source: trunk/LMDZ.COMMON/libf/evolution/pem.F90 @ 3770

Last change on this file since 3770 was 3770, checked in by jbclement, 5 weeks ago

PEM:
Revision of the layering structure and algorithm:

  • 'stratum' components are now expressed in height
  • deletion of the (redundant) thickness feature of 'stratum'
  • 'stratif' in the PEM main program is renamed 'deposits'
  • addition of several procedures to get useful information about a stratum (major component or thickness)
  • all subsurface layers are now represented in the layering structure by strata with negative top elevation
  • simplification of the different situations arising from the input tendencies
  • porosity is determined for the entire stratum (and not anymore for each component) based on dominant component
  • sublimation of CO2 and H2O ice is now handled simultaneously (more realistic) in a stratum
  • linking the layering algorithm with the PEM initilization/finalization regarding PCM data and with the PEM stopping criteria
  • making separate cases for glaciers vs layering management
  • H2O sublimation flux correction is now handled with the layering when a dust lag layer layer is growing
  • update of 'h2o_ice_depth' and 'zdqsdif' accordingly at the PEM end for the PCM

JBC

File size: 69.4 KB
Line 
1!------------------------
2! I   Initialization
3!    I_a Read the "run.def"
4!    I_b Read the "start.nc" and "startfi.nc"
5!    I_c Subslope parametrisation
6!    I_d Read the PCM data and convert them to the physical grid
7!    I_e Initialization of the PEM variable and soil
8!    I_f Compute tendencies
9!    I_g Compute global surface pressure
10!    I_h Read the "startpem.nc"
11!    I_i Compute orbit criterion
12
13! II  Run
14!    II_a Update pressure, ice and tracers
15!    II_b Evolution of ice
16!    II_c Flow of glaciers
17!    II_d Update surface and soil temperatures
18!    II_e Outputs
19!    II_f Update the tendencies
20!    II_g Checking the stopping criterion
21
22! III Output
23!    III_a Update surface values for the PCM start files
24!    III_b Write the "restart.nc" and "restartfi.nc"
25!    III_c Write the "restartpem.nc"
26!------------------------
27
28PROGRAM pem
29
30use phyetat0_mod,               only: phyetat0
31use phyredem,                   only: physdem0, physdem1
32use netcdf,                     only: nf90_open, NF90_NOWRITE, nf90_get_var, nf90_inq_varid, nf90_close
33use turb_mod,                   only: q2, wstar
34use comslope_mod,               only: nslope, def_slope, def_slope_mean, subslope_dist, iflat, ini_comslope_h
35use logic_mod,                  only: iflag_phys
36use mod_const_mpi,              only: COMM_LMDZ
37use infotrac
38use geometry_mod,               only: latitude_deg
39use conf_pem_mod,               only: conf_pem
40use pemredem,                   only: pemdem0, pemdem1
41use glaciers_mod,               only: flow_co2glaciers, flow_h2oglaciers, co2ice_flow, h2oice_flow, inf_h2oice_threshold, &
42                                      metam_h2oice_threshold, metam_co2ice_threshold, metam_h2oice, metam_co2ice, computeTcondCO2
43use stopping_crit_mod,          only: stopping_crit_h2o_ice, stopping_crit_co2
44use constants_marspem_mod,      only: alpha_clap_co2, beta_clap_co2, alpha_clap_h2o, beta_clap_h2o, m_co2, m_noco2
45use evol_ice_mod,               only: evol_co2_ice, evol_h2o_ice
46use comsoil_h_PEM,              only: soil_pem, ini_comsoil_h_PEM, end_comsoil_h_PEM, nsoilmx_PEM, &
47                                      TI_PEM,               & ! Soil thermal inertia
48                                      tsoil_PEM, layer_PEM, & ! Soil temp, number of subsurface layers, soil mid layer depths
49                                      fluxgeo                 ! Geothermal flux for the PEM and PCM
50use adsorption_mod,             only: regolith_adsorption, adsorption_pem,        & ! Bool to check if adsorption, main subroutine
51                                      ini_adsorption_h_PEM, end_adsorption_h_PEM, & ! Allocate arrays
52                                      co2_adsorbed_phys, h2o_adsorbed_phys          ! Mass of co2 and h2O adsorbed
53use time_evol_mod,              only: dt, evol_orbit_pem, Max_iter_pem, convert_years, year_bp_ini
54use orbit_param_criterion_mod,  only: orbit_param_criterion
55use recomp_orb_param_mod,       only: recomp_orb_param
56use ice_table_mod,              only: icetable_depth, icetable_thickness, end_ice_table, ice_porefilling, &
57                                      ini_ice_table, icetable_equilibrium, icetable_dynamic, computeice_table_equilibrium, compute_massh2o_exchange_ssi
58use soil_thermalproperties_mod, only: update_soil_thermalproperties
59use time_phylmdz_mod,           only: daysec, dtphys
60use abort_pem_mod,              only: abort_pem
61use soil_settings_PEM_mod,      only: soil_settings_PEM
62use compute_tend_mod,           only: compute_tend
63use info_PEM_mod,               only: info_PEM
64use get_timelen_PCM_mod,        only: get_timelen_PCM
65use pemetat0_mod,               only: pemetat0
66use read_data_PCM_mod,          only: read_data_PCM
67use recomp_tend_mod,            only: recomp_tend_co2, recomp_tend_h2o
68use compute_soiltemp_mod,       only: compute_tsoil_pem, shift_tsoil2surf
69use writediagpem_mod,           only: writediagpem, writediagsoilpem
70use co2condens_mod,             only: CO2cond_ps
71use layering_mod,               only: ptrarray, stratum, layering, del_layering, make_layering, get_nb_str_max, &
72                                      nb_str_max, layering_algo, thickness_toplag, is_dust_lag, is_h2oice_str
73use dyn_ss_ice_m_mod,           only: dyn_ss_ice_m
74use version_info_mod,           only: print_version_info
75use paleoclimate_mod,           only: h2o_ice_depth, zdqsdif_ssi_tot
76
77#ifndef CPP_STD
78    use comsoil_h,          only: tsoil, nsoilmx, ini_comsoil_h, inertiedat, mlayer, inertiesoil, flux_geo, nqsoil, qsoil
79    use surfdat_h,          only: tsurf, qsurf, emis, emissiv, emisice, ini_surfdat_h,   &
80                                  albedodat, albedice, albedo_h2o_frost, albedo_h2o_cap, &
81                                  zmea, zstd, zsig, zgam, zthe, frost_albedo_threshold,  &
82                                  watercap, watercaptag, perennial_co2ice, albedo_perennialco2
83    use dimradmars_mod,     only: totcloudfrac, albedo
84    use dust_param_mod,     only: tauscaling
85    use tracer_mod,         only: noms, igcm_h2o_ice, igcm_co2, mmol, igcm_h2o_vap ! Tracer names and molar masses
86    use mod_phys_lmdz_para, only: is_parallel, is_sequential, is_mpi_root, is_omp_root, is_master
87    use planete_h,          only: aphelie, periheli, year_day, peri_day, obliquit, iniorbit
88    use surfini_mod,        only: surfini
89    use comconst_mod,       only: pi, rad, g, cpp, kappa
90    use comcstfi_h,         only: mugaz
91#else
92    use tracer_h,           only: noms, igcm_h2o_ice, igcm_co2 ! Tracer names
93    use phys_state_var_mod, only: cloudfrac, totcloudfrac, albedo_snow_SPECTV,HICE,RNAT,   &
94                                  PCTSRF_SIC, TSLAB, TSEA_ICE, SEA_ICE, ALBEDO_BAREGROUND, &
95                                  ALBEDO_CO2_ICE_SPECTV, phys_state_var_init
96    use aerosol_mod,        only: iniaerosol
97    use planete_mod,        only: apoastr, periastr, year_day, peri_day, obliquit
98    use comcstfi_mod,       only: pi, rad, g, mugaz, r
99#endif
100
101#ifndef CPP_1D
102    use comconst_mod,             only: r
103    use iniphysiq_mod,            only: iniphysiq
104    use control_mod,              only: iphysiq, day_step, nsplit_phys
105#else
106    use comcstfi_h,               only: r
107    use time_phylmdz_mod,         only: iphysiq, steps_per_sol
108    use regular_lonlat_mod,       only: init_regular_lonlat
109    use physics_distribution_mod, only: init_physics_distribution
110    use mod_grid_phy_lmdz,        only: regular_lonlat
111    use init_testphys1d_mod,      only: init_testphys1d
112    use comvert_mod,              only: ap, bp
113    use writerestart1D_mod,       only: writerestart1D
114#endif
115
116implicit none
117
118include "dimensions.h"
119include "paramet.h"
120include "comgeom.h"
121include "iniprint.h"
122
123! Same variable names as in the PCM
124integer, parameter :: ngridmx = 2 + (jjm - 1)*iim - 1/jjm
125integer, parameter :: nlayer = llm ! Number of vertical layer
126integer            :: ngrid        ! Number of physical grid points
127integer            :: nq           ! Number of tracer
128integer            :: day_ini      ! First day of the simulation
129real               :: pday         ! Physical day
130real               :: time_phys    ! Same as in PCM
131real               :: ptimestep    ! Same as in PCM
132real               :: ztime_fin    ! Same as in PCM
133
134! Variables to read "start.nc"
135character(*), parameter :: start_name = "start.nc" ! Name of the file used to initialize the PEM
136
137! Dynamic variables
138real, dimension(ip1jm,llm)          :: vcov          ! vents covariants
139real, dimension(ip1jmp1,llm)        :: ucov          ! vents covariants
140real, dimension(ip1jmp1,llm)        :: teta          ! Potential temperature
141real, dimension(:,:,:), allocatable :: q             ! champs advectes
142real, dimension(:),     allocatable :: pdyn          ! pressure for the dynamic grid
143real, dimension(:),     allocatable :: ps_start      ! surface pressure in the start file
144real, dimension(:),     allocatable :: ps_start0     ! surface pressure in the start file at the beginning
145real, dimension(:),     allocatable :: ps_avg        ! (ngrid) Average surface pressure
146real, dimension(:),     allocatable :: ps_dev        ! (ngrid x timelen) Surface pressure deviation
147real, dimension(:,:),   allocatable :: ps_timeseries ! (ngrid x timelen) Instantaneous surface pressure
148real, dimension(ip1jmp1,llm)        :: masse         ! Air mass
149real, dimension(ip1jmp1)            :: phis          ! geopotentiel au sol
150real                                :: time_0
151
152! Variables to read starfi.nc
153character(*), parameter :: startfi_name = "startfi.nc" ! Name of the file used to initialize the PEM
154character(2)            :: str2
155integer                 :: ncid, status                           ! Variable for handling opening of files
156integer                 :: lonvarid, latvarid, areavarid, sdvarid ! Variable ID for Netcdf files
157integer                 :: apvarid, bpvarid                       ! Variable ID for Netcdf files
158
159! Variables to read starfi.nc and write restartfi.nc
160real, dimension(:), allocatable :: longitude     ! Longitude read in startfi_name and written in restartfi
161real, dimension(:), allocatable :: latitude      ! Latitude read in startfi_name and written in restartfi
162real, dimension(:), allocatable :: cell_area     ! Cell_area read in startfi_name and written in restartfi
163real                            :: total_surface ! Total surface of the planet
164
165! Variables for h2o_ice evolution
166real, dimension(:,:),    allocatable  :: h2o_ice              ! h2o ice in the PEM
167real, dimension(:,:),    allocatable  :: d_h2oice             ! physical point x slope field: Tendency of evolution of perennial h2o ice
168real, dimension(:,:,:),  allocatable  :: min_h2o_ice          ! Minima of h2o ice at each point for the PCM years [kg/m^2]
169real                                  :: h2oice_ini_surf      ! Initial surface of sublimating h2o ice
170logical, dimension(:,:), allocatable  :: is_h2oice_sublim_ini ! Logical array to know if h2o ice is sublimating
171real                                  :: ps_avg_global_ini    ! constant: Global average pressure at initialization [Pa]
172real                                  :: ps_avg_global_old    ! constant: Global average pressure of previous time step
173real                                  :: ps_avg_global_new    ! constant: Global average pressure of current time step
174real,   dimension(:,:),   allocatable :: zplev_new            ! Grid points x Atmospheric field: mass of the atmospheric layers in the pem at current time step [kg/m^2]
175real,   dimension(:,:),   allocatable :: zplev_start0         ! Grid points x Atmospheric field: mass of the atmospheric layers in the start [kg/m^2]
176real,   dimension(:,:,:), allocatable :: zplev_timeseries_new ! Grid points x Atmospheric x Time: same as zplev_new, but in times series [kg/m ^2]
177real,   dimension(:,:,:), allocatable :: zplev_timeseries_old ! same but with the time series, for previous time step
178integer                               :: stopPEM              ! which criterion is reached? 0 = no stopping; 1 = h2o ice surf; 2 = no h2o ice; 3 = co2 ice surf; 4 = ps; 5 = orb param; 6 = end of simu
179real                                  :: A, B, mmean          ! Molar mass: intermediate A, B for computations of the  mean molar mass of the layer [mol/kg]
180real,   dimension(:,:),   allocatable :: q_h2o_PEM_phys       ! Grid points x Times: h2o mass mixing ratio computed in the PEM, first value comes from PCM [kg/kg]
181integer                               :: timelen              ! # time samples
182real                                  :: extra_mass           ! Intermediate variables Extra mass of a tracer if it is greater than 1
183
184! Variables for co2_ice evolution
185real,    dimension(:,:), allocatable :: co2_ice                ! co2 ice in the PEM
186real,    dimension(:,:), allocatable :: d_co2ice               ! physical point x slope field: Tendency of evolution of perennial co2 ice over a year
187real,    dimension(:,:), allocatable :: d_co2ice_ini           ! physical point x slope field: Tendency of evolution of perennial co2 ice over a year in the PCM
188logical, dimension(:,:), allocatable :: is_co2ice_ini          ! Was there co2 ice initially in the PEM?
189real,  dimension(:,:,:), allocatable :: min_co2_ice            ! Minimum of co2 ice at each point for the first year [kg/m^2]
190real                                 :: co2ice_sublim_surf_ini ! Initial surface of sublimating co2 ice
191logical, dimension(:,:), allocatable :: is_co2ice_sublim_ini   ! Logical array to know if co2 ice is sublimating
192real,    dimension(:,:), allocatable :: vmr_co2_PCM            ! Grid points x Times co2 volume mixing ratio retrieve from the PCM [m^3/m^3]
193real,    dimension(:,:), allocatable :: vmr_co2_PEM_phys       ! Grid points x Times co2 volume mixing ratio used in the PEM
194real,    dimension(:,:), allocatable :: q_co2_PEM_phys         ! Grid points x Times co2 mass mixing ratio in the first layer computed in the PEM, first value comes from PCM [kg/kg]
195
196! Variables for the evolution of layered deposits
197type(layering), dimension(:,:), allocatable :: deposits          ! Layering for each grid point and slope
198type(ptrarray), dimension(:,:), allocatable :: current           ! Current active stratum in the layering
199logical,        dimension(:,:), allocatable :: new_str, new_lag  ! Flags for the layering algorithm
200real                                        :: h2o_ice_depth_old ! Old depth of subsurface ice layer
201
202! Variables for slopes
203integer(kind = 1), dimension(:,:), allocatable :: flag_co2flow ! (ngrid,nslope): Flag where there is a CO2 glacier flow
204integer(kind = 1), dimension(:,:), allocatable :: flag_h2oflow ! (ngrid,nslope): Flag where there is a H2O glacier flow
205
206! Variables for surface and soil
207real, dimension(:,:),     allocatable :: tsurf_avg                        ! Grid points x Slope field: Average surface temperature [K]
208real, dimension(:,:),     allocatable :: tsurf_dev                        ! Grid points x Slope field: Surface temperature deviation [K]
209real, dimension(:,:),     allocatable :: tsurf_avg_yr1                    ! Grid points x Slope field: Average surface temperature of first call of the PCM [K]
210real, dimension(:,:,:),   allocatable :: tsoil_avg                        ! Grid points x Soil x Slope field: Average Soil Temperature [K]
211real, dimension(:,:),     allocatable :: tsoil_avg_old                    ! Grid points x Soil field: Average Soil Temperature at the previous time step [K]
212real, dimension(:,:,:),   allocatable :: tsoil_dev                        ! Grid points x Soil x Slope field: Soil temperature deviation [K]
213real, dimension(:,:,:,:), allocatable :: tsoil_timeseries                 ! Grid points x Soil x Slope x Times field: Soil temperature timeseries [K]
214real, dimension(:,:,:,:), allocatable :: tsoil_PEM_timeseries             ! Grid points x Soil x Slope x Times field: Soil temperature timeseries for PEM [K]
215real, dimension(:,:,:,:), allocatable :: tsoil_PEM_timeseries_old         ! Grid points x Soil x Slope x Times field: Soil temperature timeseries for PEM at the previous time step [K]
216real, dimension(:,:,:,:), allocatable :: watersoil_density_timeseries     ! Grid points x Soil x Slope x Times Water soil density timeseries [kg /m^3]
217real, dimension(:,:),     allocatable :: watersurf_density_avg            ! Grid points x Slope: Average water surface density [kg/m^3]
218real, dimension(:,:,:,:), allocatable :: watersoil_density_PEM_timeseries ! Grid points x Soil x Slope x Times: Water soil density timeseries for PEM [kg/m^3]
219real, dimension(:,:,:),   allocatable :: watersoil_density_PEM_avg        ! Grid points x Soil x Slopes: Average water soil density [kg/m^3]
220real, dimension(:),       allocatable :: delta_co2_adsorbed               ! Physics: quantity of CO2 that is exchanged because of adsorption / desorption [kg/m^2]
221real, dimension(:),       allocatable :: delta_h2o_adsorbed               ! Physics: quantity of H2O that is exchanged because of adsorption / desorption [kg/m^2]
222real                                  :: totmassco2_adsorbed              ! Total mass of CO2 that is exchanged because of adsorption / desoprtion over the planets [kg]
223real                                  :: totmassh2o_adsorbed              ! Total mass of H2O that is exchanged because of adsorption / desoprtion over the planets [kg]
224logical, dimension(:,:),  allocatable :: co2ice_disappeared               ! logical to check if a co2 ice reservoir already disappeared at a previous timestep
225real, dimension(:,:),     allocatable :: icetable_thickness_old           ! ngrid x nslope: Thickness of the ice table at the previous iteration [m]
226real, dimension(:,:,:),   allocatable :: ice_porefilling_old              ! ngrid x nslope: Ice pore filling at the previous iteration [m]
227real, dimension(:),       allocatable :: delta_h2o_icetablesublim         ! ngrid x Total mass of the H2O that has sublimated / condenses from the ice table [kg]
228real, dimension(:),       allocatable :: porefill                         ! Pore filling (output) to compute the dynamic ice table
229real                                  :: ssi_depth                        ! Ice table depth (output) to compute the dynamic ice table
230real, dimension(:,:),     allocatable :: zshift_surf                      ! Elevation shift for the surface [m]
231real, dimension(:,:),     allocatable :: zlag                             ! Newly built lag thickness [m]
232real, dimension(:,:),     allocatable :: icetable_depth_old               ! Old depth of the ice table
233
234! Some variables for the PEM run
235real, parameter       :: year_step = 1   ! Timestep for the pem
236real                  :: i_myear_leg     ! Number of iteration
237real                  :: n_myear_leg     ! Maximum number of iterations before stopping
238real                  :: i_myear         ! Global number of Martian years of the chained simulations
239real                  :: n_myear         ! Maximum number of Martian years of the chained simulations
240real                  :: timestep        ! Timestep [s]
241character(100)        :: arg             ! To read command-line arguments program was invoked
242logical               :: timewall        ! Flag to use the time limit stopping criterion in case of a PEM job
243integer(kind = 8)     :: cr              ! Number of clock ticks per second (count rate)
244integer(kind = 8)     :: c1, c2          ! Counts of processor clock
245character(100)        :: chtimelimit     ! Time limit for the PEM job outputted by the SLURM command
246real                  :: timelimit       ! Time limit for the PEM job in seconds
247real, parameter       :: antetime = 3600 ! Anticipation time to prevent reaching the job time limit: 3600 s by default (it should cover the computing time of the reshaping tool)
248integer               :: cstat, days, hours, minutes, seconds
249character(1)          :: sep
250character(8)          :: date
251character(10)         :: time
252character(5)          :: zone
253integer, dimension(8) :: values
254character(128)        :: dir = ' '
255character(32)         :: logname = ' '
256character(32)         :: hostname = ' '
257
258#ifdef CPP_STD
259    real                                :: frost_albedo_threshold = 0.05 ! Frost albedo threeshold to convert fresh frost to old ice
260    real                                :: albedo_h2o_frost              ! Albedo of h2o frost
261    real, dimension(:),     allocatable :: tsurf_read_generic            ! Temporary variable to do the subslope transfert dimension when reading form generic
262    real, dimension(:,:),   allocatable :: qsurf_read_generic            ! Temporary variable to do the subslope transfert dimension when reading form generic
263    real, dimension(:,:),   allocatable :: tsoil_read_generic            ! Temporary variable to do the subslope transfert dimension when reading form generic
264    real, dimension(:),     allocatable :: emis_read_generic             ! Temporary variable to do the subslope transfert dimension when reading form generic
265    real, dimension(:,:),   allocatable :: albedo_read_generic           ! Temporary variable to do the subslope transfert dimension when reading form generic
266    real, dimension(:,:),   allocatable :: tsurf                         ! Subslope variable, only needed in the GENERIC case
267    real, dimension(:,:,:), allocatable :: qsurf                         ! Subslope variable, only needed in the GENERIC case
268    real, dimension(:,:,:), allocatable :: tsoil                         ! Subslope variable, only needed in the GENERIC case
269    real, dimension(:,:),   allocatable :: emis                          ! Subslope variable, only needed in the GENERIC case
270    real, dimension(:,:),   allocatable :: watercap                      ! Subslope variable, only needed in the GENERIC case =0 no watercap in generic model
271    logical, dimension(:),  allocatable :: watercaptag                   ! Subslope variable, only needed in the GENERIC case =false no watercaptag in generic model
272    real, dimension(:,:,:), allocatable :: albedo                        ! Subslope variable, only needed in the GENERIC case
273    real, dimension(:,:,:), allocatable :: inertiesoil                   ! Subslope variable, only needed in the GENERIC case
274#endif
275
276#ifdef CPP_1D
277    integer            :: nsplit_phys
278    integer, parameter :: jjm_value = jjm - 1
279    integer            :: day_step
280
281    ! Dummy variables to use the subroutine 'init_testphys1d'
282    logical                             :: therestart1D, therestartfi, prescribed_h2ovap
283    integer                             :: ndt, day0
284    real                                :: ptif, pks, day, gru, grv, h2ovap_relax_time
285    real, dimension(:),     allocatable :: zqsat
286    real, dimension(:,:,:), allocatable :: dq, dqdyn
287    real, dimension(nlayer)             :: play, w, q_prescribed_h2o_vap
288    real, dimension(nlayer + 1)         :: plev
289#else
290    integer, parameter                :: jjm_value = jjm
291    real, dimension(:),   allocatable :: ap ! Coefficient ap read in start_name and written in restart
292    real, dimension(:),   allocatable :: bp ! Coefficient bp read in start_name and written in restart
293    real, dimension(:,:), allocatable :: p  ! Grid points x Atmosphere: pressure to recompute and write in restart (ip1jmp1,llmp1)
294#endif
295
296! Loop variables
297integer :: i, l, ig, nnq, t, islope, ig_loop, islope_loop, isoil, icap
298logical :: num_str
299
300write(*,*) '  *    .          .   +     .    *        .  +      .    .       .      '
301write(*,*) '           +         _______  ________  ____    ____      *           + '
302write(*,*) ' +   .        *     |_   __ \|_   __  ||_   \  /   _|          .       *'
303write(*,*) '          .     .     | |__) | | |_ \_|  |   \/   |  *        *      .  '
304write(*,*) '       .              |  ___/  |  _| _   | |\  /| |      .        .     '
305write(*,*) '.  *          *      _| |_    _| |__/ | _| |_\/_| |_                  * '
306write(*,*) '            +       |_____|  |________||_____||_____|   +     .         '
307write(*,*) '  .      *          .   *       .   +       *          .        +      .'
308
309! Elapsed time with system clock
310call system_clock(count_rate = cr)
311call system_clock(c1)
312timewall = .true.
313timelimit = 86400 ! 86400 seconds = 24 h by default
314if (command_argument_count() > 0) then ! Get the number of command-line arguments
315    call get_command_argument(1,arg) ! Read the argument given to the program
316    num_str = .true.
317    do i = 1,len_trim(arg)
318        if (arg(i:i) < '0' .or. arg(i:i) > '9') then
319            num_str = .false.
320            exit
321        endif
322    enddo
323
324    if (num_str) then ! This is a numeric sting so we considerer this is the job id
325           ! Execute the system command
326            call execute_command_line('squeue -j '//trim(adjustl(arg))//' -h --Format TimeLimit > tmp_cmdout.txt',cmdstat = cstat)
327            if (cstat /= 0) then
328                call execute_command_line('qstat -f '//trim(adjustl(arg))//' | grep "Walltime" | awk ''{print $3}'' > tmp_cmdout.txt',cmdstat = cstat)
329                if (cstat > 0) then
330                    error stop 'pem: command execution failed!'
331                else if (cstat < 0) then
332                    error stop 'pem: command execution not supported (neither SLURM nor PBS/TORQUE is installed)!'
333                endif
334            endif
335            ! Read the output
336            open(1,file = 'tmp_cmdout.txt',status = 'old')
337            read(1,'(a)') chtimelimit
338            close(1)
339            chtimelimit = trim(adjustl(chtimelimit))
340            call execute_command_line('rm tmp_cmdout.txt',cmdstat = cstat)
341            if (cstat > 0) then
342                error stop 'pem: command execution failed!'
343            else if (cstat < 0) then
344                error stop 'pem: command execution not supported!'
345            endif
346            if (index(chtimelimit,'-') > 0) then ! 'chtimelimit' format is "D-HH:MM:SS"
347                read(chtimelimit,'(i1,a1,i2,a1,i2,a1,i2)') days, sep, hours, sep, minutes, sep, seconds
348                timelimit = days*86400 + hours*3600 + minutes*60 + seconds
349            else if (index(chtimelimit,':') > 0 .and. len_trim(chtimelimit) > 5) then ! 'chtimelimit' format is "HH:MM:SS"
350                read(chtimelimit,'(i2,a1,i2,a1,i2)') hours, sep, minutes, sep, seconds
351                timelimit = hours*3600 + minutes*60 + seconds
352            else ! 'chtimelimit' format is "MM:SS"
353                read(chtimelimit,'(i2,a1,i2)') minutes, sep, seconds
354                timelimit = minutes*60 + seconds
355            endif
356    else ! Arg is not a numeric string
357        select case (trim(adjustl(arg)))
358            case('version')
359                call print_version_info()
360                stop
361            case default
362                error stop "The argument given to the program is unknown!"
363        end select
364    endif
365else
366    timewall = .false.
367endif
368
369! Some user info
370call date_and_time(date,time,zone,values)
371call getcwd(dir)      ! Current directory
372call getlog(logname)  ! User name
373call hostnm(hostname) ! Machine/station name
374write(*,*)
375write(*,*) '********* PEM information *********'
376write(*,*) '+ User     : '//trim(logname)
377write(*,*) '+ Machine  : '//trim(hostname)
378write(*,*) '+ Directory: '//trim(dir)
379write(*,'(a,i2,a,i2,a,i4)') ' + Date     : ',values(3),'/',values(2),'/',values(1)
380write(*,'(a,i2,a,i2,a,i2,a)') ' + Time     : ',values(5),':',values(6),':',values(7)
381
382! Parallel variables
383#ifndef CPP_STD
384    is_sequential = .true.
385    is_parallel = .false.
386    is_mpi_root = .true.
387    is_omp_root = .true.
388    is_master = .true.
389#endif
390
391! Some constants
392day_ini = 0
393time_phys = 0.
394ngrid = ngridmx
395A = (1./m_co2 - 1./m_noco2)
396B = 1./m_noco2
397year_day = 669
398daysec = 88775.
399timestep = year_day*daysec*year_step
400
401!----------------------------- INITIALIZATION --------------------------
402!------------------------
403! I   Initialization
404!    I_a Read the "run.def"
405!------------------------
406write(*,*)
407write(*,*) '********* PEM initialization *********'
408write(*,*) '> Reading "run.def" (PEM)'
409#ifndef CPP_1D
410    dtphys = daysec/48. ! Dummy value (overwritten in phyetat0)
411    call conf_gcm(99,.true.)
412    call infotrac_init
413    nq = nqtot
414    allocate(q(ip1jmp1,llm,nqtot))
415    allocate(longitude(ngrid),latitude(ngrid),cell_area(ngrid))
416#else
417    allocate(q(1,llm,nqtot),pdyn(1))
418    allocate(longitude(1),latitude(1),cell_area(1))
419
420    therestart1D = .false. ! Default value
421    inquire(file = 'start1D.txt',exist = therestart1D)
422    if (.not. therestart1D) then
423        write(*,*) 'There is no "start1D.txt" file!'
424        error stop 'Initialization cannot be done for the 1D PEM.'
425    endif
426    therestartfi = .false. ! Default value
427    inquire(file = 'startfi.nc',exist = therestartfi)
428    if (.not. therestartfi) then
429        write(*,*) 'There is no "startfi.nc" file!'
430        error stop 'Initialization cannot be done for the 1D PEM.'
431    endif
432
433    write(*,*) '> Reading "start1D.txt" and "startfi.nc"'
434    call init_testphys1d('start1D.txt','startfi.nc',therestart1D,therestartfi,ngrid,nlayer,610.,nq,q,         &
435                         time_0,pdyn(1),ucov,vcov,teta,ndt,ptif,pks,dtphys,zqsat,dq,dqdyn,day0,day,gru,grv,w, &
436                         play,plev,latitude,longitude,cell_area,prescribed_h2ovap,h2ovap_relax_time,q_prescribed_h2o_vap)
437    nsplit_phys = 1
438    day_step = steps_per_sol
439#endif
440
441call conf_pem(i_myear,n_myear)
442
443!------------------------
444! I   Initialization
445!    I_b Read of the "start.nc" and "starfi.nc"
446!------------------------
447! I_b.1 Read "start.nc"
448write(*,*) '> Reading "start.nc"'
449allocate(ps_start0(ngrid))
450#ifndef CPP_1D
451    allocate(pdyn(ip1jmp1))
452    call dynetat0(start_name,vcov,ucov,teta,q,masse,pdyn,phis,time_0)
453
454    call gr_dyn_fi(1,iip1,jjp1,ngridmx,pdyn,ps_start0)
455
456    call iniconst ! Initialization of dynamical constants (comconst_mod)
457    call inigeom ! Initialization of geometry
458
459    allocate(ap(nlayer + 1))
460    allocate(bp(nlayer + 1))
461    status = nf90_open(start_name,NF90_NOWRITE,ncid)
462    status = nf90_inq_varid(ncid,"ap",apvarid)
463    status = nf90_get_var(ncid,apvarid,ap)
464    status = nf90_inq_varid(ncid,"bp",bpvarid)
465    status = nf90_get_var(ncid,bpvarid,bp)
466    status = nf90_close(ncid)
467
468    ! Initialization of physics constants and variables (comcstfi_h)
469    call iniphysiq(iim,jjm,llm,(jjm - 1)*iim + 2,comm_lmdz,daysec,day_ini,dtphys/nsplit_phys,rlatu,rlatv,rlonu,rlonv,aire,cu,cv,rad,g,r,cpp,iflag_phys)
470#else
471    ps_start0(1) = pdyn(1)
472#endif
473deallocate(pdyn)
474
475! In the PCM, these values are given to the physic by the dynamic.
476! Here we simply read them in the "startfi.nc" file
477status = nf90_open(startfi_name,NF90_NOWRITE,ncid)
478status = nf90_inq_varid(ncid,"longitude",lonvarid)
479status = nf90_get_var(ncid,lonvarid,longitude)
480status = nf90_inq_varid(ncid,"latitude",latvarid)
481status = nf90_get_var(ncid,latvarid,latitude)
482status = nf90_inq_varid(ncid,"area",areavarid)
483status = nf90_get_var(ncid,areavarid,cell_area)
484status = nf90_inq_varid(ncid,"soildepth",sdvarid)
485status = nf90_get_var(ncid,sdvarid,mlayer)
486status = nf90_close(ncid)
487
488! I_b.2 Read the "startfi.nc"
489! First we read the initial state (starfi.nc)
490#ifndef CPP_STD
491    write(*,*) '> Reading "startfi.nc"'
492    call phyetat0(startfi_name,0,0,nsoilmx,ngrid,nlayer,nq,nqsoil,day_ini,time_phys,tsurf, &
493                  tsoil,albedo,emis,q2,qsurf,qsoil,tauscaling,totcloudfrac,wstar,          &
494                  watercap,perennial_co2ice,def_slope,def_slope_mean,subslope_dist)
495
496    ! Remove unphysical values of surface tracer
497    where (qsurf < 0.) qsurf = 0.
498
499    call surfini(ngrid,nslope,qsurf)
500#else
501    call phys_state_var_init(nq)
502    if (.not. allocated(noms)) allocate(noms(nq)) ! (because noms is an argument of physdem1 whether or not tracer is on)
503    call initracer(ngrid,nq)
504    call iniaerosol()
505    allocate(tsurf_read_generic(ngrid))
506    allocate(qsurf_read_generic(ngrid,nq))
507    allocate(tsoil_read_generic(ngrid,nsoilmx))
508    allocate(qsoil_read_generic(ngrid,nsoilmx,nqsoil,nslope))
509    allocate(emis_read_generic(ngrid))
510    allocate(albedo_read_generic(ngrid,2))
511    allocate(qsurf(ngrid,nq,1))
512    allocate(tsurf(ngrid,1))
513    allocate(tsoil(ngrid,nsoilmx,1))
514    allocate(emis(ngrid,1))
515    allocate(watercap(ngrid,1))
516    allocate(watercaptag(ngrid))
517    allocate(albedo(ngrid,2,1))
518    allocate(inertiesoil(ngrid,nsoilmx,1))
519    call phyetat0(.true.,ngrid,nlayer,startfi_name,0,0,nsoilmx,nq,nqsoil,day_ini,time_phys, &
520                  tsurf_read_generic,tsoil_read_generic,emis_read_generic,q2,               &
521                  qsurf_read_generic,qsoil_read_generic,cloudfrac,totcloudfrac,hice,        &
522                  rnat,pctsrf_sic,tslab,tsea_ice,sea_ice)
523    call surfini(ngrid,nq,qsurf_read_generic,albedo_read_generic,albedo_bareground,albedo_snow_SPECTV,albedo_co2_ice_SPECTV)
524
525    nslope = 1
526    call ini_comslope_h(ngrid,1)
527
528    qsurf(:,:,1) = qsurf_read_generic
529    tsurf(:,1) = tsurf_read_generic
530    tsoil(:,:,1) = tsoil_read_generic
531    emis(:,1) = emis_read_generic
532    watercap(:,1) = 0.
533    watercaptag(:) = .false.
534    albedo(:,1,1) = albedo_read_generic(:,1)
535    albedo(:,2,1) = albedo_read_generic(:,2)
536    inertiesoil(:,:,1) = inertiedat
537
538    if (nslope == 1) then
539        def_slope(1) = 0
540        def_slope(2) = 0
541        def_slope_mean = 0
542        subslope_dist(:,1) = 1.
543    endif
544
545    ! Remove unphysical values of surface tracer
546    qsurf(:,:,1) = qsurf_read_generic
547    where (qsurf < 0.) qsurf = 0.
548
549    deallocate(tsurf_read_generic,qsurf_read_generic,qsoil_read_generic,emis_read_generic)
550#endif
551
552do nnq = 1,nqtot  ! Why not using ini_tracer?
553    if (noms(nnq) == "h2o_ice") igcm_h2o_ice = nnq
554    if (noms(nnq) == "h2o_vap") then
555        igcm_h2o_vap = nnq
556        mmol(igcm_h2o_vap) = 18.
557    endif
558    if (noms(nnq) == "co2") igcm_co2 = nnq
559enddo
560
561!------------------------
562! I   Initialization
563!    I_c Subslope parametrisation
564!------------------------
565! Define some slope statistics
566iflat = 1
567do islope = 2,nslope
568    if (abs(def_slope_mean(islope)) < abs(def_slope_mean(iflat))) iflat = islope
569enddo
570write(*,*) 'Flat slope for islope = ',iflat
571write(*,*) 'Corresponding criterium = ',def_slope_mean(iflat)
572
573!------------------------
574! I   Initialization
575!    I_d Read the PCM data and convert them to the physical grid
576!------------------------
577! First we read the evolution of water and co2 ice (and the mass mixing ratio) over the first year of the PCM run, saving only the minimum value
578call get_timelen_PCM("data_PCM_Y1.nc",timelen)
579
580allocate(vmr_co2_PCM(ngrid,timelen),q_co2_PEM_phys(ngrid,timelen),q_h2o_PEM_phys(ngrid,timelen))
581allocate(ps_timeseries(ngrid,timelen),ps_avg(ngrid))
582allocate(min_co2_ice(ngrid,nslope,2),min_h2o_ice(ngrid,nslope,2))
583allocate(tsurf_avg_yr1(ngrid,nslope),tsurf_avg(ngrid,nslope))
584allocate(tsoil_avg(ngrid,nsoilmx,nslope),tsoil_timeseries(ngrid,nsoilmx,nslope,timelen))
585allocate(watersurf_density_avg(ngrid,nslope),watersoil_density_timeseries(ngrid,nsoilmx,nslope,timelen))
586
587call read_data_PCM("data_PCM_Y1.nc","data_PCM_Y2.nc",timelen,iim,jjm_value,ngrid,nslope,vmr_co2_PCM,ps_timeseries,ps_avg,tsurf_avg_yr1,tsurf_avg, &
588                   tsoil_avg,tsoil_timeseries,min_co2_ice,min_h2o_ice,q_co2_PEM_phys,q_h2o_PEM_phys,watersurf_density_avg,watersoil_density_timeseries)
589
590! Compute the deviation from the average
591allocate(ps_dev(ngrid),tsurf_dev(ngrid,nslope),tsoil_dev(ngrid,nsoilmx,nslope))
592ps_dev = ps_start0 - ps_avg
593tsurf_dev = tsurf - tsurf_avg
594tsoil_dev = tsoil - tsoil_avg(:,1:nsoilmx,:)
595
596!------------------------
597! I   Initialization
598!    I_e Initialization of the PEM variables and soil
599!------------------------
600call end_comsoil_h_PEM
601call ini_comsoil_h_PEM(ngrid,nslope)
602call end_adsorption_h_PEM
603call ini_adsorption_h_PEM(ngrid,nslope,nsoilmx_PEM)
604call end_ice_table
605call ini_ice_table(ngrid,nslope,nsoilmx_PEM)
606
607allocate(tsoil_PEM_timeseries(ngrid,nsoilmx_PEM,nslope,timelen),watersoil_density_PEM_avg(ngrid,nsoilmx_PEM,nslope),watersoil_density_PEM_timeseries(ngrid,nsoilmx_PEM,nslope,timelen))
608if (soil_pem) then
609    call soil_settings_PEM(ngrid,nslope,nsoilmx_PEM,nsoilmx,inertiesoil,TI_PEM)
610    tsoil_PEM(:,1:nsoilmx,:) = tsoil_avg
611    watersoil_density_PEM_timeseries(:,1:nsoilmx,:,:) = watersoil_density_timeseries
612    tsoil_PEM_timeseries(:,1:nsoilmx,:,:) = tsoil_timeseries
613    do l = nsoilmx + 1,nsoilmx_PEM
614        tsoil_PEM(:,l,:) = tsoil_avg(:,nsoilmx,:)
615        watersoil_density_PEM_timeseries(:,l,:,:) = watersoil_density_timeseries(:,nsoilmx,:,:)
616        tsoil_PEM_timeseries(:,l,:,:) = tsoil_timeseries(:,nsoilmx,:,:)
617    enddo
618    watersoil_density_PEM_avg = sum(watersoil_density_PEM_timeseries,4)/timelen
619endif !soil_pem
620deallocate(tsoil_avg,watersoil_density_timeseries,tsoil_timeseries)
621
622!------------------------
623! I   Initialization
624!    I_f Compute tendencies
625!------------------------
626allocate(d_co2ice(ngrid,nslope),d_h2oice(ngrid,nslope),d_co2ice_ini(ngrid,nslope))
627call compute_tend(ngrid,nslope,min_co2_ice,d_co2ice)
628call compute_tend(ngrid,nslope,min_h2o_ice,d_h2oice)
629d_co2ice_ini = d_co2ice
630deallocate(min_co2_ice,min_h2o_ice)
631
632!------------------------
633! I   Initialization
634!    I_g Compute global surface pressure
635!------------------------
636total_surface = sum(cell_area)
637ps_avg_global_ini = sum(cell_area*ps_avg)/total_surface
638ps_avg_global_new = ps_avg_global_ini
639write(*,*) "Total surface of the planet     =", total_surface
640write(*,*) "Initial global average pressure =", ps_avg_global_ini
641
642!------------------------
643! I   Initialization
644!    I_h Read the "startpem.nc"
645!------------------------
646write(*,*) '> Reading "startpem.nc"'
647allocate(co2_ice(ngrid,nslope),h2o_ice(ngrid,nslope),deposits(ngrid,nslope))
648allocate(delta_h2o_adsorbed(ngrid),delta_co2_adsorbed(ngrid),delta_h2o_icetablesublim(ngrid))
649delta_h2o_icetablesublim = 0.
650call pemetat0("startpem.nc",ngrid,nsoilmx,nsoilmx_PEM,nslope,timelen,timestep,TI_PEM,tsoil_PEM,icetable_depth,icetable_thickness,ice_porefilling, &
651              tsurf_avg_yr1,tsurf_avg,q_co2_PEM_phys,q_h2o_PEM_phys,ps_timeseries,ps_avg_global_ini,d_h2oice,d_co2ice,co2_ice,h2o_ice,            &
652              watersurf_density_avg,watersoil_density_PEM_avg,co2_adsorbed_phys,delta_co2_adsorbed,h2o_adsorbed_phys,delta_h2o_adsorbed,deposits)
653deallocate(tsurf_avg_yr1)
654
655! We save the places where h2o ice is sublimating
656! We compute the surface of h2o ice sublimating
657allocate(is_co2ice_sublim_ini(ngrid,nslope),is_h2oice_sublim_ini(ngrid,nslope),is_co2ice_ini(ngrid,nslope),co2ice_disappeared(ngrid,nslope))
658co2ice_sublim_surf_ini = 0.
659h2oice_ini_surf = 0.
660h2o_ice_depth = 0.
661is_co2ice_sublim_ini = .false.
662is_h2oice_sublim_ini = .false.
663is_co2ice_ini = .false.
664co2ice_disappeared = .false.
665if (layering_algo) then
666    do ig = 1,ngrid
667        do islope = 1,nslope
668            co2_ice(ig,islope) = deposits(ig,islope)%top%h_co2ice
669            h2o_ice(ig,islope) = deposits(ig,islope)%top%h_h2oice
670        enddo
671    enddo
672endif
673do i = 1,ngrid
674    do islope = 1,nslope
675        if (co2_ice(i,islope) > 0.) is_co2ice_ini(i,islope) = .true.
676        if (d_co2ice(i,islope) < 0. .and. co2_ice(i,islope) > 0.) then
677            is_co2ice_sublim_ini(i,islope) = .true.
678            co2ice_sublim_surf_ini = co2ice_sublim_surf_ini + cell_area(i)*subslope_dist(i,islope)
679        endif
680        if (d_h2oice(i,islope) < 0. .and. h2o_ice(i,islope) > 0.) then
681            is_h2oice_sublim_ini(i,islope) = .true.
682            h2oice_ini_surf = h2oice_ini_surf + cell_area(i)*subslope_dist(i,islope)
683            if (layering_algo) h2o_ice_depth(ig,islope) = thickness_toplag(deposits(ig,islope))
684        endif
685    enddo
686enddo
687write(*,*) "Total initial surface of CO2 ice sublimating =", co2ice_sublim_surf_ini
688write(*,*) "Total initial surface of H2O ice sublimating =", h2oice_ini_surf
689
690if (adsorption_pem) then
691    totmassco2_adsorbed = 0.
692    totmassh2o_adsorbed = 0.
693    do ig = 1,ngrid
694        do islope = 1,nslope
695            do l = 1,nsoilmx_PEM - 1
696                if (l == 1) then
697                   totmassco2_adsorbed = totmassco2_adsorbed + co2_adsorbed_phys(ig,l,islope)*(layer_PEM(l))* &
698                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
699                   totmassh2o_adsorbed = totmassh2o_adsorbed + h2o_adsorbed_phys(ig,l,islope)*(layer_PEM(l))* &
700                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
701                else
702                   totmassco2_adsorbed = totmassco2_adsorbed + co2_adsorbed_phys(ig,l,islope)*(layer_PEM(l) - layer_PEM(l-1))* &
703                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
704                   totmassh2o_adsorbed = totmassh2o_adsorbed + h2o_adsorbed_phys(ig,l,islope)*(layer_PEM(l) - layer_PEM(l-1))* &
705                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
706                endif
707            enddo
708        enddo
709    enddo
710    write(*,*) "Tot mass of CO2 in the regolith =", totmassco2_adsorbed
711    write(*,*) "Tot mass of H2O in the regolith =", totmassh2o_adsorbed
712endif ! adsorption
713
714!------------------------
715! I   Initialization
716!    I_i Compute orbit criterion
717!------------------------
718#ifndef CPP_STD
719    call iniorbit(aphelie,periheli,year_day,peri_day,obliquit)
720#else
721    call iniorbit(apoastr,periastr,year_day,peri_day,obliquit)
722#endif
723
724n_myear_leg = Max_iter_pem
725if (evol_orbit_pem) call orbit_param_criterion(i_myear,n_myear_leg)
726
727!-------------------------- END INITIALIZATION -------------------------
728
729!-------------------------------- RUN ----------------------------------
730!------------------------
731! II  Run
732!    II_a Update pressure, ice and tracers
733!------------------------
734write(*,*)
735write(*,*) '********* PEM cycle *********'
736i_myear_leg = 0
737stopPEM = 0
738if (layering_algo) then
739    allocate(new_str(ngrid,nslope),new_lag(ngrid,nslope),current(ngrid,nslope))
740    new_str = .true.
741    new_lag = .true.
742    do islope = 1,nslope
743        do ig = 1,ngrid
744            current(ig,islope)%p => deposits(ig,islope)%top
745        enddo
746    enddo
747endif
748
749do while (i_myear_leg < n_myear_leg .and. i_myear < n_myear)
750! II.a.1. Compute updated global pressure
751    write(*,'(a,f10.2)') ' **** Iteration of the PEM leg (Martian years): ', i_myear_leg + 1
752    write(*,*) "> Updating the surface pressure"
753    ps_avg_global_old = ps_avg_global_new
754    do i = 1,ngrid
755        do islope = 1,nslope
756            ps_avg_global_new = ps_avg_global_new - CO2cond_ps*g*cell_area(i)*d_co2ice(i,islope)*subslope_dist(i,islope)/cos(pi*def_slope_mean(islope)/180.)/total_surface
757        enddo
758    enddo
759    if (adsorption_pem) then
760        do i = 1,ngrid
761            ps_avg_global_new = ps_avg_global_new - g*cell_area(i)*delta_co2_adsorbed(i)/total_surface
762        enddo
763    endif
764    ps_avg = ps_avg*ps_avg_global_new/ps_avg_global_old
765    write(*,*) 'Global average pressure old time step:',ps_avg_global_old
766    write(*,*) 'Global average pressure new time step:',ps_avg_global_new
767
768! II.a.2. Pressure timeseries (the values are deleted when unused because of big memory consumption)
769    write(*,*) "> Updating the surface pressure timeseries for the new pressure"
770    allocate(zplev_timeseries_old(ngrid,nlayer + 1,timelen))
771    do l = 1,nlayer + 1
772        do ig = 1,ngrid
773            zplev_timeseries_old(ig,l,:) = ap(l) + bp(l)*ps_timeseries(ig,:)
774        enddo
775    enddo
776    ps_timeseries(:,:) = ps_timeseries(:,:)*ps_avg_global_new/ps_avg_global_old
777    write(*,*) "> Updating the pressure levels timeseries for the new pressure"
778    allocate(zplev_timeseries_new(ngrid,nlayer + 1,timelen))
779    do l = 1,nlayer + 1
780        do ig = 1,ngrid
781            zplev_timeseries_new(ig,l,:) = ap(l) + bp(l)*ps_timeseries(ig,:)
782        enddo
783    enddo
784
785! II.a.3. Tracers timeseries
786    write(*,*) "> Updating the tracer VMR timeseries for the new pressure"
787    allocate(vmr_co2_PEM_phys(ngrid,timelen))
788    l = 1
789    do ig = 1,ngrid
790        do t = 1,timelen
791            ! H2O
792            q_h2o_PEM_phys(ig,t) = q_h2o_PEM_phys(ig,t)*(zplev_timeseries_old(ig,l,t) - zplev_timeseries_old(ig,l + 1,t))/ &
793                                   (zplev_timeseries_new(ig,l,t) - zplev_timeseries_new(ig,l + 1,t))
794            if (q_h2o_PEM_phys(ig,t) < 0) then
795                q_h2o_PEM_phys(ig,t) = 1.e-30
796            else if (q_h2o_PEM_phys(ig,t) > 1) then
797                q_h2o_PEM_phys(ig,t) = 1.
798            endif
799            ! CO2
800            q_co2_PEM_phys(ig,t) = q_co2_PEM_phys(ig,t)*(zplev_timeseries_old(ig,l,t) - zplev_timeseries_old(ig,l + 1,t))/ &
801                                   (zplev_timeseries_new(ig,l,t) - zplev_timeseries_new(ig,l + 1,t))                       &
802                                + ((zplev_timeseries_new(ig,l,t) - zplev_timeseries_new(ig,l + 1,t))                       &
803                                -  (zplev_timeseries_old(ig,l,t) - zplev_timeseries_old(ig,l + 1,t)))/                     &
804                                   (zplev_timeseries_new(ig,l,t) - zplev_timeseries_new(ig,l + 1,t))
805            if (q_co2_PEM_phys(ig,t) < 0) then
806                q_co2_PEM_phys(ig,t) = 1.e-30
807            else if (q_co2_PEM_phys(ig,t) > 1) then
808                q_co2_PEM_phys(ig,t) = 1.
809            endif
810            mmean = 1./(A*q_co2_PEM_phys(ig,t) + B)
811            vmr_co2_PEM_phys(ig,t) = q_co2_PEM_phys(ig,t)*mmean/m_co2
812        enddo
813    enddo
814    deallocate(zplev_timeseries_new,zplev_timeseries_old)
815
816!------------------------
817! II  Run
818!    II_b Evolution of ice
819!------------------------
820    allocate(zshift_surf(ngrid,nslope),zlag(ngrid,nslope))
821    if (layering_algo) then
822        do islope = 1,nslope
823            do ig = 1,ngrid
824                call make_layering(deposits(ig,islope),d_co2ice(ig,islope),d_h2oice(ig,islope),new_str(ig,islope),zshift_surf(ig,islope),new_lag(ig,islope),zlag(ig,islope),current(ig,islope)%p)
825                co2_ice(ig,islope) = deposits(ig,islope)%top%h_co2ice
826                h2o_ice(ig,islope) = deposits(ig,islope)%top%h_h2oice
827            enddo
828        enddo
829    else
830        zlag = 0.
831        call evol_h2o_ice(ngrid,nslope,cell_area,delta_h2o_adsorbed,delta_h2o_icetablesublim,h2o_ice,d_h2oice,zshift_surf,stopPEM)
832        call evol_co2_ice(ngrid,nslope,co2_ice,d_co2ice,zshift_surf)
833    endif
834
835!------------------------
836! II  Run
837!    II_c Flow of glaciers
838!------------------------
839    allocate(flag_co2flow(ngrid,nslope),flag_h2oflow(ngrid,nslope))
840    if (co2ice_flow .and. nslope > 1) call flow_co2glaciers(timelen,ngrid,nslope,iflat,subslope_dist,def_slope_mean,vmr_co2_PEM_phys, &
841                                                            ps_timeseries,ps_avg_global_old,ps_avg_global_new,co2_ice,flag_co2flow)
842    if (h2oice_flow .and. nslope > 1) call flow_h2oglaciers(ngrid,nslope,iflat,subslope_dist,def_slope_mean,tsurf_avg,h2o_ice,flag_h2oflow)
843    if (layering_algo) then
844        do islope = 1,nslope
845            do ig = 1,ngrid
846                deposits(ig,islope)%top%h_co2ice = co2_ice(ig,islope)
847                deposits(ig,islope)%top%h_h2oice = h2o_ice(ig,islope)
848            enddo
849        enddo
850    endif
851
852!------------------------
853! II  Run
854!    II_d Update surface and soil temperatures
855!------------------------
856! II_d.1 Update Tsurf
857    write(*,*) "> Updating surface temperature"
858    do ig = 1,ngrid
859        do islope = 1,nslope
860            ! CO2 ice disappeared so we look for the closest point without CO2 ice
861            if (is_co2ice_ini(ig,islope) .and. co2_ice(ig,islope) < 1.e-10 .and. .not. co2ice_disappeared(ig,islope)) then
862                co2ice_disappeared(ig,islope) = .true.
863                if (latitude_deg(ig) > 0.) then ! North hemisphere
864                    outer1: do ig_loop = ig,ngrid ! Go towards equator
865                        do islope_loop = islope - 1,1,-1 ! Go over the slopes (backward numbering - should be equator-ward)
866                            if (.not. is_co2ice_ini(ig_loop,islope_loop) .and. co2_ice(ig_loop,islope_loop) < 1.e-10) then
867                                tsurf_avg(ig,islope) = tsurf_avg(ig_loop,islope_loop)
868                                exit outer1
869                            endif
870                        enddo
871                        do islope_loop = islope + 1,nslope ! Go over the slopes (forward numbering - should be pole-ward)
872                            if (.not. is_co2ice_ini(ig_loop,islope_loop) .and. co2_ice(ig_loop,islope_loop) < 1.e-10) then
873                                tsurf_avg(ig,islope) = tsurf_avg(ig_loop,islope_loop)
874                                exit outer1
875                            endif
876                        enddo
877                    enddo outer1
878                else ! South hemisphere
879                    outer2: do ig_loop = ig,1,-1 ! Go towards equator
880                        do islope_loop = islope + 1,nslope ! Go over the slopes (forward numbering - should be equator-ward)
881                            if (.not. is_co2ice_ini(ig_loop,islope_loop) .and. co2_ice(ig_loop,islope_loop) < 1.e-10) then
882                                tsurf_avg(ig,islope) = tsurf_avg(ig_loop,islope_loop)
883                                exit outer2
884                            endif
885                        enddo
886                        do islope_loop = islope - 1,1,-1 ! Go over the slopes (backward numbering - should be pole-ward)
887                            if (.not. is_co2ice_ini(ig_loop,islope_loop) .and. co2_ice(ig_loop,islope_loop) < 1.e-10) then
888                                tsurf_avg(ig,islope) = tsurf_avg(ig_loop,islope_loop)
889                                exit outer2
890                            endif
891                        enddo
892                    enddo outer2
893                endif
894            else if (co2_ice(ig,islope) > 1.e-10 .and. d_co2ice(ig,islope) > 1.e-10) then ! Put tsurf as Tcond CO2
895                call computeTcondCO2(timelen,ngrid,nslope,vmr_co2_PEM_phys,ps_timeseries,ps_avg_global_ini,ps_avg_global_new,tsurf_avg)
896            endif
897        enddo
898    enddo
899
900    if (soil_pem) then
901! II_d.2 Shifting soil temperature to surface
902        call shift_tsoil2surf(ngrid,nsoilmx_PEM,nslope,zshift_surf,zlag,tsurf_avg,tsoil_PEM)
903
904! II_d.3 Update soil temperature
905        write(*,*)"> Updating soil temperature profile"
906        allocate(tsoil_avg_old(ngrid,nsoilmx_PEM),tsoil_PEM_timeseries_old(ngrid,nsoilmx_PEM,nslope,timelen))
907        tsoil_PEM_timeseries_old = tsoil_PEM_timeseries
908        do islope = 1,nslope
909            tsoil_avg_old = tsoil_PEM(:,:,islope)
910            call compute_tsoil_pem(ngrid,nsoilmx_PEM,.true.,TI_PEM(:,:,islope),timestep,tsurf_avg(:,islope),tsoil_PEM(:,:,islope))
911            call compute_tsoil_pem(ngrid,nsoilmx_PEM,.false.,TI_PEM(:,:,islope),timestep,tsurf_avg(:,islope),tsoil_PEM(:,:,islope))
912
913            do t = 1,timelen
914                do ig = 1,ngrid
915                    do isoil = 1,nsoilmx_PEM
916                        ! Update of soil temperature timeseries which is needed to compute the water soil density timeseries
917                        tsoil_PEM_timeseries(ig,isoil,islope,t) = tsoil_PEM_timeseries(ig,isoil,islope,t)*tsoil_PEM(ig,isoil,islope)/tsoil_avg_old(ig,isoil)
918                        ! Update of watersoil density
919                        watersoil_density_PEM_timeseries(ig,isoil,islope,t) = exp(beta_clap_h2o/tsoil_PEM_timeseries(ig,isoil,islope,t) + alpha_clap_h2o)/tsoil_PEM_timeseries(ig,isoil,islope,t)*mmol(igcm_h2o_vap)/(mugaz*r)
920                        if (isnan(tsoil_PEM(ig,isoil,islope))) call abort_pem("PEM - Update Tsoil","NaN detected in tsoil_PEM",1)
921                    enddo
922                enddo
923            enddo
924        enddo
925        watersoil_density_PEM_avg = sum(watersoil_density_PEM_timeseries,4)/timelen
926        deallocate(tsoil_avg_old)
927
928! II_d.4 Update the ice table
929        allocate(icetable_thickness_old(ngrid,nslope),ice_porefilling_old(ngrid,nsoilmx_PEM,nslope),icetable_depth_old(ngrid,nslope))
930        if (icetable_equilibrium) then
931            write(*,*) "> Updating ice table (equilibrium method)"
932            icetable_thickness_old = icetable_thickness
933            call computeice_table_equilibrium(ngrid,nslope,nsoilmx_PEM,watercaptag,watersurf_density_avg,watersoil_density_PEM_avg,TI_PEM(:,1,:),icetable_depth,icetable_thickness)
934            call compute_massh2o_exchange_ssi(ngrid,nslope,nsoilmx_PEM,icetable_thickness_old,ice_porefilling_old,tsurf_avg,tsoil_PEM,delta_h2o_icetablesublim) ! Mass of H2O exchange between the ssi and the atmosphere
935        else if (icetable_dynamic) then
936            write(*,*) "> Updating ice table (dynamic method)"
937            ice_porefilling_old = ice_porefilling
938            icetable_depth_old = icetable_depth
939            allocate(porefill(nsoilmx_PEM))
940            do ig = 1,ngrid
941                do islope = 1,nslope
942                    call dyn_ss_ice_m(icetable_depth(ig,islope),tsurf_avg(ig,islope),tsoil_PEM(ig,:,islope),nsoilmx_PEM,TI_PEM(ig,1,nslope),ps_avg(ig),(/sum(q_h2o_PEM_phys(ig,:))/size(q_h2o_PEM_phys,2)/),ice_porefilling(ig,:,islope),porefill,ssi_depth)
943                    icetable_depth(ig,islope) = ssi_depth
944                    ice_porefilling(ig,:,islope) = porefill
945                enddo
946            enddo
947            deallocate(porefill)
948            call compute_massh2o_exchange_ssi(ngrid,nslope,nsoilmx_PEM,icetable_thickness_old,ice_porefilling_old,tsurf_avg,tsoil_PEM,delta_h2o_icetablesublim) ! Mass of H2O exchange between the ssi and the atmosphere
949        endif
950        deallocate(icetable_thickness_old,ice_porefilling_old)
951
952! II_d.5 Update the soil thermal properties
953        call update_soil_thermalproperties(ngrid,nslope,nsoilmx_PEM,d_h2oice,h2o_ice,ps_avg_global_new,icetable_depth,icetable_thickness,ice_porefilling,icetable_equilibrium,icetable_dynamic,TI_PEM)
954
955! II_d.6 Update the mass of the regolith adsorbed
956        if (adsorption_pem) then
957            call regolith_adsorption(ngrid,nslope,nsoilmx_PEM,timelen,d_h2oice,d_co2ice,h2o_ice,co2_ice, &
958                                     tsoil_PEM,TI_PEM,ps_timeseries,q_co2_PEM_phys,q_h2o_PEM_phys,       &
959                                     h2o_adsorbed_phys,delta_h2o_adsorbed,co2_adsorbed_phys,delta_co2_adsorbed)
960
961            totmassco2_adsorbed = 0.
962            totmassh2o_adsorbed = 0.
963            do ig = 1,ngrid
964                do islope = 1,nslope
965                    do l = 1,nsoilmx_PEM
966                        if (l == 1) then
967                            totmassco2_adsorbed = totmassco2_adsorbed + co2_adsorbed_phys(ig,l,islope)*(layer_PEM(l))* &
968                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
969                            totmassh2o_adsorbed = totmassh2o_adsorbed + h2o_adsorbed_phys(ig,l,islope)*(layer_PEM(l))* &
970                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
971                        else
972                            totmassco2_adsorbed = totmassco2_adsorbed + co2_adsorbed_phys(ig,l,islope)*(layer_PEM(l) - layer_PEM(l - 1))* &
973                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
974                            totmassh2o_adsorbed = totmassh2o_adsorbed + h2o_adsorbed_phys(ig,l,islope)*(layer_PEM(l) - layer_PEM(l - 1))* &
975                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
976                        endif
977                    enddo
978                enddo
979            enddo
980            write(*,*) "Total mass of CO2 in the regolith =", totmassco2_adsorbed
981            write(*,*) "Total mass of H2O in the regolith =", totmassh2o_adsorbed
982        endif
983    endif !soil_pem
984    deallocate(zshift_surf,zlag)
985
986!------------------------
987! II  Run
988!    II_e Outputs
989!------------------------
990    call writediagpem(ngrid,'ps_avg','Global average pressure','Pa',0,(/ps_avg_global_new/))
991    do islope = 1,nslope
992        write(str2(1:2),'(i2.2)') islope
993        call writediagpem(ngrid,'h2o_ice_slope'//str2,'H2O ice','kg.m-2',2,h2o_ice(:,islope))
994        call writediagpem(ngrid,'co2_ice_slope'//str2,'CO2 ice','kg.m-2',2,co2_ice(:,islope))
995        call writediagpem(ngrid,'d_h2oice_slope'//str2,'H2O ice tend','kg.m-2.year-1',2,d_h2oice(:,islope))
996        call writediagpem(ngrid,'d_co2ice_slope'//str2,'CO2 ice tend','kg.m-2.year-1',2,d_co2ice(:,islope))
997        call writediagpem(ngrid,'Flow_co2ice_slope'//str2,'CO2 ice flow','Boolean',2,real(flag_co2flow(:,islope)))
998        call writediagpem(ngrid,'Flow_h2oice_slope'//str2,'H2O ice flow','Boolean',2,real(flag_h2oflow(:,islope)))
999        call writediagpem(ngrid,'tsurf_slope'//str2,'tsurf','K',2,tsurf_avg(:,islope))
1000        if (icetable_equilibrium) then
1001            call writediagpem(ngrid,'ssi_depth_slope'//str2,'ice table depth','m',2,icetable_depth(:,islope))
1002            call writediagpem(ngrid,'ssi_thick_slope'//str2,'ice table thickness','m',2,icetable_thickness(:,islope))
1003        else if (icetable_dynamic) then
1004            call writediagpem(ngrid,'ssi_depth_slope'//str2,'ice table depth','m',2,icetable_depth(:,islope))
1005        endif
1006
1007        if (soil_pem) then
1008            call writediagsoilpem(ngrid,'tsoil_PEM_slope'//str2,'tsoil','K',3,tsoil_PEM(:,:,islope))
1009            call writediagsoilpem(ngrid,'inertiesoil_PEM_slope'//str2,'TI','K',3,TI_PEM(:,:,islope))
1010            if (icetable_dynamic) call writediagsoilpem(ngrid,'ice_porefilling'//str2,'ice pore filling','-',3,ice_porefilling(:,:,islope))
1011            if (adsorption_pem) then
1012                call writediagsoilpem(ngrid,'co2_ads_slope'//str2,'co2_ads','K',3,co2_adsorbed_phys(:,:,islope))
1013                call writediagsoilpem(ngrid,'h2o_ads_slope'//str2,'h2o_ads','K',3,h2o_adsorbed_phys(:,:,islope))
1014            endif
1015        endif
1016    enddo
1017    deallocate(flag_co2flow,flag_h2oflow)
1018
1019!------------------------
1020! II  Run
1021!    II_f Update the tendencies
1022!------------------------
1023    call recomp_tend_co2(ngrid,nslope,timelen,d_co2ice,d_co2ice_ini,co2_ice,emis,vmr_co2_PCM,vmr_co2_PEM_phys,ps_timeseries,ps_avg_global_old,ps_avg_global_new)
1024    write(*,*) "> Updating the H2O sub-surface ice tendency due to lag layer"
1025    if (layering_algo) then
1026        do ig = 1,ngrid
1027            do islope = 1,nslope
1028                if (is_h2oice_sublim_ini(ig,islope)) then
1029                    h2o_ice_depth_old = h2o_ice_depth(ig,islope)
1030                    h2o_ice_depth(ig,islope) = thickness_toplag(deposits(ig,islope))
1031                    call recomp_tend_h2o(h2o_ice_depth_old,h2o_ice_depth(ig,islope),tsurf_avg(ig,islope),tsoil_PEM_timeseries_old(ig,:,islope,:),tsoil_PEM_timeseries(ig,:,islope,:),d_h2oice(ig,islope))
1032                endif
1033            enddo
1034        enddo
1035!~     else
1036!~         do ig = 1,ngrid
1037!~             do islope = 1,nslope
1038!~                 call recomp_tend_h2o(icetable_depth_old(ig,islope),icetable_depth(ig,islope),tsurf_avg(ig,islope),tsoil_PEM_timeseries_old(ig,:,islope,:),tsoil_PEM_timeseries(ig,:,islope,:),d_h2oice(ig,islope))
1039!~             enddo
1040!~         enddo
1041    endif
1042    if (soil_pem) deallocate(icetable_depth_old,tsoil_PEM_timeseries_old)
1043    deallocate(vmr_co2_PEM_phys)
1044    write(*,*) "> Updating the H2O sub-surface ice depth"
1045
1046!------------------------
1047! II  Run
1048!    II_g Checking the stopping criterion
1049!------------------------
1050    write(*,*) "> Checking the stopping criteria"
1051    call stopping_crit_h2o_ice(cell_area,h2oice_ini_surf,is_h2oice_sublim_ini,h2o_ice,stopPEM,ngrid)
1052    call stopping_crit_co2(cell_area,co2ice_sublim_surf_ini,is_co2ice_sublim_ini,co2_ice,stopPEM,ngrid,ps_avg_global_ini,ps_avg_global_new,nslope)
1053    i_myear_leg = i_myear_leg + dt
1054    i_myear = i_myear + dt
1055    if (stopPEM <= 0 .and. i_myear_leg >= n_myear_leg) stopPEM = 5
1056    if (stopPEM <= 0 .and. i_myear >= n_myear) stopPEM = 6
1057    call system_clock(c2)
1058    if (stopPEM <= 0 .and. timewall .and. real((c2 - c1)/cr) >= timelimit - antetime) stopPEM = 7
1059    if (stopPEM > 0) then
1060        select case (stopPEM)
1061            case(1)
1062                write(*,'(a,i0,a)') " **** STOPPING because surface of h2o ice sublimating is too low: ", stopPEM, ". See message above."
1063            case(2)
1064                write(*,'(a,i0,a)') " **** STOPPING because tendencies on h2o ice = 0: ", stopPEM, ". See message above."
1065            case(3)
1066                write(*,'(a,i0,a)') " **** STOPPING because surface of co2 ice sublimating is too low: ", stopPEM, ". See message above."
1067            case(4)
1068                write(*,'(a,i0,a)') " **** STOPPING because surface global pressure changed too much: ", stopPEM, ". See message above."
1069            case(5)
1070                write(*,'(a,i0)') " **** STOPPING because maximum number of iterations is reached (possibly due to orbital parameters): ", stopPEM
1071            case(6)
1072                write(*,'(a,i0)') " **** STOPPING because maximum number of Martian years to be simulated is reached: ", stopPEM
1073            case(7)
1074                write(*,'(a,i0)') " **** STOPPING because the time limit for the PEM job will be reached soon: ", stopPEM
1075            case default
1076                write(*,'(a,i0)') " **** STOPPING with unknown stopping criterion code: ", stopPEM
1077        end select
1078        exit
1079    else
1080        write(*,'(a,f10.2,a)') ' **** The chained simulation has run for ',i_myear,' Martian years.'
1081        write(*,*) '**** The PEM can continue!'
1082        write(*,*) '****'
1083    endif
1084enddo ! big time iteration loop of the pem
1085deallocate(vmr_co2_PCM,q_co2_PEM_phys,q_h2o_PEM_phys,delta_co2_adsorbed)
1086deallocate(watersoil_density_PEM_avg,watersurf_density_avg)
1087deallocate(ps_timeseries,tsoil_PEM_timeseries,watersoil_density_PEM_timeseries)
1088deallocate(co2ice_disappeared,delta_h2o_adsorbed,delta_h2o_icetablesublim)
1089deallocate(d_co2ice,d_co2ice_ini,d_h2oice)
1090deallocate(is_co2ice_ini,is_co2ice_sublim_ini,is_h2oice_sublim_ini)
1091if (layering_algo) deallocate(new_str,new_lag,current)
1092!------------------------------ END RUN --------------------------------
1093
1094!------------------------------- OUTPUT --------------------------------
1095!------------------------
1096! III Output
1097!    III_a Update surface values for the PCM start files
1098!------------------------
1099! III_a.1 Ice update for start file
1100write(*,*)
1101write(*,*) '********* PEM finalization *********'
1102write(*,*) '> Reconstructing perennial ice and frost for the PCM'
1103watercap = 0.
1104perennial_co2ice = co2_ice
1105do ig = 1,ngrid
1106    ! H2O ice metamorphism
1107    !if (metam_h2oice .and. sum(qsurf(ig,igcm_h2o_ice,:)*subslope_dist(ig,:)/cos(pi*def_slope_mean(:)/180.)) > metam_h2oice_threshold) then
1108    !    h2o_ice(ig,:) = h2o_ice(ig,:) + qsurf(ig,igcm_h2o_ice,:) - metam_h2oice_threshold
1109    !    qsurf(ig,igcm_h2o_ice,:) = metam_h2oice_threshold
1110    !endif
1111
1112    ! Is H2O ice still considered as an infinite reservoir for the PCM?
1113    if (sum(h2o_ice(ig,:)*subslope_dist(ig,:)/cos(pi*def_slope_mean(:)/180.)) > inf_h2oice_threshold) then
1114        ! There is enough ice to be considered as an infinite reservoir
1115        watercaptag(ig) = .true.
1116    else
1117        ! Too little ice to be considered as an infinite reservoir so ice is transferred to the frost
1118        watercaptag(ig) = .false.
1119        qsurf(ig,igcm_h2o_ice,:) = qsurf(ig,igcm_h2o_ice,:) + h2o_ice(ig,:)
1120        h2o_ice(ig,:) = 0.
1121    endif
1122
1123    ! CO2 ice metamorphism
1124    !if (metam_co2ice .and. sum(qsurf(ig,igcm_co2,:)*subslope_dist(ig,:)/cos(pi*def_slope_mean(:)/180.)) > metam_co2ice_threshold) then
1125    !    perennial_co2ice(ig,:) = perennial_co2ice(ig,:) + qsurf(ig,igcm_co2,:) - metam_co2ice_threshold
1126    !    qsurf(ig,igcm_co2,:) = metam_co2ice_threshold
1127    !endif
1128enddo
1129
1130! III_a.2 Subsurface-surface interaction update for start file
1131zdqsdif_ssi_tot = 0.
1132h2o_ice_depth = 0.
1133if (layering_algo) then
1134    write(*,*) '> Reconstructing ice sublimation flux from subsurface to surface for the PCM'
1135    do ig = 1,ngrid
1136        do islope = 1,nslope
1137            if (is_dust_lag(deposits(ig,islope)%top) .and. is_h2oice_str(deposits(ig,islope)%top%down)) then
1138                zdqsdif_ssi_tot(ig,islope) = d_h2oice(ig,islope)
1139                h2o_ice_depth(ig,islope) = thickness_toplag(deposits(ig,islope))
1140            endif
1141        enddo
1142    enddo
1143endif
1144
1145! III.a.3. Tsurf update for start file
1146write(*,*) '> Reconstructing the surface temperature for the PCM'
1147tsurf = tsurf_avg + tsurf_dev
1148deallocate(tsurf_dev)
1149
1150! III_a.4 Tsoil update for start file
1151if (soil_pem) then
1152    write(*,*) '> Reconstructing the soil temperature profile for the PCM'
1153    inertiesoil = TI_PEM(:,:nsoilmx,:)
1154    ! Tsurf has evolved and so the soil temperature profile needs to be adapted to match this new value
1155    do isoil = 1,nsoilmx
1156        tsoil_dev(:,isoil,:) = tsoil_dev(:,isoil,:)*(tsurf_avg(:,:) - tsoil_PEM(:,1,:))/tsoil_dev(:,1,:)
1157    enddo
1158    tsoil = tsoil_PEM(:,1:nsoilmx,:) + tsoil_dev
1159#ifndef CPP_STD
1160    flux_geo = fluxgeo
1161#endif
1162endif
1163deallocate(tsurf_avg,tsoil_dev)
1164
1165! III_a.5 Pressure update for start file
1166write(*,*) '> Reconstructing the pressure for the PCM'
1167allocate(ps_start(ngrid))
1168! The pressure deviation is rescaled as well to avoid disproportionate oscillations in case of huge average pressure drop
1169ps_start = ps_avg + ps_dev*ps_avg_global_new/ps_avg_global_ini
1170deallocate(ps_avg,ps_dev)
1171
1172! III_a.6 Tracers update for start file
1173write(*,*) '> Reconstructing the tracer VMR for the PCM'
1174allocate(zplev_start0(ngrid,nlayer + 1),zplev_new(ngrid,nlayer + 1))
1175do l = 1,nlayer + 1
1176    zplev_start0(:,l) = ap(l) + bp(l)*ps_start0
1177    zplev_new(:,l) = ap(l) + bp(l)*ps_start
1178enddo
1179
1180do nnq = 1,nqtot
1181    if (noms(nnq) /= "co2") then
1182        do l = 1,llm - 1
1183            do ig = 1,ngrid
1184                q(ig,l,nnq) = q(ig,l,nnq)*(zplev_start0(ig,l) - zplev_start0(ig,l + 1))/(zplev_new(ig,l) - zplev_new(ig,l + 1))
1185            enddo
1186            q(:,llm,nnq) = q(:,llm - 1,nnq)
1187        enddo
1188    else
1189        do l = 1,llm - 1
1190            do ig = 1,ngrid
1191                q(ig,l,nnq) = q(ig,l,nnq)*(zplev_start0(ig,l) - zplev_start0(ig,l + 1))/(zplev_new(ig,l) - zplev_new(ig,l + 1)) &
1192                              + ((zplev_new(ig,l) - zplev_new(ig,l + 1)) - (zplev_start0(ig,l) - zplev_start0(ig,l + 1)))/(zplev_new(ig,l) - zplev_new(ig,l + 1))
1193            enddo
1194            q(:,llm,nnq) = q(:,llm - 1,nnq)
1195        enddo
1196    endif
1197enddo
1198deallocate(zplev_start0)
1199
1200! Conserving the tracers mass for start file
1201do nnq = 1,nqtot
1202    do ig = 1,ngrid
1203        do l = 1,llm - 1
1204            if (q(ig,l,nnq) > 1 .and. (noms(nnq) /= "dust_number") .and. (noms(nnq) /= "ccn_number") .and. (noms(nnq) /= "stormdust_number") .and. (noms(nnq) /= "topdust_number")) then
1205                extra_mass = (q(ig,l,nnq) - 1)*(zplev_new(ig,l) - zplev_new(ig,l + 1))
1206                q(ig,l,nnq) = 1.
1207                q(ig,l + 1,nnq) = q(ig,l + 1,nnq) + extra_mass*(zplev_new(ig,l + 1) - zplev_new(ig,l + 2))
1208                write(*,*) 'extra ',noms(nnq),extra_mass, noms(nnq) /= "dust_number",noms(nnq) /= "ccn_number"
1209            endif
1210            if (q(ig,l,nnq) < 0) q(ig,l,nnq) = 1.e-30
1211        enddo
1212    enddo
1213enddo
1214deallocate(zplev_new)
1215
1216! III_a.7 Albedo update for start file
1217write(*,*) '> Reconstructing the albedo for the PCM'
1218do ig = 1,ngrid
1219    if (latitude(ig) < 0.) then
1220        icap = 2 ! Southern hemisphere
1221    else
1222        icap = 1 ! Northern hemisphere
1223    endif
1224    do islope = 1,nslope
1225        ! Bare ground
1226        albedo(ig,:,islope) = albedodat(ig)
1227        emis(ig,islope) = emissiv
1228
1229        ! CO2 ice/frost is treated after H20 ice/frost because it is considered dominant
1230        ! H2O ice
1231        if (h2o_ice(ig,islope) > 0.) then
1232            albedo(ig,:,islope) = albedo_h2o_cap
1233            emis(ig,islope) = 1.
1234        endif
1235        ! CO2 ice
1236        if (co2_ice(ig,islope) > 0.) then
1237            albedo(ig,:,islope) = albedo_perennialco2(icap)
1238            emis(ig,islope) = emisice(icap)
1239        endif
1240        ! H2O frost
1241        if (qsurf(ig,igcm_h2o_ice,islope) > 0.) then
1242            albedo(ig,:,islope) = albedo_h2o_frost
1243            emis(ig,islope) = 1.
1244        endif
1245        ! CO2 frost
1246        if (qsurf(ig,igcm_co2,islope) > 0.) then
1247            albedo(ig,:,islope) = albedice(icap)
1248            emis(ig,islope) = emisice(icap)
1249        endif
1250    enddo
1251enddo
1252
1253! III_a.8 Orbital parameters update for start file
1254write(*,*) '> Setting the new orbital parameters'
1255if (evol_orbit_pem) call recomp_orb_param(i_myear,i_myear_leg)
1256
1257!------------------------
1258! III Output
1259!    III_b Write "restart.nc" and "restartfi.nc"
1260!------------------------
1261! III_b.1 Write "restart.nc"
1262ptimestep = iphysiq*daysec/real(day_step)/nsplit_phys ! dtphys/nsplit_phys
1263pday = day_ini
1264ztime_fin = time_phys
1265#ifndef CPP_1D
1266    write(*,*) '> Writing "restart.nc"'
1267    ! Correction on teta due to surface pressure changes
1268    allocate(pdyn(ip1jmp1))
1269    call gr_fi_dyn(1,ngrid,iip1,jjp1,ps_start0/ps_start,pdyn)
1270    do i = 1,ip1jmp1
1271        teta(i,:) = teta(i,:)*pdyn(i)**kappa
1272    enddo
1273    ! Correction on atmospheric pressure
1274    allocate(p(ip1jmp1,nlayer + 1))
1275    call gr_fi_dyn(1,ngrid,iip1,jjp1,ps_start,pdyn)
1276    call pression(ip1jmp1,ap,bp,pdyn,p)
1277    ! Correction on the mass of atmosphere
1278    call massdair(p,masse)
1279    call dynredem0("restart.nc",day_ini,phis)
1280    call dynredem1("restart.nc",time_0,vcov,ucov,teta,q,masse,pdyn)
1281    deallocate(ap,bp,p,pdyn)
1282#else
1283    write(*,*) '> Writing "restart1D.txt"'
1284    call writerestart1D('restart1D.txt',ps_start(1),tsurf(1,:),nlayer,size(tsurf,2),teta,ucov,vcov,nq,noms,qsurf(1,:,:),q)
1285#endif
1286deallocate(ps_start0,ps_start)
1287
1288! III_b.2 Write the "restartfi.nc"
1289write(*,*) '> Writing "restartfi.nc"'
1290#ifndef CPP_STD
1291    call physdem0("restartfi.nc",longitude,latitude,nsoilmx,ngrid, &
1292                  nlayer,nq,ptimestep,pday,0.,cell_area,albedodat, &
1293                  inertiedat,def_slope,subslope_dist)
1294    call physdem1("restartfi.nc",nsoilmx,ngrid,nlayer,nq,nqsoil,      &
1295                  ptimestep,ztime_fin,tsurf,tsoil,inertiesoil,        &
1296                  albedo,emis,q2,qsurf,qsoil,tauscaling,totcloudfrac, &
1297                  wstar,watercap,perennial_co2ice)
1298#else
1299    if (allocated(noms)) deallocate(noms)
1300    deallocate(qsurf,tsurf,tsoil,emis,watercap,watercaptag,albedo,inertiesoil)
1301    call physdem0("restartfi.nc",longitude,latitude,nsoilmx,ngrid, &
1302                  nlayer,nq,ptimestep,pday,time_phys,cell_area,    &
1303                  albedo_bareground,inertiedat,zmea,zstd,zsig,zgam,zthe)
1304    call physdem1("restartfi.nc",nsoilmx,ngrid,nlayer,nq,nqsoil,       &
1305                  ptimestep,ztime_fin,tsurf,tsoil,emis,q2,qsurf,qsoil, &
1306                  cloudfrac,totcloudfrac,hice,rnat,pctsrf_sic,tslab,   &
1307                  tsea_ice,sea_ice)
1308#endif
1309
1310!------------------------
1311! III Output
1312!    III_c Write the "restartpem.nc"
1313!------------------------
1314write(*,*) '> Writing "restartpem.nc"'
1315if (layering_algo) nb_str_max = get_nb_str_max(deposits,ngrid,nslope) ! Get the maximum number of "stratum" in the depositsication (layerings)
1316call pemdem0("restartpem.nc",longitude,latitude,cell_area,ngrid,nslope,def_slope,subslope_dist)
1317call pemdem1("restartpem.nc",i_myear,nsoilmx_PEM,ngrid,nslope,tsoil_PEM,TI_PEM,icetable_depth,icetable_thickness,ice_porefilling, &
1318             co2_adsorbed_phys,h2o_adsorbed_phys,h2o_ice,deposits)
1319
1320call info_PEM(i_myear_leg,stopPEM,i_myear,n_myear)
1321
1322write(*,*)
1323write(*,*) '****** PEM final information *******'
1324write(*,'(a,f16.4,a)') " + The PEM leg has run for ", i_myear_leg, " Martian years."
1325write(*,'(a,f16.4,a,f16.4,a)') " + The chained simulation has run for ", i_myear, " Martian years =", i_myear*convert_years, " Earth years."
1326write(*,'(a,f16.4,a)') " + The reached date is now ", (year_bp_ini + i_myear)*convert_years, " Earth years."
1327write(*,*) "+ PEM: so far, so good!"
1328write(*,*) '************************************'
1329
1330if (layering_algo) then
1331    do islope = 1,nslope
1332        do i = 1,ngrid
1333            call del_layering(deposits(i,islope))
1334        enddo
1335    enddo
1336endif
1337deallocate(q,longitude,latitude,cell_area,tsoil_PEM)
1338deallocate(co2_ice,h2o_ice,deposits)
1339!----------------------------- END OUTPUT ------------------------------
1340
1341END PROGRAM pem
Note: See TracBrowser for help on using the repository browser.