source: trunk/LMDZ.COMMON/libf/evolution/pem.F90 @ 3707

Last change on this file since 3707 was 3707, checked in by evos, 3 months ago

Updating h2o ice recomp tendency to reduce the ice table loss rate due increase of depth and a decrease in the humidity around the ice.

File size: 68.4 KB
Line 
1!------------------------
2! I   Initialization
3!    I_a Read the "run.def"
4!    I_b Read the "start.nc" and "startfi.nc"
5!    I_c Subslope parametrisation
6!    I_d Read the PCM data and convert them to the physical grid
7!    I_e Initialization of the PEM variable and soil
8!    I_f Compute tendencies
9!    I_g Compute global surface pressure
10!    I_h Read the "startpem.nc"
11!    I_i Compute orbit criterion
12
13! II  Run
14!    II_a Update pressure, ice and tracers
15!    II_b Evolution of ice
16!    II_c Flow of glaciers
17!    II_d Update surface and soil temperatures
18!    II_e Outputs
19!    II_f Update the tendencies
20!    II_g Checking the stopping criterion
21
22! III Output
23!    III_a Update surface value for the PCM start files
24!    III_b Write the "restart.nc" and "restartfi.nc"
25!    III_c Write the "restartpem.nc"
26!------------------------
27
28PROGRAM pem
29
30use phyetat0_mod,               only: phyetat0
31use phyredem,                   only: physdem0, physdem1
32use netcdf,                     only: nf90_open, NF90_NOWRITE, nf90_get_var, nf90_inq_varid, nf90_close
33use turb_mod,                   only: q2, wstar
34use comslope_mod,               only: nslope, def_slope, def_slope_mean, subslope_dist, iflat, ini_comslope_h
35use logic_mod,                  only: iflag_phys
36use mod_const_mpi,              only: COMM_LMDZ
37use infotrac
38use geometry_mod,               only: latitude_deg
39use conf_pem_mod,               only: conf_pem
40use pemredem,                   only: pemdem0, pemdem1
41use glaciers_mod,               only: flow_co2glaciers, flow_h2oglaciers, co2ice_flow, h2oice_flow, inf_h2oice_threshold, &
42                                      metam_h2oice_threshold, metam_co2ice_threshold, metam_h2oice, metam_co2ice, computeTcondCO2
43use stopping_crit_mod,          only: stopping_crit_h2o_ice, stopping_crit_co2
44use constants_marspem_mod,      only: alpha_clap_co2, beta_clap_co2, alpha_clap_h2o, beta_clap_h2o, m_co2, m_noco2
45use evol_ice_mod,               only: evol_co2_ice, evol_h2o_ice
46use comsoil_h_PEM,              only: soil_pem, ini_comsoil_h_PEM, end_comsoil_h_PEM, nsoilmx_PEM, &
47                                      TI_PEM,               & ! Soil thermal inertia
48                                      tsoil_PEM, layer_PEM, & ! Soil temp, number of subsurface layers, soil mid layer depths
49                                      fluxgeo                 ! Geothermal flux for the PEM and PCM
50use adsorption_mod,             only: regolith_adsorption, adsorption_pem,        & ! Bool to check if adsorption, main subroutine
51                                      ini_adsorption_h_PEM, end_adsorption_h_PEM, & ! Allocate arrays
52                                      co2_adsorbed_phys, h2o_adsorbed_phys          ! Mass of co2 and h2O adsorbed
53use time_evol_mod,              only: dt, evol_orbit_pem, Max_iter_pem, convert_years, year_bp_ini
54use orbit_param_criterion_mod,  only: orbit_param_criterion
55use recomp_orb_param_mod,       only: recomp_orb_param
56use ice_table_mod,              only: icetable_depth, icetable_thickness, end_ice_table, ice_porefilling, &
57                                      ini_ice_table, icetable_equilibrium, icetable_dynamic, computeice_table_equilibrium, compute_massh2o_exchange_ssi
58use soil_thermalproperties_mod, only: update_soil_thermalproperties
59use time_phylmdz_mod,           only: daysec, dtphys
60use abort_pem_mod,              only: abort_pem
61use soil_settings_PEM_mod,      only: soil_settings_PEM
62use compute_tend_mod,           only: compute_tend
63use info_PEM_mod,               only: info_PEM
64use get_timelen_PCM_mod,        only: get_timelen_PCM
65use pemetat0_mod,               only: pemetat0
66use read_data_PCM_mod,          only: read_data_PCM
67use recomp_tend_mod,            only: recomp_tend_co2, recomp_tend_h2o
68use compute_soiltemp_mod,       only: compute_tsoil_pem, shift_tsoil2surf
69use writediagpem_mod,           only: writediagpem, writediagsoilpem
70use co2condens_mod,             only: CO2cond_ps
71use layering_mod,               only: d_dust, ptrarray, stratum, layering, ini_layering, del_layering, make_layering, get_nb_str_max, nb_str_max, layering_algo
72use dyn_ss_ice_m_mod,           only: dyn_ss_ice_m
73use version_info_mod,           only: print_version_info
74use paleoclimate_mod,           only: h2o_ice_depth, zdqsdif_ssi_tot
75
76#ifndef CPP_STD
77    use comsoil_h,          only: tsoil, nsoilmx, ini_comsoil_h, inertiedat, mlayer, inertiesoil, flux_geo, nqsoil, qsoil
78    use surfdat_h,          only: tsurf, qsurf, emis, emissiv, emisice, ini_surfdat_h,   &
79                                  albedodat, albedice, albedo_h2o_frost, albedo_h2o_cap, &
80                                  zmea, zstd, zsig, zgam, zthe, frost_albedo_threshold,  &
81                                  watercap, watercaptag, perennial_co2ice, albedo_perennialco2
82    use dimradmars_mod,     only: totcloudfrac, albedo
83    use dust_param_mod,     only: tauscaling
84    use tracer_mod,         only: noms, igcm_h2o_ice, igcm_co2, mmol, igcm_h2o_vap ! Tracer names and molar masses
85    use mod_phys_lmdz_para, only: is_parallel, is_sequential, is_mpi_root, is_omp_root, is_master
86    use planete_h,          only: aphelie, periheli, year_day, peri_day, obliquit, iniorbit
87    use surfini_mod,        only: surfini
88    use comconst_mod,       only: pi, rad, g, cpp, kappa
89    use comcstfi_h,         only: mugaz
90#else
91    use tracer_h,           only: noms, igcm_h2o_ice, igcm_co2 ! Tracer names
92    use phys_state_var_mod, only: cloudfrac, totcloudfrac, albedo_snow_SPECTV,HICE,RNAT,   &
93                                  PCTSRF_SIC, TSLAB, TSEA_ICE, SEA_ICE, ALBEDO_BAREGROUND, &
94                                  ALBEDO_CO2_ICE_SPECTV, phys_state_var_init
95    use aerosol_mod,        only: iniaerosol
96    use planete_mod,        only: apoastr, periastr, year_day, peri_day, obliquit
97    use comcstfi_mod,       only: pi, rad, g, mugaz, r
98#endif
99
100#ifndef CPP_1D
101    use comconst_mod,             only: r
102    use iniphysiq_mod,            only: iniphysiq
103    use control_mod,              only: iphysiq, day_step, nsplit_phys
104#else
105    use comcstfi_h,               only: r
106    use time_phylmdz_mod,         only: iphysiq, steps_per_sol
107    use regular_lonlat_mod,       only: init_regular_lonlat
108    use physics_distribution_mod, only: init_physics_distribution
109    use mod_grid_phy_lmdz,        only: regular_lonlat
110    use init_testphys1d_mod,      only: init_testphys1d
111    use comvert_mod,              only: ap, bp
112    use writerestart1D_mod,       only: writerestart1D
113   ! use layering_mod,             only: layering, array2stratif, nb_str_max, layering_algo
114#endif
115
116implicit none
117
118include "dimensions.h"
119include "paramet.h"
120include "comgeom.h"
121include "iniprint.h"
122include "callkeys.h"
123
124integer ngridmx
125parameter(ngridmx = 2 + (jjm - 1)*iim - 1/jjm)
126
127! Same variable names as in the PCM
128integer, parameter :: nlayer = llm ! Number of vertical layer
129integer            :: ngrid        ! Number of physical grid points
130integer            :: nq           ! Number of tracer
131integer            :: day_ini      ! First day of the simulation
132real               :: pday         ! Physical day
133real               :: time_phys    ! Same as in PCM
134real               :: ptimestep    ! Same as in PCM
135real               :: ztime_fin    ! Same as in PCM
136
137! Variables to read "start.nc"
138character(*), parameter :: start_name = "start.nc" ! Name of the file used to initialize the PEM
139
140! Dynamic variables
141real, dimension(ip1jm,llm)          :: vcov          ! vents covariants
142real, dimension(ip1jmp1,llm)        :: ucov          ! vents covariants
143real, dimension(ip1jmp1,llm)        :: teta          ! Potential temperature
144real, dimension(:,:,:), allocatable :: q             ! champs advectes
145real, dimension(:),     allocatable :: pdyn          ! pressure for the dynamic grid
146real, dimension(:),     allocatable :: ps_start      ! surface pressure in the start file
147real, dimension(:),     allocatable :: ps_start0     ! surface pressure in the start file at the beginning
148real, dimension(:),     allocatable :: ps_avg        ! (ngrid) Average surface pressure
149real, dimension(:),     allocatable :: ps_dev        ! (ngrid x timelen) Surface pressure deviation
150real, dimension(:,:),   allocatable :: ps_timeseries ! (ngrid x timelen) Instantaneous surface pressure
151real, dimension(ip1jmp1,llm)        :: masse         ! Air mass
152real, dimension(ip1jmp1)            :: phis          ! geopotentiel au sol
153real                                :: time_0
154
155! Variables to read starfi.nc
156character(*), parameter :: startfi_name = "startfi.nc" ! Name of the file used to initialize the PEM
157character(2)            :: str2
158integer                 :: ncid, status                           ! Variable for handling opening of files
159integer                 :: lonvarid, latvarid, areavarid, sdvarid ! Variable ID for Netcdf files
160integer                 :: apvarid, bpvarid                       ! Variable ID for Netcdf files
161
162! Variables to read starfi.nc and write restartfi.nc
163real, dimension(:), allocatable :: longitude     ! Longitude read in startfi_name and written in restartfi
164real, dimension(:), allocatable :: latitude      ! Latitude read in startfi_name and written in restartfi
165real, dimension(:), allocatable :: cell_area     ! Cell_area read in startfi_name and written in restartfi
166real                            :: total_surface ! Total surface of the planet
167
168! Variables for h2o_ice evolution
169real, dimension(:,:),    allocatable  :: h2o_ice              ! h2o ice in the PEM
170real, dimension(:,:),    allocatable  :: d_h2oice             ! physical point x slope field: Tendency of evolution of perennial h2o ice
171real, dimension(:,:,:),  allocatable  :: min_h2o_ice          ! Minima of h2o ice at each point for the PCM years [kg/m^2]
172real                                  :: h2oice_ini_surf      ! Initial surface of sublimating h2o ice
173logical, dimension(:,:), allocatable  :: is_h2oice_sublim_ini ! Logical array to know if h2o ice is sublimating
174real                                  :: ps_avg_global_ini    ! constant: Global average pressure at initialization [Pa]
175real                                  :: ps_avg_global_old    ! constant: Global average pressure of previous time step
176real                                  :: ps_avg_global_new    ! constant: Global average pressure of current time step
177real,   dimension(:,:),   allocatable :: zplev_new            ! Grid points x Atmospheric field: mass of the atmospheric layers in the pem at current time step [kg/m^2]
178real,   dimension(:,:),   allocatable :: zplev_start0         ! Grid points x Atmospheric field: mass of the atmospheric layers in the start [kg/m^2]
179real,   dimension(:,:,:), allocatable :: zplev_timeseries_new ! Grid points x Atmospheric x Time: same as zplev_new, but in times series [kg/m ^2]
180real,   dimension(:,:,:), allocatable :: zplev_timeseries_old ! same but with the time series, for previous time step
181integer                               :: stopPEM              ! which criterion is reached? 0 = no stopping; 1 = h2o ice surf; 2 = no h2o ice; 3 = co2 ice surf; 4 = ps; 5 = orb param; 6 = end of simu
182real                                  :: A, B, mmean          ! Molar mass: intermediate A, B for computations of the  mean molar mass of the layer [mol/kg]
183real,   dimension(:,:),   allocatable :: q_h2o_PEM_phys       ! Grid points x Times: h2o mass mixing ratio computed in the PEM, first value comes from PCM [kg/kg]
184integer                               :: timelen              ! # time samples
185real                                  :: extra_mass           ! Intermediate variables Extra mass of a tracer if it is greater than 1
186
187! Variables for co2_ice evolution
188real,    dimension(:,:), allocatable :: co2_ice                ! co2 ice in the PEM
189real,    dimension(:,:), allocatable :: d_co2ice               ! physical point x slope field: Tendency of evolution of perennial co2 ice over a year
190real,    dimension(:,:), allocatable :: d_co2ice_ini           ! physical point x slope field: Tendency of evolution of perennial co2 ice over a year in the PCM
191logical, dimension(:,:), allocatable :: is_co2ice_ini          ! Was there co2 ice initially in the PEM?
192real,  dimension(:,:,:), allocatable :: min_co2_ice            ! Minimum of co2 ice at each point for the first year [kg/m^2]
193real                                 :: co2ice_sublim_surf_ini ! Initial surface of sublimating co2 ice
194logical, dimension(:,:), allocatable :: is_co2ice_sublim_ini   ! Logical array to know if co2 ice is sublimating
195real,    dimension(:,:), allocatable :: vmr_co2_PCM            ! Grid points x Times co2 volume mixing ratio retrieve from the PCM [m^3/m^3]
196real,    dimension(:,:), allocatable :: vmr_co2_PEM_phys       ! Grid points x Times co2 volume mixing ratio used in the PEM
197real,    dimension(:,:), allocatable :: q_co2_PEM_phys         ! Grid points x Times co2 mass mixing ratio in the first layer computed in the PEM, first value comes from PCM [kg/kg]
198
199! Variables for stratification (layering) evolution
200type(layering), dimension(:,:), allocatable :: stratif                     ! Layering (linked list of "stratum") for each grid point and slope
201type(ptrarray), dimension(:,:), allocatable :: current1, current2          ! Current active stratum in the layering
202logical,        dimension(:,:), allocatable :: new_str, new_lag1, new_lag2 ! Flags for the layering algorithm
203
204! Variables for slopes
205integer(kind = 1), dimension(:,:), allocatable :: flag_co2flow ! (ngrid,nslope): Flag where there is a CO2 glacier flow
206integer(kind = 1), dimension(:,:), allocatable :: flag_h2oflow ! (ngrid,nslope): Flag where there is a H2O glacier flow
207
208! Variables for surface and soil
209real, dimension(:,:),     allocatable :: tsurf_avg                        ! Grid points x Slope field: Average surface temperature [K]
210real, dimension(:,:),     allocatable :: tsurf_dev                        ! Grid points x Slope field: Surface temperature deviation [K]
211real, dimension(:,:),     allocatable :: tsurf_avg_yr1                    ! Grid points x Slope field: Average surface temperature of first call of the PCM [K]
212real, dimension(:,:,:),   allocatable :: tsoil_avg                        ! Grid points x Soil x Slope field: Average Soil Temperature [K]
213real, dimension(:,:),     allocatable :: tsoil_avg_old                    ! Grid points x Soil field: Average Soil Temperature at the previous time step [K]
214real, dimension(:,:,:),   allocatable :: tsoil_dev                        ! Grid points x Soil x Slope field: Soil temperature deviation [K]
215real, dimension(:,:,:,:), allocatable :: tsoil_timeseries                 ! Grid points x Soil x Slope x Times field: Soil temperature timeseries [K]
216real, dimension(:,:,:,:), allocatable :: tsoil_PEM_timeseries             ! Grid points x Soil x Slope x Times field: Soil temperature timeseries for PEM [K]
217real, dimension(:,:,:,:), allocatable :: tsoil_PEM_timeseries_old         ! Grid points x Soil x Slope x Times field: Soil temperature timeseries for PEM at the previous time step [K]
218real, dimension(:,:,:,:), allocatable :: watersoil_density_timeseries     ! Grid points x Soil x Slope x Times Water soil density timeseries [kg /m^3]
219real, dimension(:,:),     allocatable :: watersurf_density_avg            ! Grid points x Slope: Average water surface density [kg/m^3]
220real, dimension(:,:,:,:), allocatable :: watersoil_density_PEM_timeseries ! Grid points x Soil x Slope x Times: Water soil density timeseries for PEM [kg/m^3]
221real, dimension(:,:,:),   allocatable :: watersoil_density_PEM_avg        ! Grid points x Soil x Slopes: Average water soil density [kg/m^3]
222real, dimension(:),       allocatable :: delta_co2_adsorbed               ! Physics: quantity of CO2 that is exchanged because of adsorption / desorption [kg/m^2]
223real, dimension(:),       allocatable :: delta_h2o_adsorbed               ! Physics: quantity of H2O that is exchanged because of adsorption / desorption [kg/m^2]
224real                                  :: totmassco2_adsorbed              ! Total mass of CO2 that is exchanged because of adsorption / desoprtion over the planets [kg]
225real                                  :: totmassh2o_adsorbed              ! Total mass of H2O that is exchanged because of adsorption / desoprtion over the planets [kg]
226logical, dimension(:,:),  allocatable :: co2ice_disappeared               ! logical to check if a co2 ice reservoir already disappeared at a previous timestep
227real, dimension(:,:),     allocatable :: icetable_thickness_old           ! ngrid x nslope: Thickness of the ice table at the previous iteration [m]
228real, dimension(:,:,:),   allocatable :: ice_porefilling_old              ! ngrid x nslope: Ice pore filling at the previous iteration [m]
229real, dimension(:),       allocatable :: delta_h2o_icetablesublim         ! ngrid x Total mass of the H2O that has sublimated / condenses from the ice table [kg]
230real, dimension(:),       allocatable :: porefill                         ! Pore filling (output) to compute the dynamic ice table
231real                                  :: ssi_depth                        ! Ice table depth (output) to compute the dynamic ice table
232real, dimension(:,:),     allocatable :: zshift_surf                      ! Elevation shift for the surface [m]
233real, dimension(:,:),     allocatable :: zlag                             ! Newly built lag thickness [m]
234real, dimension(:,:),     allocatable :: icetable_depth_old               ! Old depth of the ice table
235
236! Some variables for the PEM run
237real, parameter       :: year_step = 1   ! Timestep for the pem
238real                  :: i_myear_leg     ! Number of iteration
239real                  :: n_myear_leg     ! Maximum number of iterations before stopping
240real                  :: i_myear         ! Global number of Martian years of the chained simulations
241real                  :: n_myear         ! Maximum number of Martian years of the chained simulations
242real                  :: timestep        ! Timestep [s]
243character(100)        :: arg             ! To read command-line arguments program was invoked
244logical               :: timewall        ! Flag to use the time limit stopping criterion in case of a PEM job
245integer(kind = 8)     :: cr              ! Number of clock ticks per second (count rate)
246integer(kind = 8)     :: c1, c2          ! Counts of processor clock
247character(100)        :: chtimelimit     ! Time limit for the PEM job outputted by the SLURM command
248real                  :: timelimit       ! Time limit for the PEM job in seconds
249real, parameter       :: antetime = 3600 ! Anticipation time to prevent reaching the job time limit: 3600 s by default (it should cover the computing time of the reshaping tool)
250integer               :: cstat, days, hours, minutes, seconds
251character(1)          :: sep
252character(8)          :: date
253character(10)         :: time
254character(5)          :: zone
255integer, dimension(8) :: values
256character(128)        :: dir = ' '
257character(32)         :: logname = ' '
258character(32)         :: hostname = ' '
259
260#ifdef CPP_STD
261    real                                :: frost_albedo_threshold = 0.05 ! Frost albedo threeshold to convert fresh frost to old ice
262    real                                :: albedo_h2o_frost              ! Albedo of h2o frost
263    real, dimension(:),     allocatable :: tsurf_read_generic            ! Temporary variable to do the subslope transfert dimension when reading form generic
264    real, dimension(:,:),   allocatable :: qsurf_read_generic            ! Temporary variable to do the subslope transfert dimension when reading form generic
265    real, dimension(:,:),   allocatable :: tsoil_read_generic            ! Temporary variable to do the subslope transfert dimension when reading form generic
266    real, dimension(:),     allocatable :: emis_read_generic             ! Temporary variable to do the subslope transfert dimension when reading form generic
267    real, dimension(:,:),   allocatable :: albedo_read_generic           ! Temporary variable to do the subslope transfert dimension when reading form generic
268    real, dimension(:,:),   allocatable :: tsurf                         ! Subslope variable, only needed in the GENERIC case
269    real, dimension(:,:,:), allocatable :: qsurf                         ! Subslope variable, only needed in the GENERIC case
270    real, dimension(:,:,:), allocatable :: tsoil                         ! Subslope variable, only needed in the GENERIC case
271    real, dimension(:,:),   allocatable :: emis                          ! Subslope variable, only needed in the GENERIC case
272    real, dimension(:,:),   allocatable :: watercap                      ! Subslope variable, only needed in the GENERIC case =0 no watercap in generic model
273    logical, dimension(:),  allocatable :: watercaptag                   ! Subslope variable, only needed in the GENERIC case =false no watercaptag in generic model
274    real, dimension(:,:,:), allocatable :: albedo                        ! Subslope variable, only needed in the GENERIC case
275    real, dimension(:,:,:), allocatable :: inertiesoil                   ! Subslope variable, only needed in the GENERIC case
276#endif
277
278#ifdef CPP_1D
279    integer            :: nsplit_phys
280    integer, parameter :: jjm_value = jjm - 1
281    integer            :: day_step
282
283    ! Dummy variables to use the subroutine 'init_testphys1d'
284    logical                             :: therestart1D, therestartfi
285    integer                             :: ndt, day0
286    real                                :: ptif, pks, day, gru, grv, atm_wat_profile, atm_wat_tau
287    real, dimension(:),     allocatable :: zqsat
288    real, dimension(:,:,:), allocatable :: dq, dqdyn
289    real, dimension(nlayer)             :: play, w
290    real, dimension(nlayer + 1)         :: plev
291#else
292    integer, parameter                :: jjm_value = jjm
293    real, dimension(:),   allocatable :: ap ! Coefficient ap read in start_name and written in restart
294    real, dimension(:),   allocatable :: bp ! Coefficient bp read in start_name and written in restart
295    real, dimension(:,:), allocatable :: p  ! Grid points x Atmosphere: pressure to recompute and write in restart (ip1jmp1,llmp1)
296#endif
297
298! Loop variables
299integer :: i, l, ig, nnq, t, islope, ig_loop, islope_loop, isoil, icap
300logical :: num_str
301
302write(*,*) '  *    .          .   +     .    *        .  +      .    .       .      '
303write(*,*) '           +         _______  ________  ____    ____      *           + '
304write(*,*) ' +   .        *     |_   __ \|_   __  ||_   \  /   _|          .       *'
305write(*,*) '          .     .     | |__) | | |_ \_|  |   \/   |  *        *      .  '
306write(*,*) '       .              |  ___/  |  _| _   | |\  /| |      .        .     '
307write(*,*) '.  *          *      _| |_    _| |__/ | _| |_\/_| |_                  * '
308write(*,*) '            +       |_____|  |________||_____||_____|   +     .         '
309write(*,*) '  .      *          .   *       .   +       *          .        +      .'
310
311! Elapsed time with system clock
312call system_clock(count_rate = cr)
313call system_clock(c1)
314timewall = .true.
315timelimit = 86400 ! 86400 seconds = 24 h by default
316if (command_argument_count() > 0) then ! Get the number of command-line arguments
317    call get_command_argument(1,arg) ! Read the argument given to the program
318    num_str = .true.
319    do i = 1,len_trim(arg)
320        if (arg(i:i) < '0' .or. arg(i:i) > '9') then
321            num_str = .false.
322            exit
323        endif
324    enddo
325   
326    if (num_str) then ! This is a numeric sting so we considerer this is the job id
327           ! Execute the system command
328            call execute_command_line('squeue -j '//trim(adjustl(arg))//' -h --Format TimeLimit > tmp_cmdout.txt',cmdstat = cstat)
329            if (cstat /= 0) then
330                call execute_command_line('qstat -f '//trim(adjustl(arg))//' | grep "Walltime" | awk ''{print $3}'' > tmp_cmdout.txt',cmdstat = cstat)
331                if (cstat > 0) then
332                    error stop 'pem: command execution failed!'
333                else if (cstat < 0) then
334                    error stop 'pem: command execution not supported (neither SLURM nor PBS/TORQUE is installed)!'
335                endif
336            endif
337            ! Read the output
338            open(1,file = 'tmp_cmdout.txt',status = 'old')
339            read(1,'(a)') chtimelimit
340            close(1)
341            chtimelimit = trim(adjustl(chtimelimit))
342            call execute_command_line('rm tmp_cmdout.txt',cmdstat = cstat)
343            if (cstat > 0) then
344                error stop 'pem: command execution failed!'
345            else if (cstat < 0) then
346                error stop 'pem: command execution not supported!'
347            endif
348            if (index(chtimelimit,'-') > 0) then ! 'chtimelimit' format is "D-HH:MM:SS"
349                read(chtimelimit,'(i1,a1,i2,a1,i2,a1,i2)') days, sep, hours, sep, minutes, sep, seconds
350                timelimit = days*86400 + hours*3600 + minutes*60 + seconds
351            else if (index(chtimelimit,':') > 0 .and. len_trim(chtimelimit) > 5) then ! 'chtimelimit' format is "HH:MM:SS"
352                read(chtimelimit,'(i2,a1,i2,a1,i2)') hours, sep, minutes, sep, seconds
353                timelimit = hours*3600 + minutes*60 + seconds
354            else ! 'chtimelimit' format is "MM:SS"
355                read(chtimelimit,'(i2,a1,i2)') minutes, sep, seconds
356                timelimit = minutes*60 + seconds
357            endif
358    else ! Arg is not a numeric string
359        select case (trim(adjustl(arg)))
360            case('version')
361                call print_version_info()
362                stop
363            case default
364                error stop "The argument given to the program is unknown!"
365        end select
366    endif
367else
368    timewall = .false.
369endif
370
371! Some user info
372call date_and_time(date,time,zone,values)
373call getcwd(dir)      ! Current directory
374call getlog(logname)  ! User name
375call hostnm(hostname) ! Machine/station name
376write(*,*)
377write(*,*) '********* PEM information *********'
378write(*,*) '+ User     : '//trim(logname)
379write(*,*) '+ Machine  : '//trim(hostname)
380write(*,*) '+ Directory: '//trim(dir)
381write(*,'(a,i2,a,i2,a,i4)') ' + Date     : ',values(3),'/',values(2),'/',values(1)
382write(*,'(a,i2,a,i2,a,i2,a)') ' + Time     : ',values(5),':',values(6),':',values(7)
383
384! Parallel variables
385#ifndef CPP_STD
386    is_sequential = .true.
387    is_parallel = .false.
388    is_mpi_root = .true.
389    is_omp_root = .true.
390    is_master = .true.
391#endif
392
393! Some constants
394day_ini = 0
395time_phys = 0.
396ngrid = ngridmx
397A = (1./m_co2 - 1./m_noco2)
398B = 1./m_noco2
399year_day = 669
400daysec = 88775.
401timestep = year_day*daysec*year_step
402
403!----------------------------- INITIALIZATION --------------------------
404!------------------------
405! I   Initialization
406!    I_a Read the "run.def"
407!------------------------
408write(*,*)
409write(*,*) '********* PEM initialization *********'
410write(*,*) '> Reading "run.def" (PEM)'
411#ifndef CPP_1D
412    dtphys = daysec/48. ! Dummy value (overwritten in phyetat0)
413    call conf_gcm(99,.true.)
414    call infotrac_init
415    nq = nqtot
416    allocate(q(ip1jmp1,llm,nqtot))
417    allocate(longitude(ngrid),latitude(ngrid),cell_area(ngrid))
418#else
419    allocate(q(1,llm,nqtot),pdyn(1))
420    allocate(longitude(1),latitude(1),cell_area(1))
421
422    therestart1D = .false. ! Default value
423    inquire(file = 'start1D.txt',exist = therestart1D)
424    if (.not. therestart1D) then
425        write(*,*) 'There is no "start1D.txt" file!'
426        error stop 'Initialization cannot be done for the 1D PEM.'
427    endif
428    therestartfi = .false. ! Default value
429    inquire(file = 'startfi.nc',exist = therestartfi)
430    if (.not. therestartfi) then
431        write(*,*) 'There is no "startfi.nc" file!'
432        error stop 'Initialization cannot be done for the 1D PEM.'
433    endif
434
435    write(*,*) '> Reading "start1D.txt" and "startfi.nc"'
436    call init_testphys1d('start1D.txt','startfi.nc',therestart1D,therestartfi,ngrid,nlayer,610.,nq,q,         &
437                         time_0,pdyn(1),ucov,vcov,teta,ndt,ptif,pks,dtphys,zqsat,dq,dqdyn,day0,day,gru,grv,w, &
438                         play,plev,latitude,longitude,cell_area,atm_wat_profile,atm_wat_tau)
439    nsplit_phys = 1
440    day_step = steps_per_sol
441#endif
442
443call conf_pem(i_myear,n_myear)
444
445!------------------------
446! I   Initialization
447!    I_b Read of the "start.nc" and "starfi.nc"
448!------------------------
449! I_b.1 Read "start.nc"
450write(*,*) '> Reading "start.nc"'
451allocate(ps_start0(ngrid))
452#ifndef CPP_1D
453    allocate(pdyn(ip1jmp1))
454    call dynetat0(start_name,vcov,ucov,teta,q,masse,pdyn,phis,time_0)
455
456    call gr_dyn_fi(1,iip1,jjp1,ngridmx,pdyn,ps_start0)
457
458    call iniconst ! Initialization of dynamical constants (comconst_mod)
459    call inigeom ! Initialization of geometry
460
461    allocate(ap(nlayer + 1))
462    allocate(bp(nlayer + 1))
463    status = nf90_open(start_name,NF90_NOWRITE,ncid)
464    status = nf90_inq_varid(ncid,"ap",apvarid)
465    status = nf90_get_var(ncid,apvarid,ap)
466    status = nf90_inq_varid(ncid,"bp",bpvarid)
467    status = nf90_get_var(ncid,bpvarid,bp)
468    status = nf90_close(ncid)
469
470    ! Initialization of physics constants and variables (comcstfi_h)
471    call iniphysiq(iim,jjm,llm,(jjm - 1)*iim + 2,comm_lmdz,daysec,day_ini,dtphys/nsplit_phys,rlatu,rlatv,rlonu,rlonv,aire,cu,cv,rad,g,r,cpp,iflag_phys)
472#else
473    ps_start0(1) = pdyn(1)
474#endif
475deallocate(pdyn)
476
477! In the PCM, these values are given to the physic by the dynamic.
478! Here we simply read them in the "startfi.nc" file
479status = nf90_open(startfi_name,NF90_NOWRITE,ncid)
480status = nf90_inq_varid(ncid,"longitude",lonvarid)
481status = nf90_get_var(ncid,lonvarid,longitude)
482status = nf90_inq_varid(ncid,"latitude",latvarid)
483status = nf90_get_var(ncid,latvarid,latitude)
484status = nf90_inq_varid(ncid,"area",areavarid)
485status = nf90_get_var(ncid,areavarid,cell_area)
486status = nf90_inq_varid(ncid,"soildepth",sdvarid)
487status = nf90_get_var(ncid,sdvarid,mlayer)
488status = nf90_close(ncid)
489
490! I_b.2 Read the "startfi.nc"
491! First we read the initial state (starfi.nc)
492#ifndef CPP_STD
493    write(*,*) '> Reading "startfi.nc"'
494    call phyetat0(startfi_name,0,0,nsoilmx,ngrid,nlayer,nq,nqsoil,day_ini,time_phys,tsurf, &
495                  tsoil,albedo,emis,q2,qsurf,qsoil,tauscaling,totcloudfrac,wstar,          &
496                  watercap,perennial_co2ice,def_slope,def_slope_mean,subslope_dist)
497
498    ! Remove unphysical values of surface tracer
499    where (qsurf < 0.) qsurf = 0.
500
501    call surfini(ngrid,nslope,qsurf)
502#else
503    call phys_state_var_init(nq)
504    if (.not. allocated(noms)) allocate(noms(nq)) ! (because noms is an argument of physdem1 whether or not tracer is on)
505    call initracer(ngrid,nq)
506    call iniaerosol()
507    allocate(tsurf_read_generic(ngrid))
508    allocate(qsurf_read_generic(ngrid,nq))
509    allocate(tsoil_read_generic(ngrid,nsoilmx))
510    allocate(qsoil_read_generic(ngrid,nsoilmx,nqsoil,nslope))
511    allocate(emis_read_generic(ngrid))
512    allocate(albedo_read_generic(ngrid,2))
513    allocate(qsurf(ngrid,nq,1))
514    allocate(tsurf(ngrid,1))
515    allocate(tsoil(ngrid,nsoilmx,1))
516    allocate(emis(ngrid,1))
517    allocate(watercap(ngrid,1))
518    allocate(watercaptag(ngrid))
519    allocate(albedo(ngrid,2,1))
520    allocate(inertiesoil(ngrid,nsoilmx,1))
521    call phyetat0(.true.,ngrid,nlayer,startfi_name,0,0,nsoilmx,nq,nqsoil,day_ini,time_phys, &
522                  tsurf_read_generic,tsoil_read_generic,emis_read_generic,q2,               &
523                  qsurf_read_generic,qsoil_read_generic,cloudfrac,totcloudfrac,hice,        &
524                  rnat,pctsrf_sic,tslab,tsea_ice,sea_ice)
525    call surfini(ngrid,nq,qsurf_read_generic,albedo_read_generic,albedo_bareground,albedo_snow_SPECTV,albedo_co2_ice_SPECTV)
526
527    nslope = 1
528    call ini_comslope_h(ngrid,1)
529
530    qsurf(:,:,1) = qsurf_read_generic
531    tsurf(:,1) = tsurf_read_generic
532    tsoil(:,:,1) = tsoil_read_generic
533    emis(:,1) = emis_read_generic
534    watercap(:,1) = 0.
535    watercaptag(:) = .false.
536    albedo(:,1,1) = albedo_read_generic(:,1)
537    albedo(:,2,1) = albedo_read_generic(:,2)
538    inertiesoil(:,:,1) = inertiedat
539
540    if (nslope == 1) then
541        def_slope(1) = 0
542        def_slope(2) = 0
543        def_slope_mean = 0
544        subslope_dist(:,1) = 1.
545    endif
546
547    ! Remove unphysical values of surface tracer
548    qsurf(:,:,1) = qsurf_read_generic
549    where (qsurf < 0.) qsurf = 0.
550
551    deallocate(tsurf_read_generic,qsurf_read_generic,qsoil_read_generic,emis_read_generic)
552#endif
553
554do nnq = 1,nqtot  ! Why not using ini_tracer?
555    if (noms(nnq) == "h2o_ice") igcm_h2o_ice = nnq
556    if (noms(nnq) == "h2o_vap") then
557        igcm_h2o_vap = nnq
558        mmol(igcm_h2o_vap) = 18.
559    endif
560    if (noms(nnq) == "co2") igcm_co2 = nnq
561enddo
562
563!------------------------
564! I   Initialization
565!    I_c Subslope parametrisation
566!------------------------
567! Define some slope statistics
568iflat = 1
569do islope = 2,nslope
570    if (abs(def_slope_mean(islope)) < abs(def_slope_mean(iflat))) iflat = islope
571enddo
572write(*,*) 'Flat slope for islope = ',iflat
573write(*,*) 'Corresponding criterium = ',def_slope_mean(iflat)
574
575!------------------------
576! I   Initialization
577!    I_d Read the PCM data and convert them to the physical grid
578!------------------------
579! First we read the evolution of water and co2 ice (and the mass mixing ratio) over the first year of the PCM run, saving only the minimum value
580call get_timelen_PCM("data_PCM_Y1.nc",timelen)
581
582allocate(vmr_co2_PCM(ngrid,timelen),q_co2_PEM_phys(ngrid,timelen),q_h2o_PEM_phys(ngrid,timelen))
583allocate(ps_timeseries(ngrid,timelen),ps_avg(ngrid))
584allocate(min_co2_ice(ngrid,nslope,2),min_h2o_ice(ngrid,nslope,2))
585allocate(tsurf_avg_yr1(ngrid,nslope),tsurf_avg(ngrid,nslope))
586allocate(tsoil_avg(ngrid,nsoilmx,nslope),tsoil_timeseries(ngrid,nsoilmx,nslope,timelen))
587allocate(watersurf_density_avg(ngrid,nslope),watersoil_density_timeseries(ngrid,nsoilmx,nslope,timelen))
588
589call read_data_PCM("data_PCM_Y1.nc","data_PCM_Y2.nc",timelen,iim,jjm_value,ngrid,nslope,vmr_co2_PCM,ps_timeseries,ps_avg,tsurf_avg_yr1,tsurf_avg, &
590                   tsoil_avg,tsoil_timeseries,min_co2_ice,min_h2o_ice,q_co2_PEM_phys,q_h2o_PEM_phys,watersurf_density_avg,watersoil_density_timeseries)
591
592! Compute the deviation from the average
593allocate(ps_dev(ngrid),tsurf_dev(ngrid,nslope),tsoil_dev(ngrid,nsoilmx,nslope))
594ps_dev = ps_start0 - ps_avg
595tsurf_dev = tsurf - tsurf_avg
596tsoil_dev = tsoil - tsoil_avg(:,1:nsoilmx,:)
597
598!------------------------
599! I   Initialization
600!    I_e Initialization of the PEM variables and soil
601!------------------------
602call end_comsoil_h_PEM
603call ini_comsoil_h_PEM(ngrid,nslope)
604call end_adsorption_h_PEM
605call ini_adsorption_h_PEM(ngrid,nslope,nsoilmx_PEM)
606call end_ice_table
607call ini_ice_table(ngrid,nslope,nsoilmx_PEM)
608
609allocate(tsoil_PEM_timeseries(ngrid,nsoilmx_PEM,nslope,timelen),watersoil_density_PEM_avg(ngrid,nsoilmx_PEM,nslope),watersoil_density_PEM_timeseries(ngrid,nsoilmx_PEM,nslope,timelen))
610if (soil_pem) then
611    call soil_settings_PEM(ngrid,nslope,nsoilmx_PEM,nsoilmx,inertiesoil,TI_PEM)
612    tsoil_PEM(:,1:nsoilmx,:) = tsoil_avg
613    watersoil_density_PEM_timeseries(:,1:nsoilmx,:,:) = watersoil_density_timeseries
614    tsoil_PEM_timeseries(:,1:nsoilmx,:,:) = tsoil_timeseries
615    do l = nsoilmx + 1,nsoilmx_PEM
616        tsoil_PEM(:,l,:) = tsoil_avg(:,nsoilmx,:)
617        watersoil_density_PEM_timeseries(:,l,:,:) = watersoil_density_timeseries(:,nsoilmx,:,:)
618        tsoil_PEM_timeseries(:,l,:,:) = tsoil_timeseries(:,nsoilmx,:,:)
619    enddo
620    watersoil_density_PEM_avg = sum(watersoil_density_PEM_timeseries,4)/timelen
621endif !soil_pem
622deallocate(tsoil_avg,watersoil_density_timeseries,tsoil_timeseries)
623
624!------------------------
625! I   Initialization
626!    I_f Compute tendencies
627!------------------------
628allocate(d_co2ice(ngrid,nslope),d_h2oice(ngrid,nslope),d_co2ice_ini(ngrid,nslope))
629call compute_tend(ngrid,nslope,min_co2_ice,d_co2ice)
630call compute_tend(ngrid,nslope,min_h2o_ice,d_h2oice)
631d_co2ice_ini = d_co2ice
632deallocate(min_co2_ice,min_h2o_ice)
633
634!------------------------
635! I   Initialization
636!    I_g Compute global surface pressure
637!------------------------
638total_surface = sum(cell_area)
639ps_avg_global_ini = sum(cell_area*ps_avg)/total_surface
640ps_avg_global_new = ps_avg_global_ini
641write(*,*) "Total surface of the planet     =", total_surface
642write(*,*) "Initial global average pressure =", ps_avg_global_ini
643
644!------------------------
645! I   Initialization
646!    I_h Read the "startpem.nc"
647!------------------------
648write(*,*) '> Reading "startpem.nc"'
649allocate(co2_ice(ngrid,nslope),h2o_ice(ngrid,nslope),stratif(ngrid,nslope))
650allocate(delta_h2o_adsorbed(ngrid),delta_co2_adsorbed(ngrid),delta_h2o_icetablesublim(ngrid))
651if (layering_algo) then
652    do islope = 1,nslope
653        do i = 1,ngrid
654            call ini_layering(stratif(i,islope))
655        enddo
656    enddo
657endif
658
659delta_h2o_icetablesublim = 0.
660call pemetat0("startpem.nc",ngrid,nsoilmx,nsoilmx_PEM,nslope,timelen,timestep,TI_PEM,tsoil_PEM,icetable_depth,icetable_thickness,ice_porefilling, &
661              tsurf_avg_yr1,tsurf_avg,q_co2_PEM_phys,q_h2o_PEM_phys,ps_timeseries,ps_avg_global_ini,d_h2oice,d_co2ice,co2_ice,h2o_ice,            &
662              watersurf_density_avg,watersoil_density_PEM_avg,co2_adsorbed_phys,delta_co2_adsorbed,h2o_adsorbed_phys,delta_h2o_adsorbed,stratif)
663deallocate(tsurf_avg_yr1)
664
665! We save the places where h2o ice is sublimating
666! We compute the surface of h2o ice sublimating
667allocate(is_co2ice_sublim_ini(ngrid,nslope),is_h2oice_sublim_ini(ngrid,nslope),is_co2ice_ini(ngrid,nslope),co2ice_disappeared(ngrid,nslope))
668co2ice_sublim_surf_ini = 0.
669h2oice_ini_surf = 0.
670is_co2ice_sublim_ini = .false.
671is_h2oice_sublim_ini = .false.
672is_co2ice_ini = .false.
673co2ice_disappeared = .false.
674do i = 1,ngrid
675    do islope = 1,nslope
676        if (co2_ice(i,islope) > 0.) is_co2ice_ini(i,islope) = .true.
677        if (d_co2ice(i,islope) < 0. .and. co2_ice(i,islope) > 0.) then
678            is_co2ice_sublim_ini(i,islope) = .true.
679            co2ice_sublim_surf_ini = co2ice_sublim_surf_ini + cell_area(i)*subslope_dist(i,islope)
680        endif
681        if (d_h2oice(i,islope) < 0. .and. h2o_ice(i,islope) > 0.) then
682            is_h2oice_sublim_ini(i,islope) = .true.
683            h2oice_ini_surf = h2oice_ini_surf + cell_area(i)*subslope_dist(i,islope)
684        endif
685    enddo
686enddo
687write(*,*) "Total initial surface of CO2 ice sublimating =", co2ice_sublim_surf_ini
688write(*,*) "Total initial surface of H2O ice sublimating =", h2oice_ini_surf
689
690if (adsorption_pem) then
691    totmassco2_adsorbed = 0.
692    totmassh2o_adsorbed = 0.
693    do ig = 1,ngrid
694        do islope = 1,nslope
695            do l = 1,nsoilmx_PEM - 1
696                if (l == 1) then
697                   totmassco2_adsorbed = totmassco2_adsorbed + co2_adsorbed_phys(ig,l,islope)*(layer_PEM(l))* &
698                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
699                   totmassh2o_adsorbed = totmassh2o_adsorbed + h2o_adsorbed_phys(ig,l,islope)*(layer_PEM(l))* &
700                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
701                else
702                   totmassco2_adsorbed = totmassco2_adsorbed + co2_adsorbed_phys(ig,l,islope)*(layer_PEM(l) - layer_PEM(l-1))* &
703                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
704                   totmassh2o_adsorbed = totmassh2o_adsorbed + h2o_adsorbed_phys(ig,l,islope)*(layer_PEM(l) - layer_PEM(l-1))* &
705                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
706                endif
707            enddo
708        enddo
709    enddo
710    write(*,*) "Tot mass of CO2 in the regolith =", totmassco2_adsorbed
711    write(*,*) "Tot mass of H2O in the regolith =", totmassh2o_adsorbed
712endif ! adsorption
713
714!------------------------
715! I   Initialization
716!    I_i Compute orbit criterion
717!------------------------
718#ifndef CPP_STD
719    call iniorbit(aphelie,periheli,year_day,peri_day,obliquit)
720#else
721    call iniorbit(apoastr,periastr,year_day,peri_day,obliquit)
722#endif
723
724n_myear_leg = Max_iter_pem
725if (evol_orbit_pem) call orbit_param_criterion(i_myear,n_myear_leg)
726
727!-------------------------- END INITIALIZATION -------------------------
728
729!-------------------------------- RUN ----------------------------------
730!------------------------
731! II  Run
732!    II_a Update pressure, ice and tracers
733!------------------------
734write(*,*)
735write(*,*) '********* PEM cycle *********'
736i_myear_leg = 0
737stopPEM = 0
738if (layering_algo) then
739    allocate(new_str(ngrid,nslope),new_lag1(ngrid,nslope),new_lag2(ngrid,nslope),current1(ngrid,nslope),current2(ngrid,nslope))
740    new_str = .true.
741    new_lag1 = .true.
742    new_lag2 = .true.
743    do islope = 1,nslope
744        do ig = 1,ngrid
745            current1(ig,islope)%p => stratif(ig,islope)%top
746            current2(ig,islope)%p => stratif(ig,islope)%top
747        enddo
748    enddo
749endif
750
751do while (i_myear_leg < n_myear_leg .and. i_myear < n_myear)
752! II.a.1. Compute updated global pressure
753    write(*,'(a,f10.2)') ' **** Iteration of the PEM leg (Martian years): ', i_myear_leg + 1
754    write(*,*) "> Updating the surface pressure"
755    ps_avg_global_old = ps_avg_global_new
756    do i = 1,ngrid
757        do islope = 1,nslope
758            ps_avg_global_new = ps_avg_global_new - CO2cond_ps*g*cell_area(i)*d_co2ice(i,islope)*subslope_dist(i,islope)/cos(pi*def_slope_mean(islope)/180.)/total_surface
759        enddo
760    enddo
761    if (adsorption_pem) then
762        do i = 1,ngrid
763            ps_avg_global_new = ps_avg_global_new - g*cell_area(i)*delta_co2_adsorbed(i)/total_surface
764        enddo
765    endif
766    ps_avg = ps_avg*ps_avg_global_new/ps_avg_global_old
767    write(*,*) 'Global average pressure old time step:',ps_avg_global_old
768    write(*,*) 'Global average pressure new time step:',ps_avg_global_new
769
770! II.a.2. Pressure timeseries (the values are deleted when unused because of big memory consumption)
771    write(*,*) "> Updating the surface pressure timeseries for the new pressure"
772    allocate(zplev_timeseries_old(ngrid,nlayer + 1,timelen))
773    do l = 1,nlayer + 1
774        do ig = 1,ngrid
775            zplev_timeseries_old(ig,l,:) = ap(l) + bp(l)*ps_timeseries(ig,:)
776        enddo
777    enddo
778    ps_timeseries(:,:) = ps_timeseries(:,:)*ps_avg_global_new/ps_avg_global_old
779    write(*,*) "> Updating the pressure levels timeseries for the new pressure"
780    allocate(zplev_timeseries_new(ngrid,nlayer + 1,timelen))
781    do l = 1,nlayer + 1
782        do ig = 1,ngrid
783            zplev_timeseries_new(ig,l,:) = ap(l) + bp(l)*ps_timeseries(ig,:)
784        enddo
785    enddo
786
787! II.a.3. Tracers timeseries
788    write(*,*) "> Updating the tracer VMR timeseries for the new pressure"
789    allocate(vmr_co2_PEM_phys(ngrid,timelen))
790    l = 1
791    do ig = 1,ngrid
792        do t = 1,timelen
793            ! H2O
794            q_h2o_PEM_phys(ig,t) = q_h2o_PEM_phys(ig,t)*(zplev_timeseries_old(ig,l,t) - zplev_timeseries_old(ig,l + 1,t))/ &
795                                   (zplev_timeseries_new(ig,l,t) - zplev_timeseries_new(ig,l + 1,t))
796            if (q_h2o_PEM_phys(ig,t) < 0) then
797                q_h2o_PEM_phys(ig,t) = 1.e-30
798            else if (q_h2o_PEM_phys(ig,t) > 1) then
799                q_h2o_PEM_phys(ig,t) = 1.
800            endif
801            ! CO2
802            q_co2_PEM_phys(ig,t) = q_co2_PEM_phys(ig,t)*(zplev_timeseries_old(ig,l,t) - zplev_timeseries_old(ig,l + 1,t))/ &
803                                   (zplev_timeseries_new(ig,l,t) - zplev_timeseries_new(ig,l + 1,t))                       &
804                                + ((zplev_timeseries_new(ig,l,t) - zplev_timeseries_new(ig,l + 1,t))                       &
805                                -  (zplev_timeseries_old(ig,l,t) - zplev_timeseries_old(ig,l + 1,t)))/                     &
806                                   (zplev_timeseries_new(ig,l,t) - zplev_timeseries_new(ig,l + 1,t))
807            if (q_co2_PEM_phys(ig,t) < 0) then
808                q_co2_PEM_phys(ig,t) = 1.e-30
809            else if (q_co2_PEM_phys(ig,t) > 1) then
810                q_co2_PEM_phys(ig,t) = 1.
811            endif
812            mmean = 1./(A*q_co2_PEM_phys(ig,t) + B)
813            vmr_co2_PEM_phys(ig,t) = q_co2_PEM_phys(ig,t)*mmean/m_co2
814        enddo
815    enddo
816    deallocate(zplev_timeseries_new,zplev_timeseries_old)
817
818!------------------------
819! II  Run
820!    II_b Evolution of ice
821!------------------------
822    allocate(zshift_surf(ngrid,nslope),zlag(ngrid,nslope))
823    call evol_h2o_ice(ngrid,nslope,cell_area,delta_h2o_adsorbed,delta_h2o_icetablesublim,h2o_ice,d_h2oice,zshift_surf,stopPEM)
824    call evol_co2_ice(ngrid,nslope,co2_ice,d_co2ice,zshift_surf)
825    if (layering_algo) then
826        do islope = 1,nslope
827            do ig = 1,ngrid
828                call make_layering(stratif(ig,islope),d_co2ice(ig,islope),d_h2oice(ig,islope),d_dust,new_str(ig,islope),zshift_surf(ig,islope),new_lag1(ig,islope),new_lag2(ig,islope),zlag(ig,islope),stopPEM,current1(ig,islope)%p,current2(ig,islope)%p)
829            enddo
830        enddo
831    else
832        zlag = 0.
833    endif
834
835!------------------------
836! II  Run
837!    II_c Flow of glaciers
838!------------------------
839    allocate(flag_co2flow(ngrid,nslope),flag_h2oflow(ngrid,nslope))
840    if (co2ice_flow .and. nslope > 1) call flow_co2glaciers(timelen,ngrid,nslope,iflat,subslope_dist,def_slope_mean,vmr_co2_PEM_phys, &
841                                                            ps_timeseries,ps_avg_global_old,ps_avg_global_new,co2_ice,flag_co2flow)
842    if (h2oice_flow .and. nslope > 1) call flow_h2oglaciers(ngrid,nslope,iflat,subslope_dist,def_slope_mean,tsurf_avg,h2o_ice,flag_h2oflow)
843
844!------------------------
845! II  Run
846!    II_d Update surface and soil temperatures
847!------------------------
848! II_d.1 Update Tsurf
849    write(*,*) "> Updating surface temperature"
850    do ig = 1,ngrid
851        do islope = 1,nslope
852            ! CO2 ice disappeared so we look for the closest point without CO2 ice
853            if (is_co2ice_ini(ig,islope) .and. co2_ice(ig,islope) < 1.e-10 .and. .not. co2ice_disappeared(ig,islope)) then
854                co2ice_disappeared(ig,islope) = .true.
855                if (latitude_deg(ig) > 0.) then ! North hemisphere
856                    outer1: do ig_loop = ig,ngrid ! Go towards equator
857                        do islope_loop = islope - 1,1,-1 ! Go over the slopes (backward numbering - should be equator-ward)
858                            if (.not. is_co2ice_ini(ig_loop,islope_loop) .and. co2_ice(ig_loop,islope_loop) < 1.e-10) then
859                                tsurf_avg(ig,islope) = tsurf_avg(ig_loop,islope_loop)
860                                exit outer1
861                            endif
862                        enddo
863                        do islope_loop = islope + 1,nslope ! Go over the slopes (forward numbering - should be pole-ward)
864                            if (.not. is_co2ice_ini(ig_loop,islope_loop) .and. co2_ice(ig_loop,islope_loop) < 1.e-10) then
865                                tsurf_avg(ig,islope) = tsurf_avg(ig_loop,islope_loop)
866                                exit outer1
867                            endif
868                        enddo
869                    enddo outer1
870                else ! South hemisphere
871                    outer2: do ig_loop = ig,1,-1 ! Go towards equator
872                        do islope_loop = islope + 1,nslope ! Go over the slopes (forward numbering - should be equator-ward)
873                            if (.not. is_co2ice_ini(ig_loop,islope_loop) .and. co2_ice(ig_loop,islope_loop) < 1.e-10) then
874                                tsurf_avg(ig,islope) = tsurf_avg(ig_loop,islope_loop)
875                                exit outer2
876                            endif
877                        enddo
878                        do islope_loop = islope - 1,1,-1 ! Go over the slopes (backward numbering - should be pole-ward)
879                            if (.not. is_co2ice_ini(ig_loop,islope_loop) .and. co2_ice(ig_loop,islope_loop) < 1.e-10) then
880                                tsurf_avg(ig,islope) = tsurf_avg(ig_loop,islope_loop)
881                                exit outer2
882                            endif
883                        enddo
884                    enddo outer2
885                endif
886            else if (co2_ice(ig,islope) > 1.e-10 .and. d_co2ice(ig,islope) > 1.e-10) then ! Put tsurf as Tcond CO2
887                call computeTcondCO2(timelen,ngrid,nslope,vmr_co2_PEM_phys,ps_timeseries,ps_avg_global_ini,ps_avg_global_new,tsurf_avg)
888            endif
889        enddo
890    enddo
891
892    if (soil_pem) then
893! II_d.2 Shifting soil temperature to surface
894        !call shift_tsoil2surf(ngrid,nsoilmx_PEM,nslope,zshift_surf,zlag,tsurf_avg,tsoil_PEM)
895
896! II_d.3 Update soil temperature
897        write(*,*)"> Updating soil temperature profile"
898        allocate(tsoil_avg_old(ngrid,nsoilmx_PEM),tsoil_PEM_timeseries_old(ngrid,nsoilmx_PEM,nslope,timelen))
899        tsoil_PEM_timeseries_old = tsoil_PEM_timeseries
900        do islope = 1,nslope
901            tsoil_avg_old = tsoil_PEM(:,:,islope)
902            call compute_tsoil_pem(ngrid,nsoilmx_PEM,.true.,TI_PEM(:,:,islope),timestep,tsurf_avg(:,islope),tsoil_PEM(:,:,islope))
903            call compute_tsoil_pem(ngrid,nsoilmx_PEM,.false.,TI_PEM(:,:,islope),timestep,tsurf_avg(:,islope),tsoil_PEM(:,:,islope))
904
905            do t = 1,timelen
906                do ig = 1,ngrid
907                    do isoil = 1,nsoilmx_PEM
908                        ! Update of soil temperature timeseries which is needed to compute the water soil density timeseries
909                        tsoil_PEM_timeseries(ig,isoil,islope,t) = tsoil_PEM_timeseries(ig,isoil,islope,t)*tsoil_PEM(ig,isoil,islope)/tsoil_avg_old(ig,isoil)
910                        ! Update of watersoil density
911                        watersoil_density_PEM_timeseries(ig,isoil,islope,t) = exp(beta_clap_h2o/tsoil_PEM_timeseries(ig,isoil,islope,t) + alpha_clap_h2o)/tsoil_PEM_timeseries(ig,isoil,islope,t)*mmol(igcm_h2o_vap)/(mugaz*r)
912                        if (isnan(tsoil_PEM(ig,isoil,islope))) call abort_pem("PEM - Update Tsoil","NaN detected in tsoil_PEM",1)
913                    enddo
914                enddo
915            enddo
916        enddo
917        watersoil_density_PEM_avg = sum(watersoil_density_PEM_timeseries,4)/timelen
918        deallocate(tsoil_avg_old)
919
920! II_d.4 Update the ice table
921        allocate(icetable_thickness_old(ngrid,nslope),ice_porefilling_old(ngrid,nsoilmx_PEM,nslope),icetable_depth_old(ngrid,nslope))
922        if (icetable_equilibrium) then
923            write(*,*) "> Updating ice table (equilibrium method)"
924            icetable_thickness_old = icetable_thickness
925            call computeice_table_equilibrium(ngrid,nslope,nsoilmx_PEM,watercaptag,watersurf_density_avg,watersoil_density_PEM_avg,TI_PEM(:,1,:),icetable_depth,icetable_thickness)
926            call compute_massh2o_exchange_ssi(ngrid,nslope,nsoilmx_PEM,icetable_thickness_old,ice_porefilling_old,tsurf_avg,tsoil_PEM,delta_h2o_icetablesublim) ! Mass of H2O exchange between the ssi and the atmosphere
927        else if (icetable_dynamic) then
928            write(*,*) "> Updating ice table (dynamic method)"
929            ice_porefilling_old = ice_porefilling
930            icetable_depth_old = icetable_depth
931            allocate(porefill(nsoilmx_PEM))
932            do ig = 1,ngrid
933                do islope = 1,nslope
934                    call dyn_ss_ice_m(icetable_depth(ig,islope),tsurf_avg(ig,islope),tsoil_PEM(ig,:,islope),nsoilmx_PEM,TI_PEM(ig,1,nslope),ps_avg(ig),(/sum(q_h2o_PEM_phys(ig,:))/size(q_h2o_PEM_phys,2)/),ice_porefilling(ig,:,islope),porefill,ssi_depth)
935                    icetable_depth(ig,islope) = ssi_depth
936                    ice_porefilling(ig,:,islope) = porefill
937                enddo
938            enddo
939            deallocate(porefill)
940            call compute_massh2o_exchange_ssi(ngrid,nslope,nsoilmx_PEM,icetable_thickness_old,ice_porefilling_old,tsurf_avg,tsoil_PEM,delta_h2o_icetablesublim) ! Mass of H2O exchange between the ssi and the atmosphere
941        endif
942        deallocate(icetable_thickness_old,ice_porefilling_old)
943
944! II_d.5 Update the soil thermal properties
945        call update_soil_thermalproperties(ngrid,nslope,nsoilmx_PEM,d_h2oice,h2o_ice,ps_avg_global_new,icetable_depth,icetable_thickness,ice_porefilling,icetable_equilibrium,icetable_dynamic,TI_PEM)
946
947! II_d.6 Update the mass of the regolith adsorbed
948        if (adsorption_pem) then
949            call regolith_adsorption(ngrid,nslope,nsoilmx_PEM,timelen,d_h2oice,d_co2ice,h2o_ice,co2_ice, &
950                                     tsoil_PEM,TI_PEM,ps_timeseries,q_co2_PEM_phys,q_h2o_PEM_phys,       &
951                                     h2o_adsorbed_phys,delta_h2o_adsorbed,co2_adsorbed_phys,delta_co2_adsorbed)
952
953            totmassco2_adsorbed = 0.
954            totmassh2o_adsorbed = 0.
955            do ig = 1,ngrid
956                do islope = 1,nslope
957                    do l = 1,nsoilmx_PEM
958                        if (l == 1) then
959                            totmassco2_adsorbed = totmassco2_adsorbed + co2_adsorbed_phys(ig,l,islope)*(layer_PEM(l))* &
960                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
961                            totmassh2o_adsorbed = totmassh2o_adsorbed + h2o_adsorbed_phys(ig,l,islope)*(layer_PEM(l))* &
962                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
963                        else
964                            totmassco2_adsorbed = totmassco2_adsorbed + co2_adsorbed_phys(ig,l,islope)*(layer_PEM(l) - layer_PEM(l - 1))* &
965                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
966                            totmassh2o_adsorbed = totmassh2o_adsorbed + h2o_adsorbed_phys(ig,l,islope)*(layer_PEM(l) - layer_PEM(l - 1))* &
967                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
968                        endif
969                    enddo
970                enddo
971            enddo
972            write(*,*) "Total mass of CO2 in the regolith =", totmassco2_adsorbed
973            write(*,*) "Total mass of H2O in the regolith =", totmassh2o_adsorbed
974        endif
975    endif !soil_pem
976    deallocate(zshift_surf,zlag)
977
978!------------------------
979! II  Run
980!    II_e Outputs
981!------------------------
982    call writediagpem(ngrid,'ps_avg','Global average pressure','Pa',0,(/ps_avg_global_new/))
983    do islope = 1,nslope
984        write(str2(1:2),'(i2.2)') islope
985        call writediagpem(ngrid,'h2o_ice_slope'//str2,'H2O ice','kg.m-2',2,h2o_ice(:,islope))
986        call writediagpem(ngrid,'co2_ice_slope'//str2,'CO2 ice','kg.m-2',2,co2_ice(:,islope))
987        call writediagpem(ngrid,'d_h2oice_slope'//str2,'H2O ice tend','kg.m-2.year-1',2,d_h2oice(:,islope))
988        call writediagpem(ngrid,'d_co2ice_slope'//str2,'CO2 ice tend','kg.m-2.year-1',2,d_co2ice(:,islope))
989        call writediagpem(ngrid,'Flow_co2ice_slope'//str2,'CO2 ice flow','Boolean',2,real(flag_co2flow(:,islope)))
990        call writediagpem(ngrid,'Flow_h2oice_slope'//str2,'H2O ice flow','Boolean',2,real(flag_h2oflow(:,islope)))
991        call writediagpem(ngrid,'tsurf_slope'//str2,'tsurf','K',2,tsurf_avg(:,islope))
992        if (icetable_equilibrium) then
993            call writediagpem(ngrid,'ssi_depth_slope'//str2,'ice table depth','m',2,icetable_depth(:,islope))
994            call writediagpem(ngrid,'ssi_thick_slope'//str2,'ice table thickness','m',2,icetable_thickness(:,islope))
995        else if (icetable_dynamic) then
996            call writediagpem(ngrid,'ssi_depth_slope'//str2,'ice table depth','m',2,icetable_depth(:,islope))
997        endif
998
999        if (soil_pem) then
1000            call writediagsoilpem(ngrid,'tsoil_PEM_slope'//str2,'tsoil','K',3,tsoil_PEM(:,:,islope))
1001            call writediagsoilpem(ngrid,'inertiesoil_PEM_slope'//str2,'TI','K',3,TI_PEM(:,:,islope))
1002            if (icetable_dynamic) call writediagsoilpem(ngrid,'ice_porefilling'//str2,'ice pore filling','-',3,ice_porefilling(:,:,islope))
1003            if (adsorption_pem) then
1004                call writediagsoilpem(ngrid,'co2_ads_slope'//str2,'co2_ads','K',3,co2_adsorbed_phys(:,:,islope))
1005                call writediagsoilpem(ngrid,'h2o_ads_slope'//str2,'h2o_ads','K',3,h2o_adsorbed_phys(:,:,islope))
1006            endif
1007        endif
1008    enddo
1009    deallocate(flag_co2flow,flag_h2oflow)
1010
1011!------------------------
1012! II  Run
1013!    II_f Update the tendencies
1014!------------------------
1015    call recomp_tend_co2(ngrid,nslope,timelen,d_co2ice,d_co2ice_ini,co2_ice,emis,vmr_co2_PCM,vmr_co2_PEM_phys,ps_timeseries,ps_avg_global_old,ps_avg_global_new)
1016    write(*,*) "> Updating the H2O sub-surface ice tendency due to lag layer"
1017    do ig = 1,ngrid
1018        do islope = 1,nslope
1019            call recomp_tend_h2o(icetable_depth_old(ig,islope),icetable_depth(ig,islope),tsurf_avg(ig,islope),tsoil_PEM_timeseries_old(ig,:,islope,:),tsoil_PEM_timeseries(ig,:,islope,:),d_h2oice(ig,islope))
1020        enddo
1021    enddo
1022    if (soil_pem) deallocate(icetable_depth_old,tsoil_PEM_timeseries_old)
1023    deallocate(vmr_co2_PEM_phys)
1024
1025!------------------------
1026! II  Run
1027!    II_g Checking the stopping criterion
1028!------------------------
1029    write(*,*) "> Checking the stopping criteria"
1030    call stopping_crit_h2o_ice(cell_area,h2oice_ini_surf,is_h2oice_sublim_ini,h2o_ice,stopPEM,ngrid)
1031    call stopping_crit_co2(cell_area,co2ice_sublim_surf_ini,is_co2ice_sublim_ini,co2_ice,stopPEM,ngrid,ps_avg_global_ini,ps_avg_global_new,nslope)
1032    i_myear_leg = i_myear_leg + dt
1033    i_myear = i_myear + dt
1034    if (stopPEM <= 0 .and. i_myear_leg >= n_myear_leg) stopPEM = 5
1035    if (stopPEM <= 0 .and. i_myear >= n_myear) stopPEM = 6
1036    call system_clock(c2)
1037    if (stopPEM <= 0 .and. timewall .and. real((c2 - c1)/cr) >= timelimit - antetime) stopPEM = 7
1038    if (stopPEM > 0) then
1039        select case (stopPEM)
1040            case(1)
1041                write(*,'(a,i0,a)') " **** STOPPING because surface of h2o ice sublimating is too low: ", stopPEM, ". See message above."
1042            case(2)
1043                write(*,'(a,i0,a)') " **** STOPPING because tendencies on h2o ice = 0: ", stopPEM, ". See message above."
1044            case(3)
1045                write(*,'(a,i0,a)') " **** STOPPING because surface of co2 ice sublimating is too low: ", stopPEM, ". See message above."
1046            case(4)
1047                write(*,'(a,i0,a)') " **** STOPPING because surface global pressure changed too much: ", stopPEM, ". See message above."
1048            case(5)
1049                write(*,'(a,i0)') " **** STOPPING because maximum number of iterations is reached (possibly due to orbital parameters): ", stopPEM
1050            case(6)
1051                write(*,'(a,i0)') " **** STOPPING because maximum number of Martian years to be simulated is reached: ", stopPEM
1052            case(7)
1053                write(*,'(a,i0)') " **** STOPPING because the time limit for the PEM job will be reached soon: ", stopPEM
1054            case(8)
1055                write(*,'(a,i0)') " **** STOPPING because the layering algorithm met an hasty end: ", stopPEM
1056            case default
1057                write(*,'(a,i0)') " **** STOPPING with unknown stopping criterion code: ", stopPEM
1058        end select
1059        exit
1060    else
1061        write(*,'(a,f10.2,a)') ' **** The chained simulation has run for ',i_myear,' Martian years.'
1062        write(*,*) '**** The PEM can continue!'
1063        write(*,*) '****'
1064    endif
1065enddo ! big time iteration loop of the pem
1066deallocate(vmr_co2_PCM,q_co2_PEM_phys,q_h2o_PEM_phys,delta_co2_adsorbed)
1067deallocate(watersoil_density_PEM_avg,watersurf_density_avg)
1068deallocate(ps_timeseries,tsoil_PEM_timeseries,watersoil_density_PEM_timeseries)
1069deallocate(co2ice_disappeared,delta_h2o_adsorbed,delta_h2o_icetablesublim)
1070deallocate(d_co2ice,d_co2ice_ini,d_h2oice)
1071deallocate(is_co2ice_ini,is_co2ice_sublim_ini,is_h2oice_sublim_ini)
1072if (layering_algo) deallocate(new_str,new_lag1,new_lag2,current1,current2)
1073!------------------------------ END RUN --------------------------------
1074
1075!------------------------------- OUTPUT --------------------------------
1076!------------------------
1077! III Output
1078!    III_a Update surface value for the PCM start files
1079!------------------------
1080! III_a.1 Ice update for start file
1081write(*,*)
1082write(*,*) '********* PEM finalization *********'
1083write(*,*) '> Reconstructing perennial ice and frost for the PCM'
1084watercap = 0.
1085perennial_co2ice =sum(stratif(ig,islope)%top%co2ice_volfrac*stratif(ig,islope)%top%thickness*subslope_dist(ig,:)/cos(pi*def_slope_mean(:)/180.))
1086do ig = 1,ngrid
1087    ! H2O ice metamorphism
1088    !if (metam_h2oice .and. sum(qsurf(ig,igcm_h2o_ice,:)*subslope_dist(ig,:)/cos(pi*def_slope_mean(:)/180.)) > metam_h2oice_threshold) then
1089    !    h2o_ice(ig,:) = h2o_ice(ig,:) + qsurf(ig,igcm_h2o_ice,:) - metam_h2oice_threshold
1090    !    qsurf(ig,igcm_h2o_ice,:) = metam_h2oice_threshold
1091    !endif
1092
1093    ! Is H2O ice still considered as an infinite reservoir for the PCM?
1094    !if (sum(h2o_ice(ig,:)*subslope_dist(ig,:)/cos(pi*def_slope_mean(:)/180.)) > inf_h2oice_threshold) then
1095    if (sum(stratif(ig,islope)%top%h2oice_volfrac*stratif(ig,islope)%top%thickness*subslope_dist(ig,:)/cos(pi*def_slope_mean(:)/180.)) > inf_h2oice_threshold) then   
1096       ! There is enough ice to be considered as an infinite reservoir
1097        watercaptag(ig) = .true.
1098    else
1099        ! There too little ice to be considered as an infinite reservoir so ice is transferred to the frost
1100        watercaptag(ig) = .false.
1101
1102       ! qsurf(ig,igcm_h2o_ice,:) = qsurf(ig,igcm_h2o_ice,:) + h2o_ice(ig,:)
1103
1104       qsurf(ig,igcm_h2o_ice,:) = qsurf(ig,igcm_h2o_ice,:) + sum(stratif(ig,islope)%top%h2oice_volfrac*stratif(ig,islope)%top%thickness*subslope_dist(ig,:)/cos(pi*def_slope_mean(:)/180.))
1105        h2o_ice(ig,:) = 0.
1106    endif
1107
1108    ! CO2 ice metamorphism
1109    !if (metam_co2ice .and. sum(qsurf(ig,igcm_co2,:)*subslope_dist(ig,:)/cos(pi*def_slope_mean(:)/180.)) > metam_co2ice_threshold) then
1110    !    perennial_co2ice(ig,:) = perennial_co2ice(ig,:) + qsurf(ig,igcm_co2,:) - metam_co2ice_threshold
1111    !    qsurf(ig,igcm_co2,:) = metam_co2ice_threshold
1112    !endif
1113enddo
1114
1115! III.a.2. Tsurf update for start file
1116write(*,*) '> Reconstructing the surface temperature for the PCM'
1117tsurf = tsurf_avg + tsurf_dev
1118deallocate(tsurf_dev)
1119
1120! III_a.3 Tsoil update for start file
1121if (soil_pem) then
1122    write(*,*) '> Reconstructing the soil temperature profile for the PCM'
1123    inertiesoil = TI_PEM(:,:nsoilmx,:)
1124    ! Tsurf has evolved and so the soil temperature profile needs to be adapted to match this new value
1125    do isoil = 1,nsoilmx
1126        tsoil_dev(:,isoil,:) = tsoil_dev(:,isoil,:)*(tsurf_avg(:,:) - tsoil_PEM(:,1,:))/tsoil_dev(:,1,:)
1127    enddo
1128    tsoil = tsoil_PEM(:,1:nsoilmx,:) + tsoil_dev
1129#ifndef CPP_STD
1130    flux_geo = fluxgeo
1131#endif
1132endif
1133deallocate(tsurf_avg,tsoil_dev)
1134
1135! III_a.4 Pressure update for start file
1136write(*,*) '> Reconstructing the pressure for the PCM'
1137allocate(ps_start(ngrid))
1138! The pressure deviation is rescaled as well to avoid disproportionate oscillations in case of huge average pressure drop
1139ps_start = ps_avg + ps_dev*ps_avg_global_new/ps_avg_global_ini
1140deallocate(ps_avg,ps_dev)
1141
1142! III_a.5 Tracers update for start file
1143write(*,*) '> Reconstructing the tracer VMR for the PCM'
1144allocate(zplev_start0(ngrid,nlayer + 1),zplev_new(ngrid,nlayer + 1))
1145do l = 1,nlayer + 1
1146    zplev_start0(:,l) = ap(l) + bp(l)*ps_start0
1147    zplev_new(:,l) = ap(l) + bp(l)*ps_start
1148enddo
1149
1150do nnq = 1,nqtot
1151    if (noms(nnq) /= "co2") then
1152        do l = 1,llm - 1
1153            do ig = 1,ngrid
1154                q(ig,l,nnq) = q(ig,l,nnq)*(zplev_start0(ig,l) - zplev_start0(ig,l + 1))/(zplev_new(ig,l) - zplev_new(ig,l + 1))
1155            enddo
1156            q(:,llm,nnq) = q(:,llm - 1,nnq)
1157        enddo
1158    else
1159        do l = 1,llm - 1
1160            do ig = 1,ngrid
1161                q(ig,l,nnq) = q(ig,l,nnq)*(zplev_start0(ig,l) - zplev_start0(ig,l + 1))/(zplev_new(ig,l) - zplev_new(ig,l + 1)) &
1162                              + ((zplev_new(ig,l) - zplev_new(ig,l + 1)) - (zplev_start0(ig,l) - zplev_start0(ig,l + 1)))/(zplev_new(ig,l) - zplev_new(ig,l + 1))
1163            enddo
1164            q(:,llm,nnq) = q(:,llm - 1,nnq)
1165        enddo
1166    endif
1167enddo
1168deallocate(zplev_start0)
1169
1170! Conserving the tracers mass for start file
1171do nnq = 1,nqtot
1172    do ig = 1,ngrid
1173        do l = 1,llm - 1
1174            if (q(ig,l,nnq) > 1 .and. (noms(nnq) /= "dust_number") .and. (noms(nnq) /= "ccn_number") .and. (noms(nnq) /= "stormdust_number") .and. (noms(nnq) /= "topdust_number")) then
1175                extra_mass = (q(ig,l,nnq) - 1)*(zplev_new(ig,l) - zplev_new(ig,l + 1))
1176                q(ig,l,nnq) = 1.
1177                q(ig,l + 1,nnq) = q(ig,l + 1,nnq) + extra_mass*(zplev_new(ig,l + 1) - zplev_new(ig,l + 2))
1178                write(*,*) 'extra ',noms(nnq),extra_mass, noms(nnq) /= "dust_number",noms(nnq) /= "ccn_number"
1179           endif
1180            if (q(ig,l,nnq) < 0) q(ig,l,nnq) = 1.e-30
1181        enddo
1182    enddo
1183enddo
1184deallocate(zplev_new)
1185
1186! III_a.6 Albedo update for start file
1187write(*,*) '> Reconstructing the albedo for the PCM'
1188do ig = 1,ngrid
1189    if (latitude(ig) < 0.) then
1190        icap = 2 ! Southern hemisphere
1191    else
1192        icap = 1 ! Northern hemisphere
1193    endif
1194    do islope = 1,nslope
1195        ! Bare ground
1196        albedo(ig,:,islope) = albedodat(ig)
1197        emis(ig,islope) = emissiv
1198
1199        ! CO2 ice/frost is treated after H20 ice/frost because it is considered dominant
1200        ! H2O ice
1201        if (h2o_ice(ig,islope) > 0.) then
1202            albedo(ig,:,islope) = albedo_h2o_cap
1203            emis(ig,islope) = 1.
1204        endif
1205        ! CO2 ice
1206        if (co2_ice(ig,islope) > 0.) then
1207            albedo(ig,:,islope) = albedo_perennialco2(icap)
1208            emis(ig,islope) = emisice(icap)
1209        endif
1210        ! H2O frost
1211        if (qsurf(ig,igcm_h2o_ice,islope) > 0.) then
1212            albedo(ig,:,islope) = albedo_h2o_frost
1213            emis(ig,islope) = 1.
1214        endif
1215        ! CO2 frost
1216        if (qsurf(ig,igcm_co2,islope) > 0.) then
1217            albedo(ig,:,islope) = albedice(icap)
1218            emis(ig,islope) = emisice(icap)
1219        endif
1220    enddo
1221enddo
1222
1223! III_a.7 Orbital parameters update for start file
1224write(*,*) '> Setting the new orbital parameters'
1225if (evol_orbit_pem) call recomp_orb_param(i_myear,i_myear_leg)
1226
1227!------------------------
1228! III Output
1229!    III_b Write "restart.nc" and "restartfi.nc"
1230!------------------------
1231! III_b.1 Write "restart.nc"
1232ptimestep = iphysiq*daysec/real(day_step)/nsplit_phys ! dtphys/nsplit_phys
1233pday = day_ini
1234ztime_fin = time_phys
1235#ifndef CPP_1D
1236    write(*,*) '> Writing "restart.nc"'
1237    ! Correction on teta due to surface pressure changes
1238    allocate(pdyn(ip1jmp1))
1239    call gr_fi_dyn(1,ngrid,iip1,jjp1,ps_start0/ps_start,pdyn)
1240    do i = 1,ip1jmp1
1241        teta(i,:) = teta(i,:)*pdyn(i)**kappa
1242    enddo
1243    ! Correction on atmospheric pressure
1244    allocate(p(ip1jmp1,nlayer + 1))
1245    call gr_fi_dyn(1,ngrid,iip1,jjp1,ps_start,pdyn)
1246    call pression(ip1jmp1,ap,bp,pdyn,p)
1247    ! Correction on the mass of atmosphere
1248    call massdair(p,masse)
1249    call dynredem0("restart.nc",day_ini,phis)
1250    call dynredem1("restart.nc",time_0,vcov,ucov,teta,q,masse,pdyn)
1251    deallocate(ap,bp,p,pdyn)
1252#else
1253    write(*,*) '> Writing "restart1D.txt"'
1254    call writerestart1D('restart1D.txt',ps_start(1),tsurf(1,:),nlayer,size(tsurf,2),teta,ucov,vcov,nq,noms,qsurf(1,:,:),q)
1255#endif
1256deallocate(ps_start0,ps_start)
1257
1258! III_b.2 Write the "restartfi.nc"
1259write(*,*) '> Writing "restartfi.nc"'
1260#ifndef CPP_STD
1261    call physdem0("restartfi.nc",longitude,latitude,nsoilmx,ngrid, &
1262                  nlayer,nq,ptimestep,pday,0.,cell_area,albedodat, &
1263                  inertiedat,def_slope,subslope_dist)
1264    call physdem1("restartfi.nc",nsoilmx,ngrid,nlayer,nq,nqsoil,      &
1265                  ptimestep,ztime_fin,tsurf,tsoil,inertiesoil,        &
1266                  albedo,emis,q2,qsurf,qsoil,tauscaling,totcloudfrac, &
1267                  wstar,watercap,perennial_co2ice)
1268#else
1269    if (allocated(noms)) deallocate(noms)
1270    deallocate(qsurf,tsurf,tsoil,emis,watercap,watercaptag,albedo,inertiesoil)
1271    call physdem0("restartfi.nc",longitude,latitude,nsoilmx,ngrid, &
1272                  nlayer,nq,ptimestep,pday,time_phys,cell_area,    &
1273                  albedo_bareground,inertiedat,zmea,zstd,zsig,zgam,zthe)
1274    call physdem1("restartfi.nc",nsoilmx,ngrid,nlayer,nq,nqsoil,       &
1275                  ptimestep,ztime_fin,tsurf,tsoil,emis,q2,qsurf,qsoil, &
1276                  cloudfrac,totcloudfrac,hice,rnat,pctsrf_sic,tslab,   &
1277                  tsea_ice,sea_ice)
1278#endif
1279
1280!------------------------
1281! III Output
1282!    III_c Write the "restartpem.nc"
1283!------------------------
1284write(*,*) '> Writing "restartpem.nc"'
1285if (layering_algo) nb_str_max = get_nb_str_max(stratif,ngrid,nslope) ! Get the maximum number of "stratum" in the stratification (layerings)
1286call pemdem0("restartpem.nc",longitude,latitude,cell_area,ngrid,nslope,def_slope,subslope_dist)
1287call pemdem1("restartpem.nc",i_myear,nsoilmx_PEM,ngrid,nslope,tsoil_PEM,TI_PEM,icetable_depth,icetable_thickness,ice_porefilling, &
1288             co2_adsorbed_phys,h2o_adsorbed_phys,h2o_ice,stratif)
1289
1290call info_PEM(i_myear_leg,stopPEM,i_myear,n_myear)
1291
1292write(*,*)
1293write(*,*) '********* PEM finalization *********'
1294write(*,'(a,f10.2,a)') " + The PEM leg has run for ", i_myear_leg, " Martian years."
1295write(*,'(a,f10.2,a,f10.2,a)') " + The chained simulation has run for ", i_myear, " Martian years =", i_myear*convert_years, " Earth years."
1296write(*,'(a,f10.2,a)') " + The reached date is now ", (year_bp_ini + i_myear)*convert_years, " Earth years."
1297write(*,*) "+ PEM: so far, so good!"
1298write(*,*) '************************************'
1299
1300if (layering_algo) then
1301    do islope = 1,nslope
1302        do i = 1,ngrid
1303            call del_layering(stratif(i,islope))
1304        enddo
1305    enddo
1306endif
1307deallocate(q,longitude,latitude,cell_area,tsoil_PEM)
1308deallocate(co2_ice,h2o_ice,stratif)
1309!----------------------------- END OUTPUT ------------------------------
1310
1311END PROGRAM pem
Note: See TracBrowser for help on using the repository browser.