ground
1199        albedo(ig,:,islope) = albedodat(ig)
1200        emis(ig,islope) = emissiv
1201
1202        ! CO2 ice/frost is treated after H20 ice/frost because it is considered dominant
1203        ! H2O ice
1204        if (h2o_ice(ig,islope) > 0.) then
1205            albedo(ig,:,islope) = albedo_h2o_cap
1206            emis(ig,islope) = 1.
1207        endif
1208        ! CO2 ice
1209        if (co2_ice(ig,islope) > 0.) then
1210            albedo(ig,:,islope) = albedo_perennialco2(icap)
1211            emis(ig,islope) = emisice(icap)
1212        endif
1213        ! H2O frost
1214        if (qsurf(ig,igcm_h2o_ice,islope) > 0.) then
1215            albedo(ig,:,islope) = albedo_h2o_frost
1216            emis(ig,islope) = 1.
1217        endif
1218        ! CO2 frost
1219        if (qsurf(ig,igcm_co2,islope) > 0.) then
1220            albedo(ig,:,islope) = albedice(icap)
1221            emis(ig,islope) = emisice(icap)
1222        endif
1223    enddo
1224enddo
1225
1226! III_a.8 Orbital parameters update for start file
1227write(*,*) '> Setting the new orbital parameters'
1228if (evol_orbit_pem) call recomp_orb_param(i_myear,i_myear_leg)
1229
1230!------------------------
1231! III Output
1232!    III_b Write "restart.nc" and "restartfi.nc"
1233!------------------------
1234! III_b.1 Write "restart.nc"
1235ptimestep = iphysiq*daysec/real(day_step)/nsplit_phys ! dtphys/nsplit_phys
1236pday = day_ini
1237ztime_fin = time_phys
1238#ifndef CPP_1D
1239    write(*,*) '> Writing "restart.nc"'
1240    ! Correction on teta due to surface pressure changes
1241    allocate(pdyn(ip1jmp1))
1242    call gr_fi_dyn(1,ngrid,iip1,jjp1,ps_start0/ps_start,pdyn)
1243    do i = 1,ip1jmp1
1244        teta(i,:) = teta(i,:)*pdyn(i)**rcp
1245    enddo
1246    ! Correction on atmospheric pressure
1247    allocate(p(ip1jmp1,nlayer + 1))
1248    call gr_fi_dyn(1,ngrid,iip1,jjp1,ps_start,pdyn)
1249    call pression(ip1jmp1,ap,bp,pdyn,p)
1250    ! Correction on the mass of atmosphere
1251    call massdair(p,masse)
1252    call dynredem0("restart.nc",day_ini,phis)
1253    call dynredem1("restart.nc",time_0,vcov,ucov,teta,q,masse,pdyn)
1254    deallocate(ap,bp,p,pdyn)
1255#else
1256    write(*,*) '> Writing "restart1D.txt"'
1257    call writerestart1D('restart1D.txt',ps_start(1),tsurf(1,:),nlayer,size(tsurf,2),teta,ucov,vcov,nq,noms,qsurf(1,:,:),q)
1258#endif
1259deallocate(ps_start0,ps_start)
1260
1261! III_b.2 Write the "restartfi.nc"
1262write(*,*) '> Writing "restartfi.nc"'
1263#ifndef CPP_STD
1264    call physdem0("restartfi.nc",longitude,latitude,nsoilmx,ngrid, &
1265                  nlayer,nq,ptimestep,pday,0.,cell_area,albedodat, &
1266                  inertiedat,def_slope,subslope_dist)
1267    call physdem1("restartfi.nc",nsoilmx,ngrid,nlayer,nq,nqsoil,      &
1268                  ptimestep,ztime_fin,tsurf,tsoil,inertiesoil,        &
1269                  albedo,emis,q2,qsurf,qsoil,tauscaling,totcloudfrac, &
1270                  wstar,watercap,perennial_co2ice)
1271#else
1272    if (allocated(noms)) deallocate(noms)
1273    deallocate(qsurf,tsurf,tsoil,emis,watercap,watercaptag,albedo,inertiesoil)
1274    call physdem0("restartfi.nc",longitude,latitude,nsoilmx,ngrid, &
1275                  nlayer,nq,ptimestep,pday,time_phys,cell_area,    &
1276                  albedo_bareground,inertiedat,zmea,zstd,zsig,zgam,zthe)
1277    call physdem1("restartfi.nc",nsoilmx,ngrid,nlayer,nq,nqsoil,       &
1278                  ptimestep,ztime_fin,tsurf,tsoil,emis,q2,qsurf,qsoil, &
1279                  cloudfrac,totcloudfrac,hice,rnat,pctsrf_sic,tslab,   &
1280                  tsea_ice,sea_ice)
1281#endif
1282
1283!------------------------
1284! III Output
1285!    III_c Write the "restartpem.nc"
1286!------------------------
1287write(*,*) '> Writing "restartpem.nc"'
1288if (layering_algo) nb_str_max = get_nb_str_max(layerings_map,ngrid,nslope) ! Get the maximum number of "stratum" in the layerings_mapication (layerings)
1289call pemdem0("restartpem.nc",longitude,latitude,cell_area,ngrid,nslope,def_slope,subslope_dist)
1290call pemdem1("restartpem.nc",i_myear,nsoilmx_PEM,ngrid,nslope,tsoil_PEM,TI_PEM,icetable_depth,icetable_thickness,ice_porefilling, &
1291             co2_adsorbed_phys,h2o_adsorbed_phys,h2o_ice,layerings_map)
1292
1293call info_PEM(i_myear_leg,stopPEM,i_myear,n_myear)
1294
1295write(*,*)
1296write(*,*) '****** PEM final information *******'
1297write(*,'(a,f16.4,a)') " + The PEM leg has run for ", i_myear_leg, " Martian years."
1298write(*,'(a,f16.4,a,f16.4,a)') " + The chained simulation has run for ", i_myear, " Martian years =", i_myear*convert_years, " Earth years."
1299write(*,'(a,f16.4,a)') " + The reached date is now ", (year_bp_ini + i_myear)*convert_years, " Earth years."
1300write(*,*) "+ PEM: so far, so good!"
1301write(*,*) '************************************'
1302
1303if (layering_algo) then
1304    do islope = 1,nslope
1305        do i = 1,ngrid
1306            call del_layering(layerings_map(i,islope))
1307        enddo
1308    enddo
1309endif
1310deallocate(q,longitude,latitude,cell_area,tsoil_PEM)
1311deallocate(co2_ice,h2o_ice,layerings_map)
1312!----------------------------- END OUTPUT ------------------------------
1313
1314END PROGRAM pem
Note: See TracBrowser for help on using the repository browser.