source: trunk/LMDZ.COMMON/libf/evolution/pem.F90 @ 3321

Last change on this file since 3321 was 3319, checked in by jbclement, 7 months ago

PEM:
Small correction about the dimension of an array.
JBC

File size: 57.1 KB
Line 
1!------------------------
2! I   Initialization
3!    I_a Read the "run.def"
4!    I_b Read the "start.nc" and "startfi.nc"
5!    I_c Subslope parametrisation
6!    I_d Read the PCM data and convert them to the physical grid
7!    I_e Initialization of the PEM variable and soil
8!    I_f Compute tendencies
9!    I_g Save initial PCM situation
10!    I_h Read the "startpem.nc"
11!    I_i Compute orbit criterion
12
13! II  Run
14!    II_a Update pressure, ice and tracers
15!    II_b Evolution of ice
16!    II_c Flow of glaciers
17!    II_d Update surface and soil temperatures
18!    II_e Outputs
19!    II_f Update the tendencies
20!    II_g Checking the stopping criterion
21
22! III Output
23!    III_a Update surface value for the PCM start files
24!    III_b Write the "restart.nc" and "restartfi.nc"
25!    III_c Write the "restartpem.nc"
26!------------------------
27
28PROGRAM pem
29
30use phyetat0_mod,               only: phyetat0
31use phyredem,                   only: physdem0, physdem1
32use netcdf,                     only: nf90_open, NF90_NOWRITE, nf90_get_var, nf90_inq_varid, nf90_close
33use turb_mod,                   only: q2, wstar
34use comslope_mod,               only: nslope, def_slope, def_slope_mean, subslope_dist, iflat, ini_comslope_h
35use logic_mod,                  only: iflag_phys
36use mod_const_mpi,              only: COMM_LMDZ
37use infotrac
38use geometry_mod,               only: latitude_deg
39use conf_pem_mod,               only: conf_pem
40use pemredem,                   only: pemdem0, pemdem1
41use glaciers_mod,               only: flow_co2glaciers, flow_h2oglaciers, co2ice_flow, h2oice_flow, inf_h2oice_threshold, &
42                                      metam_h2oice_threshold, metam_co2ice_threshold, metam_h2oice, metam_co2ice
43use stopping_crit_mod,          only: stopping_crit_h2o_ice, stopping_crit_co2
44use constants_marspem_mod,      only: alpha_clap_co2, beta_clap_co2, alpha_clap_h2o, beta_clap_h2o, m_co2, m_noco2
45use evol_ice_mod,               only: evol_co2_ice, evol_h2o_ice
46use comsoil_h_PEM,              only: soil_pem, ini_comsoil_h_PEM, end_comsoil_h_PEM, nsoilmx_PEM, &
47                                      TI_PEM,                           & ! soil thermal inertia
48                                      tsoil_PEM, layer_PEM, &             ! Soil temp, number of subsurface layers, soil mid layer depths
49                                      fluxgeo                             ! Geothermal flux for the PEM and PCM
50use adsorption_mod,             only: regolith_adsorption, adsorption_pem,        & ! Bool to check if adsorption, main subroutine
51                                      ini_adsorption_h_PEM, end_adsorption_h_PEM, & ! Allocate arrays
52                                      co2_adsorbded_phys, h2o_adsorbded_phys        ! Mass of co2 and h2O adsorbded
53use time_evol_mod,              only: dt_pem, evol_orbit_pem, Max_iter_pem, convert_years, year_bp_ini
54use orbit_param_criterion_mod,  only: orbit_param_criterion
55use recomp_orb_param_mod,       only: recomp_orb_param
56use ice_table_mod,              only: porefillingice_depth, porefillingice_thickness, end_ice_table_porefilling, &
57                                      ini_ice_table_porefilling, icetable_equilibrium, computeice_table_equilibrium,compute_massh2o_exchange_ssi
58use soil_thermalproperties_mod, only: update_soil_thermalproperties
59use time_phylmdz_mod,           only: daysec, dtphys
60use abort_pem_mod,              only: abort_pem
61use soil_settings_PEM_mod,      only: soil_settings_PEM
62use compute_tend_mod,           only: compute_tend
63use info_PEM_mod,               only: info_PEM
64use interpol_TI_PEM2PCM_mod,    only: interpol_TI_PEM2PCM
65use nb_time_step_PCM_mod,       only: nb_time_step_PCM
66use pemetat0_mod,               only: pemetat0
67use read_data_PCM_mod,          only: read_data_PCM
68use recomp_tend_co2_slope_mod,  only: recomp_tend_co2_slope
69use compute_soiltemp_mod,       only: compute_tsoil_pem
70use writediagpem_mod,           only: writediagpem, writediagsoilpem
71use co2condens_mod,             only: CO2cond_ps
72use layering_mod,               only: tend_dust, ptrarray, stratum, layering, ini_layering, del_layering, make_layering, get_nb_str_max, nb_str_max, layering_algo
73
74#ifndef CPP_STD
75    use comsoil_h,          only: tsoil, nsoilmx, ini_comsoil_h, inertiedat, mlayer, inertiesoil, flux_geo, nqsoil, qsoil
76    use surfdat_h,          only: tsurf, emis, qsurf, watercap, ini_surfdat_h, &
77                                  albedodat, zmea, zstd, zsig, zgam, zthe,     &
78                                  albedo_h2o_frost,frost_albedo_threshold,     &
79                                  emissiv, watercaptag, perennial_co2ice, emisice, albedice
80    use dimradmars_mod,     only: totcloudfrac, albedo
81    use dust_param_mod,     only: tauscaling
82    use tracer_mod,         only: noms, igcm_h2o_ice, igcm_co2, mmol, igcm_h2o_vap ! Tracer names and molar masses
83    use mod_phys_lmdz_para, only: is_parallel, is_sequential, is_mpi_root, is_omp_root, is_master
84    use planete_h,          only: aphelie, periheli, year_day, peri_day, obliquit, iniorbit
85    use comcstfi_h,         only: pi, rad, g, cpp, mugaz, r
86    use surfini_mod,        only: surfini
87#else
88    use tracer_h,           only: noms, igcm_h2o_ice, igcm_co2 ! Tracer names
89    use phys_state_var_mod, only: cloudfrac, totcloudfrac, albedo_snow_SPECTV,HICE,RNAT,   &
90                                  PCTSRF_SIC, TSLAB, TSEA_ICE, SEA_ICE, ALBEDO_BAREGROUND, &
91                                  ALBEDO_CO2_ICE_SPECTV, phys_state_var_init
92    use aerosol_mod,        only: iniaerosol
93    use planete_mod,        only: apoastr, periastr, year_day, peri_day, obliquit
94    use comcstfi_mod,       only: pi, rad, g, cpp, mugaz, r
95#endif
96
97#ifndef CPP_1D
98    use iniphysiq_mod,            only: iniphysiq
99    use control_mod,              only: iphysiq, day_step, nsplit_phys
100#else
101    use time_phylmdz_mod,         only: iphysiq, day_step
102    use regular_lonlat_mod,       only: init_regular_lonlat
103    use physics_distribution_mod, only: init_physics_distribution
104    use mod_grid_phy_lmdz,        only: regular_lonlat
105    use init_testphys1d_mod,      only: init_testphys1d
106    use comvert_mod,              only: ap, bp
107    use writerestart1D_mod,       only: writerestart1D
108#endif
109
110implicit none
111
112include "dimensions.h"
113include "paramet.h"
114include "comgeom.h"
115include "iniprint.h"
116include "callkeys.h"
117
118integer ngridmx
119parameter(ngridmx = 2 + (jjm - 1)*iim - 1/jjm)
120
121! Same variable names as in the PCM
122integer, parameter :: nlayer = llm ! Number of vertical layer
123integer            :: ngrid        ! Number of physical grid points
124integer            :: nq           ! Number of tracer
125integer            :: day_ini      ! First day of the simulation
126real               :: pday         ! Physical day
127real               :: time_phys    ! Same as in PCM
128real               :: ptimestep    ! Same as in PCM
129real               :: ztime_fin     ! Same as in PCM
130
131! Variables to read start.nc
132character(*), parameter :: start_name = "start.nc" ! Name of the file used to initialize the PEM
133
134! Dynamic variables
135real, dimension(ip1jm,llm)          :: vcov          ! vents covariants
136real, dimension(ip1jmp1,llm)        :: ucov          ! vents covariants
137real, dimension(ip1jmp1,llm)        :: teta          ! temperature potentielle
138real, dimension(:,:,:), allocatable :: q             ! champs advectes
139real, dimension(ip1jmp1)            :: ps            ! pression au sol
140real, dimension(:),     allocatable :: ps_start_PCM  ! (ngrid) surface pressure
141real, dimension(:,:),   allocatable :: ps_timeseries ! (ngrid x timelen) instantaneous surface pressure
142real, dimension(ip1jmp1,llm)        :: masse         ! masse d'air
143real, dimension(ip1jmp1)            :: phis          ! geopotentiel au sol
144real                                :: time_0
145
146! Variables to read starfi.nc
147character(*), parameter :: startfi_name = "startfi.nc" ! Name of the file used to initialize the PEM
148character(2)            :: str2
149integer                 :: ncid, status                           ! Variable for handling opening of files
150integer                 :: lonvarid, latvarid, areavarid, sdvarid ! Variable ID for Netcdf files
151integer                 :: apvarid, bpvarid                       ! Variable ID for Netcdf files
152
153! Variables to read starfi.nc and write restartfi.nc
154real, dimension(:), allocatable :: longitude     ! Longitude read in startfi_name and written in restartfi
155real, dimension(:), allocatable :: latitude      ! Latitude read in startfi_name and written in restartfi
156real, dimension(:), allocatable :: cell_area     ! Cell_area read in startfi_name and written in restartfi
157real                            :: Total_surface ! Total surface of the planet
158
159! Variables for h2o_ice evolution
160real, dimension(:,:),   allocatable :: h2o_ice              ! h2o ice in the PEM
161real, dimension(:,:,:), allocatable :: min_h2o_ice          ! Minima of h2o ice at each point for the PCM years [kg/m^2]
162real                                :: h2o_surf_ini         ! Initial surface of sublimating h2o ice
163real                                :: global_avg_press_PCM ! constant: global average pressure retrieved in the PCM [Pa]
164real                                :: global_avg_press_old ! constant: Global average pressure of initial/previous time step
165real                                :: global_avg_press_new ! constant: Global average pressure of current time step
166real, dimension(:,:),   allocatable :: zplev_new            ! Physical x Atmospheric field: mass of the atmospheric  layers in the pem at current time step [kg/m^2]
167real, dimension(:,:),   allocatable :: zplev_PCM            ! same but retrieved from the PCM [kg/m^2]
168real, dimension(:,:,:), allocatable :: zplev_new_timeseries ! Physical x Atmospheric x Time: same as zplev_new, but in times series [kg/m ^2]
169real, dimension(:,:,:), allocatable :: zplev_old_timeseries ! same but with the time series, for oldest time step
170integer                             :: stopPEM              ! which criterion is reached? 0 = no stopping; 1 = h2o ice surf; 2 = no h2o ice; 3 = co2 ice surf; 4 = ps; 5 = orb param; 6 = end of simu
171real, save                          :: A, B, mmean          ! Molar mass: intermediate A, B for computations of the  mean molar mass of the layer [mol/kg]
172real, dimension(:,:),   allocatable :: q_h2o_PEM_phys       ! Physics x Times: h2o mass mixing ratio computed in the PEM, first value comes from PCM [kg/kg]
173integer                             :: timelen              ! # time samples
174real                                :: ave                  ! intermediate varibale to compute average
175real, dimension(:,:),   allocatable :: p                    ! Physics x Atmosphere: pressure to recompute and write in restart (ngrid,llmp1)
176real                                :: extra_mass           ! Intermediate variables Extra mass of a tracer if it is greater than 1
177
178! Variables for co2_ice evolution
179real, dimension(:,:),   allocatable :: co2_ice          ! co2 ice in the PEM
180real, dimension(:,:),   allocatable :: co2_ice_ini      ! Initial amount of co2 ice in the PEM
181real, dimension(:,:,:), allocatable :: min_co2_ice      ! Minimum of co2 ice at each point for the first year [kg/m^2]
182real                                :: co2_surf_ini     ! Initial surface of sublimating co2 ice
183real, dimension(:,:),   allocatable :: vmr_co2_PCM      ! Physics x Times co2 volume mixing ratio retrieve from the PCM [m^3/m^3]
184real, dimension(:,:),   allocatable :: vmr_co2_PEM_phys ! Physics x Times co2 volume mixing ratio used in the PEM
185real, dimension(:,:),   allocatable :: q_co2_PEM_phys   ! Physics x Times co2 mass mixing ratio in the first layer computed in the PEM, first value comes from PCM [kg/kg]
186
187! Variables for stratification (layering) evolution
188type(layering), dimension(:,:), allocatable :: stratif                     ! Layering (linked list of "stratum") for each grid point and slope
189type(ptrarray), dimension(:,:), allocatable :: current1, current2          ! Current active stratum in the layering
190logical,        dimension(:,:), allocatable :: new_str, new_lag1, new_lag2 ! Flags for the layering algorithm
191
192! Variables for slopes
193real, dimension(:,:,:), allocatable :: co2_ice_PCM        ! Physics x NSLOPE x Times field: co2 ice given by the PCM [kg/m^2]
194real, dimension(:,:),   allocatable :: tend_co2_ice       ! physical point x slope field: Tendency of evolution of perennial co2 ice over a year
195real, dimension(:,:),   allocatable :: tend_co2_ice_ini   ! physical point x slope field x nslope: Tendency of evolution of perennial co2 ice over a year in the PCM
196real, dimension(:,:),   allocatable :: tend_h2o_ice       ! physical point x slope  field: Tendency of evolution of perennial h2o ice
197real, dimension(:,:),   allocatable :: flag_co2flow       ! (ngrid,nslope): Flag where there is a CO2 glacier flow
198real, dimension(:),     allocatable :: flag_co2flow_mesh  ! (ngrid)       : Flag where there is a CO2 glacier flow
199real, dimension(:,:),   allocatable :: flag_h2oflow       ! (ngrid,nslope): Flag where there is a H2O glacier flow
200real, dimension(:),     allocatable :: flag_h2oflow_mesh  ! (ngrid)       : Flag where there is a H2O glacier flow
201
202! Variables for surface and soil
203real, dimension(:,:),     allocatable :: tsurf_ave                          ! Physic x SLOPE field: Averaged Surface Temperature [K]
204real, dimension(:,:,:),   allocatable :: tsoil_ave                          ! Physic x SOIL x SLOPE field: Averaged Soil Temperature [K]
205real, dimension(:,:,:),   allocatable :: tsoil_anom                         ! Amplitude between instataneous and yearly average soil temperature [K]
206real, dimension(:,:,:),   allocatable :: tsurf_PCM_timeseries               ! ngrid x SLOPE XTULES field: Surface Temperature in timeseries [K]
207real, dimension(:,:,:,:), allocatable :: tsoil_phys_PEM_timeseries          ! IG x SLOPE XTULES field: Non averaged Soil Temperature [K]
208real, dimension(:,:,:,:), allocatable :: tsoil_PCM_timeseries               ! IG x SLOPE XTULES field: Non averaged Soil Temperature [K]
209real, dimension(:,:),     allocatable :: tsurf_avg_yr1                      ! Physic x SLOPE field: Averaged Surface Temperature of first call of the PCM [K]
210real, dimension(:,:),     allocatable :: TI_locslope                        ! Physic x Soil: Intermediate thermal inertia  to compute Tsoil [SI]
211real, dimension(:,:),     allocatable :: Tsoil_locslope                     ! Physic x Soil: intermediate when computing Tsoil [K]
212real, dimension(:),       allocatable :: Tsurf_locslope                     ! Physic x Soil: Intermediate surface temperature to compute Tsoil [K]
213real, dimension(:,:,:,:), allocatable :: watersoil_density_timeseries       ! Physic x Soil x Slope x Times water soil density, time series [kg /m^3]
214real, dimension(:,:),     allocatable :: watersurf_density_ave              ! Physic x Slope, water surface density, yearly averaged [kg/m^3]
215real, dimension(:,:,:,:), allocatable :: watersoil_density_PEM_timeseries   ! Physic x Soil x Slope x Times, water soil density, time series [kg/m^3]
216real, dimension(:,:,:),   allocatable :: watersoil_density_PEM_ave          ! Physic x Soil x SLopes, water soil density, yearly averaged [kg/m^3]
217real, dimension(:,:),     allocatable :: Tsurfavg_before_saved              ! Surface temperature saved from previous time step [K]
218real, dimension(:),       allocatable :: delta_co2_adsorbded                ! Physics: quantity of CO2 that is exchanged because of adsorption / desorption [kg/m^2]
219real, dimension(:),       allocatable :: delta_h2o_adsorbded                ! Physics: quantity of H2O that is exchanged because of adsorption / desorption [kg/m^2]
220real                                  :: totmassco2_adsorbded               ! Total mass of CO2 that is exchanged because of adsorption / desoprtion over the planets [kg]
221real                                  :: totmassh2o_adsorbded               ! Total mass of H2O that is exchanged because of adsorption / desoprtion over the planets [kg]
222logical                               :: bool_sublim                        ! logical to check if there is sublimation or not
223real, dimension(:,:),     allocatable :: porefillingice_thickness_prev_iter ! ngrid x nslope: Thickness of the ice table at the previous iteration [m]
224real, dimension(:),       allocatable :: delta_h2o_icetablesublim           ! ngrid x Total mass of the H2O that has sublimated / condenses from the ice table [kg]
225
226! Some variables for the PEM run
227real, parameter :: year_step = 1 ! timestep for the pem
228integer         :: year_iter     ! number of iteration
229integer         :: year_iter_max ! maximum number of iterations before stopping
230integer         :: i_myear       ! Global number of Martian years of the chained simulations
231integer         :: n_myear       ! Maximum number of Martian years of the chained simulations
232real            :: timestep      ! timestep [s]
233
234#ifdef CPP_STD
235    real                                :: frost_albedo_threshold = 0.05 ! frost albedo threeshold to convert fresh frost to old ice
236    real                                :: albedo_h2o_frost              ! albedo of h2o frost
237    real, dimension(:),     allocatable :: tsurf_read_generic            ! Temporary variable to do the subslope transfert dimension when reading form generic
238    real, dimension(:,:),   allocatable :: qsurf_read_generic            ! Temporary variable to do the subslope transfert dimension when reading form generic
239    real, dimension(:,:),   allocatable :: tsoil_read_generic            ! Temporary variable to do the subslope transfert dimension when reading form generic
240    real, dimension(:),     allocatable :: emis_read_generic             ! Temporary variable to do the subslope transfert dimension when reading form generic
241    real, dimension(:,:),   allocatable :: albedo_read_generic           ! Temporary variable to do the subslope transfert dimension when reading form generic
242    real, dimension(:,:),   allocatable :: tsurf                         ! Subslope variable, only needed in the GENERIC case
243    real, dimension(:,:,:), allocatable :: qsurf                         ! Subslope variable, only needed in the GENERIC case
244    real, dimension(:,:,:), allocatable :: tsoil                         ! Subslope variable, only needed in the GENERIC case
245    real, dimension(:,:),   allocatable :: emis                          ! Subslope variable, only needed in the GENERIC case
246    real, dimension(:,:),   allocatable :: watercap                      ! Subslope variable, only needed in the GENERIC case =0 no watercap in generic model
247    logical, dimension(:),  allocatable :: watercaptag                   ! Subslope variable, only needed in the GENERIC case =false no watercaptag in generic model
248    real, dimension(:,:,:), allocatable :: albedo                        ! Subslope variable, only needed in the GENERIC case
249    real, dimension(:,:,:), allocatable :: inertiesoil                   ! Subslope variable, only needed in the GENERIC case
250#endif
251
252#ifdef CPP_1D
253    integer            :: nsplit_phys
254    integer, parameter :: jjm_value = jjm - 1
255
256    ! Dummy variables to use the subroutine 'init_testphys1d'
257    logical                             :: therestart1D, therestartfi
258    integer                             :: ndt, day0
259    real                                :: ptif, pks, day, gru, grv, atm_wat_profile, atm_wat_tau
260    real, dimension(:),     allocatable :: zqsat
261    real, dimension(:,:,:), allocatable :: dq, dqdyn
262    real, dimension(nlayer)             :: play, w
263    real, dimension(nlayer + 1)         :: plev
264#else
265    integer, parameter              :: jjm_value = jjm
266    real, dimension(:), allocatable :: ap ! Coefficient ap read in start_name and written in restart
267    real, dimension(:), allocatable :: bp ! Coefficient bp read in start_name and written in restart
268#endif
269
270! Loop variables
271integer :: i, l, ig, nnq, t, islope, ig_loop, islope_loop, isoil, icap
272
273! Parallel variables
274#ifndef CPP_STD
275    is_sequential = .true.
276    is_parallel = .false.
277    is_mpi_root = .true.
278    is_omp_root = .true.
279    is_master = .true.
280#endif
281
282! Some constants
283day_ini = 0    ! test
284time_phys = 0. ! test
285ngrid = ngridmx
286A = (1/m_co2 - 1/m_noco2)
287B = 1/m_noco2
288year_day = 669
289daysec = 88775.
290timestep = year_day*daysec/year_step
291
292!----------------------------- INITIALIZATION --------------------------
293!------------------------
294! I   Initialization
295!    I_a Read the "run.def"
296!------------------------
297#ifndef CPP_1D
298    dtphys = 0
299    call conf_gcm(99,.true.)
300    call infotrac_init
301    nq = nqtot
302    allocate(q(ip1jmp1,llm,nqtot))
303    allocate(longitude(ngrid),latitude(ngrid),cell_area(ngrid))
304#else
305    allocate(q(1,llm,nqtot))
306    allocate(longitude(1),latitude(1),cell_area(1))
307
308    therestart1D = .false. ! Default value
309    inquire(file = 'start1D_evol.txt',exist = therestart1D)
310    if (.not. therestart1D) then
311        write(*,*) 'There is no "start1D_evol.txt" file!'
312        error stop 'Initialization cannot be done for the 1D PEM.'
313    endif
314    therestartfi = .false. ! Default value
315    inquire(file = 'startfi.nc',exist = therestartfi)
316    if (.not. therestartfi) then
317        write(*,*) 'There is no "startfi.nc" file!'
318        error stop 'Initialization cannot be done for the 1D PEM.'
319    endif
320
321    call init_testphys1d('start1D_evol.txt','startfi.nc',therestart1D,therestartfi,ngrid,nlayer,610.,nq,q, &
322                         time_0,ps(1),ucov,vcov,teta,ndt,ptif,pks,dtphys,zqsat,dq,dqdyn,day0,day,gru,grv,w,     &
323                         play,plev,latitude,longitude,cell_area,atm_wat_profile,atm_wat_tau)
324    ps(2) = ps(1)
325    nsplit_phys = 1
326#endif
327
328call conf_pem(i_myear,n_myear)
329
330!------------------------
331! I   Initialization
332!    I_b Read of the "start.nc" and starfi_evol.nc
333!------------------------
334! I_b.1 Read "start.nc"
335allocate(ps_start_PCM(ngrid))
336#ifndef CPP_1D
337    call dynetat0(start_name,vcov,ucov,teta,q,masse,ps,phis,time_0)
338
339    call gr_dyn_fi(1,iip1,jjp1,ngridmx,ps,ps_start_PCM)
340
341    call iniconst !new
342    call inigeom
343
344    allocate(ap(nlayer + 1))
345    allocate(bp(nlayer + 1))
346    status = nf90_open(start_name,NF90_NOWRITE,ncid)
347    status = nf90_inq_varid(ncid,"ap",apvarid)
348    status = nf90_get_var(ncid,apvarid,ap)
349    status = nf90_inq_varid(ncid,"bp",bpvarid)
350    status = nf90_get_var(ncid,bpvarid,bp)
351    status = nf90_close(ncid)
352
353    call iniphysiq(iim,jjm,llm,(jjm-1)*iim+2,comm_lmdz,daysec,day_ini,dtphys/nsplit_phys,rlatu,rlatv,rlonu,rlonv,aire,cu,cv,rad,g,r,cpp,iflag_phys)
354#else
355    ps_start_PCM(1) = ps(1)
356#endif
357
358! In the PCM, these values are given to the physic by the dynamic.
359! Here we simply read them in the "startfi.nc" file
360status = nf90_open(startfi_name, NF90_NOWRITE, ncid)
361
362status = nf90_inq_varid(ncid,"longitude",lonvarid)
363status = nf90_get_var(ncid,lonvarid,longitude)
364
365status = nf90_inq_varid(ncid,"latitude",latvarid)
366status = nf90_get_var(ncid,latvarid,latitude)
367
368status = nf90_inq_varid(ncid,"area",areavarid)
369status = nf90_get_var(ncid,areavarid,cell_area)
370
371status = nf90_inq_varid(ncid,"soildepth",sdvarid)
372status = nf90_get_var(ncid,sdvarid,mlayer)
373
374status = nf90_close(ncid)
375
376! I_b.2 Read the "startfi.nc"
377! First we read the initial state (starfi.nc)
378#ifndef CPP_STD
379    call phyetat0(startfi_name,0,0,nsoilmx,ngrid,nlayer,nq,nqsoil,day_ini,time_phys,tsurf, &
380                  tsoil,albedo,emis,q2,qsurf,qsoil,tauscaling,totcloudfrac,wstar,          &
381                  watercap,perennial_co2ice,def_slope,def_slope_mean,subslope_dist)
382
383    ! Remove unphysical values of surface tracer
384    where (qsurf < 0.) qsurf = 0.
385
386    call surfini(ngrid,nslope,qsurf)
387#else
388    call phys_state_var_init(nq)
389    if (.not. allocated(noms)) allocate(noms(nq)) ! (because noms is an argument of physdem1 whether or not tracer is on)
390    call initracer(ngrid,nq)
391    call iniaerosol()
392    allocate(tsurf_read_generic(ngrid))
393    allocate(qsurf_read_generic(ngrid,nq))
394    allocate(tsoil_read_generic(ngrid,nsoilmx))
395    allocate(qsoil_read_generic(ngrid,nsoilmx,nqsoil,nslope))
396    allocate(emis_read_generic(ngrid))
397    allocate(tsurf(ngrid,1))
398    allocate(qsurf(ngrid,nq,1))
399    allocate(tsoil(ngrid,nsoilmx,1))
400    allocate(emis(ngrid,1))
401    allocate(watercap(ngrid,1))
402    allocate(watercaptag(ngrid))
403    allocate(albedo_read_generic(ngrid,2))
404    allocate(albedo(ngrid,2,1))
405    allocate(inertiesoil(ngrid,nsoilmx,1))
406    call phyetat0(.true.,ngrid,nlayer,startfi_name,0,0,nsoilmx,nq,nqsoil,day_ini,time_phys, &
407                  tsurf_read_generic,tsoil_read_generic,emis_read_generic,q2,               &
408                  qsurf_read_generic,qsoil_read_generic,cloudfrac,totcloudfrac,hice,        &
409                  rnat,pctsrf_sic,tslab,tsea_ice,sea_ice)
410    call surfini(ngrid,nq,qsurf_read_generic,albedo_read_generic,albedo_bareground,albedo_snow_SPECTV,albedo_co2_ice_SPECTV)
411
412    nslope = 1
413    call ini_comslope_h(ngrid,1)
414
415    qsurf(:,:,1) = qsurf_read_generic
416    tsurf(:,1) = tsurf_read_generic
417    tsoil(:,:,1) = tsoil_read_generic
418    emis(:,1) = emis_read_generic
419    watercap(:,1) = 0.
420    watercaptag(:) = .false.
421    albedo(:,1,1) = albedo_read_generic(:,1)
422    albedo(:,2,1) = albedo_read_generic(:,2)
423    inertiesoil(:,:,1) = inertiedat
424
425    if (nslope == 1) then
426        def_slope(1) = 0
427        def_slope(2) = 0
428        def_slope_mean = 0
429        subslope_dist(:,1) = 1.
430    endif
431
432    ! Remove unphysical values of surface tracer
433    qsurf(:,:,1) = qsurf_read_generic
434    where (qsurf < 0.) qsurf = 0.
435#endif
436
437do nnq = 1,nqtot  ! Why not using ini_tracer ?
438    if (noms(nnq) == "h2o_ice") igcm_h2o_ice = nnq
439    if (noms(nnq) == "h2o_vap") then
440        igcm_h2o_vap = nnq
441        mmol(igcm_h2o_vap) = 18.
442    endif
443    if (noms(nnq) == "co2") igcm_co2 = nnq
444enddo
445r = 8.314511*1000./mugaz
446
447!------------------------
448! I   Initialization
449!    I_c Subslope parametrisation
450!------------------------
451! Define some slope statistics
452iflat = 1
453do islope = 2,nslope
454    if (abs(def_slope_mean(islope)) < abs(def_slope_mean(iflat))) iflat = islope
455enddo
456
457write(*,*) 'Flat slope for islope = ',iflat
458write(*,*) 'corresponding criterium = ',def_slope_mean(iflat)
459
460allocate(flag_co2flow(ngrid,nslope))
461allocate(flag_co2flow_mesh(ngrid))
462allocate(flag_h2oflow(ngrid,nslope))
463allocate(flag_h2oflow_mesh(ngrid))
464
465flag_co2flow = 0
466flag_co2flow_mesh = 0
467flag_h2oflow = 0
468flag_h2oflow_mesh = 0
469
470!------------------------
471! I   Initialization
472!    I_d Read the PCM data and convert them to the physical grid
473!------------------------
474! First we read the evolution of water and co2 ice (and the mass mixing ratio) over the first year of the PCM run, saving only the minimum value
475call nb_time_step_PCM("data_PCM_Y1.nc",timelen)
476
477allocate(tsoil_ave(ngrid,nsoilmx,nslope))
478allocate(watersoil_density_PEM_ave(ngrid,nsoilmx_PEM,nslope))
479allocate(vmr_co2_PCM(ngrid,timelen))
480allocate(ps_timeseries(ngrid,timelen))
481allocate(min_co2_ice(ngrid,nslope,2))
482allocate(min_h2o_ice(ngrid,nslope,2))
483allocate(tsurf_avg_yr1(ngrid,nslope))
484allocate(tsurf_ave(ngrid,nslope))
485allocate(tsurf_PCM_timeseries(ngrid,nslope,timelen))
486allocate(tsoil_PCM_timeseries(ngrid,nsoilmx,nslope,timelen))
487allocate(q_co2_PEM_phys(ngrid,timelen))
488allocate(q_h2o_PEM_phys(ngrid,timelen))
489allocate(co2_ice_PCM(ngrid,nslope,timelen))
490allocate(watersurf_density_ave(ngrid,nslope))
491allocate(watersoil_density_timeseries(ngrid,nsoilmx,nslope,timelen))
492allocate(Tsurfavg_before_saved(ngrid,nslope))
493allocate(tsoil_phys_PEM_timeseries(ngrid,nsoilmx_PEM,nslope,timelen))
494allocate(watersoil_density_PEM_timeseries(ngrid,nsoilmx_PEM,nslope,timelen))
495allocate(delta_co2_adsorbded(ngrid))
496allocate(porefillingice_thickness_prev_iter(ngrid,nslope))
497allocate(delta_h2o_icetablesublim(ngrid))
498allocate(delta_h2o_adsorbded(ngrid))
499allocate(vmr_co2_PEM_phys(ngrid,timelen))
500
501write(*,*) "Downloading data Y1..."
502call read_data_PCM("data_PCM_Y1.nc",timelen,iim,jjm_value,ngrid,nslope,vmr_co2_PCM,ps_timeseries,min_co2_ice(:,:,1),min_h2o_ice(:,:,1), &
503                   tsurf_avg_yr1,tsoil_ave,tsurf_PCM_timeseries,tsoil_PCM_timeseries,q_co2_PEM_phys,q_h2o_PEM_phys,                      &
504                   co2_ice_PCM,watersurf_density_ave,watersoil_density_timeseries)
505write(*,*) "Downloading data Y1 done!"
506
507! Then we read the evolution of water and co2 ice (and the mass mixing ratio) over the second year of the PCM run, saving only the minimum value
508write(*,*) "Downloading data Y2..."
509call read_data_PCM("data_PCM_Y2.nc",timelen,iim,jjm_value,ngrid,nslope,vmr_co2_PCM,ps_timeseries,min_co2_ice(:,:,2),min_h2o_ice(:,:,2), &
510                   tsurf_ave,tsoil_ave,tsurf_PCM_timeseries,tsoil_PCM_timeseries,q_co2_PEM_phys,q_h2o_PEM_phys,                         &
511                   co2_ice_PCM,watersurf_density_ave,watersoil_density_timeseries)
512write(*,*) "Downloading data Y2 done!"
513
514!------------------------
515! I   Initialization
516!    I_e Initialization of the PEM variables and soil
517!------------------------
518call end_comsoil_h_PEM
519call ini_comsoil_h_PEM(ngrid,nslope)
520call end_adsorption_h_PEM
521call ini_adsorption_h_PEM(ngrid,nslope,nsoilmx_PEM)
522call end_ice_table_porefilling
523call ini_ice_table_porefilling(ngrid,nslope)
524
525if (soil_pem) then
526    allocate(tsoil_anom(ngrid,nsoilmx,nslope))
527    tsoil_anom = tsoil - tsoil_ave ! compute anomaly between Tsoil(t) in the startfi - <Tsoil> to recompute properly tsoil in the restart
528    call soil_settings_PEM(ngrid,nslope,nsoilmx_PEM,nsoilmx,inertiesoil,TI_PEM)
529    tsoil_PEM(:,1:nsoilmx,:) = tsoil_ave
530    tsoil_phys_PEM_timeseries(:,1:nsoilmx,:,:) = tsoil_PCM_timeseries
531    watersoil_density_PEM_timeseries(:,1:nsoilmx,:,:) = watersoil_density_timeseries
532    do l = nsoilmx + 1,nsoilmx_PEM
533        tsoil_PEM(:,l,:) = tsoil_ave(:,nsoilmx,:)
534        watersoil_density_PEM_timeseries(:,l,:,:) = watersoil_density_timeseries(:,nsoilmx,:,:)
535    enddo
536    watersoil_density_PEM_ave = sum(watersoil_density_PEM_timeseries,4)/timelen
537endif !soil_pem
538deallocate(tsoil_ave,tsoil_PCM_timeseries)
539
540!------------------------
541! I   Initialization
542!    I_f Compute tendencies
543!------------------------
544allocate(tend_co2_ice(ngrid,nslope),tend_h2o_ice(ngrid,nslope))
545allocate(tend_co2_ice_ini(ngrid,nslope))
546
547! Compute the tendencies of the evolution of ice over the years
548call compute_tend(ngrid,nslope,min_co2_ice,tend_co2_ice)
549call compute_tend(ngrid,nslope,min_h2o_ice,tend_h2o_ice)
550tend_co2_ice_ini = tend_co2_ice
551
552!------------------------
553! I   Initialization
554!    I_g Save initial PCM situation
555!------------------------
556! We save the places where h2o ice is sublimating
557! We compute the surface of h2o ice sublimating
558co2_surf_ini = 0.
559h2o_surf_ini = 0.
560Total_surface = 0.
561do i = 1,ngrid
562    Total_surface = Total_surface + cell_area(i)
563    do islope = 1,nslope
564        if (tend_co2_ice(i,islope) < 0.) co2_surf_ini = co2_surf_ini + cell_area(i)*subslope_dist(i,islope)
565        if (tend_h2o_ice(i,islope) < 0.) h2o_surf_ini = h2o_surf_ini + cell_area(i)*subslope_dist(i,islope)
566    enddo
567enddo
568
569write(*,*) "Total initial surface of co2 ice sublimating (slope) =", co2_surf_ini
570write(*,*) "Total initial surface of h2o ice sublimating (slope) =", h2o_surf_ini
571write(*,*) "Total surface of the planet =", Total_surface
572allocate(zplev_PCM(ngrid,nlayer + 1))
573
574do ig = 1,ngrid
575    zplev_PCM(ig,:) = ap + bp*ps_start_PCM(ig)
576enddo
577
578global_avg_press_old = sum(cell_area*ps_start_PCM)/Total_surface
579global_avg_press_PCM = global_avg_press_old
580global_avg_press_new = global_avg_press_old
581write(*,*) "Initial global average pressure =", global_avg_press_PCM
582
583!------------------------
584! I   Initialization
585!    I_h Read the "startpem.nc"
586!------------------------
587allocate(co2_ice(ngrid,nslope),h2o_ice(ngrid,nslope))
588deallocate(min_co2_ice,min_h2o_ice)
589
590allocate(stratif(ngrid,nslope))
591if (layering_algo) then
592    do islope = 1,nslope
593        do i = 1,ngrid
594            call ini_layering(stratif(i,islope))
595        enddo
596    enddo
597endif
598
599call pemetat0("startpem.nc",ngrid,nsoilmx,nsoilmx_PEM,nslope,timelen,timestep,TI_PEM,tsoil_PEM,porefillingice_depth, &
600              porefillingice_thickness,tsurf_avg_yr1,tsurf_ave,q_co2_PEM_phys,q_h2o_PEM_phys,ps_timeseries,          &
601              tsoil_phys_PEM_timeseries,tend_h2o_ice,tend_co2_ice,co2_ice,h2o_ice,global_avg_press_PCM,              &
602              watersurf_density_ave,watersoil_density_PEM_ave,co2_adsorbded_phys,delta_co2_adsorbded,                &
603              h2o_adsorbded_phys,delta_h2o_adsorbded,stratif)
604
605allocate(co2_ice_ini(ngrid,nslope))
606co2_ice_ini = co2_ice
607
608delta_h2o_icetablesublim = 0.
609
610if (adsorption_pem) then
611    totmassco2_adsorbded = 0.
612    totmassh2o_adsorbded = 0.
613    do ig = 1,ngrid
614        do islope = 1,nslope
615            do l = 1,nsoilmx_PEM - 1
616                if (l==1) then
617                   totmassco2_adsorbded = totmassco2_adsorbded + co2_adsorbded_phys(ig,l,islope)*(layer_PEM(l))* &
618                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
619                   totmassh2o_adsorbded = totmassh2o_adsorbded + h2o_adsorbded_phys(ig,l,islope)*(layer_PEM(l))* &
620                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
621                else
622                   totmassco2_adsorbded = totmassco2_adsorbded + co2_adsorbded_phys(ig,l,islope)*(layer_PEM(l) - layer_PEM(l-1))* &
623                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
624                   totmassh2o_adsorbded = totmassh2o_adsorbded + h2o_adsorbded_phys(ig,l,islope)*(layer_PEM(l) - layer_PEM(l-1))* &
625                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
626                endif
627            enddo
628        enddo
629    enddo
630    write(*,*) "Tot mass of CO2 in the regolith =", totmassco2_adsorbded
631    write(*,*) "Tot mass of H2O in the regolith =", totmassh2o_adsorbded
632endif ! adsorption
633deallocate(tsurf_avg_yr1)
634
635!------------------------
636! I   Initialization
637!    I_i Compute orbit criterion
638!------------------------
639#ifndef CPP_STD
640    call iniorbit(aphelie,periheli,year_day,peri_day,obliquit)
641#else
642    call iniorbit(apoastr,periastr,year_day,peri_day,obliquit)
643#endif
644
645if (evol_orbit_pem) then
646    call orbit_param_criterion(i_myear,year_iter_max)
647else
648    year_iter_max = Max_iter_pem
649endif
650!-------------------------- END INITIALIZATION -------------------------
651
652!-------------------------------- RUN ----------------------------------
653!------------------------
654! II  Run
655!    II_a Update pressure, ice and tracers
656!------------------------
657year_iter = 0
658stopPEM = 0
659if (layering_algo) then
660    allocate(new_str(ngrid,nslope),new_lag1(ngrid,nslope),new_lag2(ngrid,nslope),current1(ngrid,nslope),current2(ngrid,nslope))
661    new_str = .true.
662    new_lag1 = .true.
663    new_lag2 = .true.
664    do islope = 1,nslope
665        do ig = 1,ngrid
666            current1(ig,islope)%p => stratif(ig,islope)%top
667            current2(ig,islope)%p => stratif(ig,islope)%top
668        enddo
669    enddo
670endif
671
672do while (year_iter < 10 .and. i_myear < n_myear)
673! II.a.1. Compute updated global pressure
674    write(*,*) "Recomputing the new pressure..."
675    do i = 1,ngrid
676        do islope = 1,nslope
677            global_avg_press_new = global_avg_press_new - CO2cond_ps*g*cell_area(i)*tend_co2_ice(i,islope)*subslope_dist(i,islope)/cos(pi*def_slope_mean(islope)/180.)/Total_surface
678        enddo
679    enddo
680
681    if (adsorption_pem) then
682        do i = 1,ngrid
683            global_avg_press_new = global_avg_press_new - g*cell_area(i)*delta_co2_adsorbded(i)/Total_surface
684        enddo
685    endif
686    write(*,*) 'Global average pressure old time step',global_avg_press_old
687    write(*,*) 'Global average pressure new time step',global_avg_press_new
688
689! II.a.2. Old pressure levels for the timeseries, this value is deleted when unused and recreated each time (big memory consumption)
690    allocate(zplev_old_timeseries(ngrid,nlayer + 1,timelen))
691    write(*,*) "Recomputing the old pressure levels timeserie adapted to the old pressure..."
692    do l = 1,nlayer + 1
693        do ig = 1,ngrid
694            zplev_old_timeseries(ig,l,:) = ap(l) + bp(l)*ps_timeseries(ig,:)
695        enddo
696    enddo
697
698! II.a.3. Surface pressure timeseries
699    write(*,*) "Recomputing the surface pressure timeserie adapted to the new pressure..."
700    do ig = 1,ngrid
701        ps_timeseries(ig,:) = ps_timeseries(ig,:)*global_avg_press_new/global_avg_press_old
702    enddo
703
704! II.a.4. New pressure levels timeseries
705    allocate(zplev_new_timeseries(ngrid,nlayer + 1,timelen))
706    write(*,*) "Recomputing the new pressure levels timeserie adapted to the new pressure..."
707    do l = 1,nlayer + 1
708        do ig = 1,ngrid
709            zplev_new_timeseries(ig,l,:) = ap(l) + bp(l)*ps_timeseries(ig,:)
710        enddo
711    enddo
712
713! II.a.5. Tracers timeseries
714    write(*,*) "Recomputing of tracer VMR timeseries for the new pressure..."
715
716    l = 1
717    do ig = 1,ngrid
718        do t = 1,timelen
719            q_h2o_PEM_phys(ig,t) = q_h2o_PEM_phys(ig,t)*(zplev_old_timeseries(ig,l,t) - zplev_old_timeseries(ig,l + 1,t))/ &
720                                   (zplev_new_timeseries(ig,l,t) - zplev_new_timeseries(ig,l + 1,t))
721            if (q_h2o_PEM_phys(ig,t) < 0) then
722                q_h2o_PEM_phys(ig,t) = 1.e-30
723            else if (q_h2o_PEM_phys(ig,t) > 1) then
724                q_h2o_PEM_phys(ig,t) = 1.
725            endif
726        enddo
727    enddo
728
729    do ig = 1,ngrid
730        do t = 1,timelen
731            q_co2_PEM_phys(ig,t) = q_co2_PEM_phys(ig,t)*(zplev_old_timeseries(ig,l,t) - zplev_old_timeseries(ig,l + 1,t))/ &
732                                   (zplev_new_timeseries(ig,l,t) - zplev_new_timeseries(ig,l + 1,t))                       &
733                                + ((zplev_new_timeseries(ig,l,t) - zplev_new_timeseries(ig,l + 1,t))                       &
734                                -  (zplev_old_timeseries(ig,l,t) - zplev_old_timeseries(ig,l + 1,t)))/                     &
735                                   (zplev_new_timeseries(ig,l,t) - zplev_new_timeseries(ig,l + 1,t))
736            if (q_co2_PEM_phys(ig,t) < 0) then
737                q_co2_PEM_phys(ig,t) = 1.e-30
738            else if (q_co2_PEM_phys(ig,t) > 1) then
739                q_co2_PEM_phys(ig,t) = 1.
740            endif
741            mmean=1/(A*q_co2_PEM_phys(ig,t) + B)
742            vmr_co2_PEM_phys(ig,t) = q_co2_PEM_phys(ig,t)*mmean/m_co2
743        enddo
744    enddo
745
746    deallocate(zplev_new_timeseries,zplev_old_timeseries)
747
748!------------------------
749! II  Run
750!    II_b Evolution of ice
751!------------------------
752    call evol_h2o_ice(ngrid,nslope,cell_area,delta_h2o_adsorbded,delta_h2o_icetablesublim,h2o_ice,tend_h2o_ice,stopPEM)
753    call evol_co2_ice(ngrid,nslope,co2_ice,tend_co2_ice)
754    if (layering_algo) then
755        do islope = 1,nslope
756            do ig = 1,ngrid
757                call make_layering(stratif(ig,islope),tend_co2_ice(ig,islope),tend_h2o_ice(ig,islope),tend_dust,new_str(ig,islope),new_lag1(ig,islope),new_lag2(ig,islope),stopPEM,current1(ig,islope)%p,current2(ig,islope)%p)
758            enddo
759        enddo
760    endif
761
762!------------------------
763! II  Run
764!    II_c Flow of glaciers
765!------------------------
766    if (co2ice_flow .and. nslope > 1) call flow_co2glaciers(timelen,ngrid,nslope,iflat,subslope_dist,def_slope_mean,vmr_co2_PEM_phys,ps_timeseries, &
767                                            global_avg_press_PCM,global_avg_press_new,co2_ice,flag_co2flow,flag_co2flow_mesh)
768    if (h2oice_flow .and. nslope > 1) call flow_h2oglaciers(timelen,ngrid,nslope,iflat,subslope_dist,def_slope_mean,tsurf_ave,h2o_ice,flag_h2oflow,flag_h2oflow_mesh)
769
770!------------------------
771! II  Run
772!    II_d Update surface and soil temperatures
773!------------------------
774! II_d.1 Update Tsurf
775    write(*,*) "Updating the new Tsurf"
776    bool_sublim = .false.
777    Tsurfavg_before_saved = tsurf_ave
778    do ig = 1,ngrid
779        do islope = 1,nslope
780            if (co2_ice_ini(ig,islope) > 0.5 .and. co2_ice(ig,islope) < 1.e-10) then ! co2 ice disappeared, look for closest point without co2ice
781                if (latitude_deg(ig) > 0) then
782                    do ig_loop = ig,ngrid
783                        do islope_loop = islope,iflat,-1
784                            if (co2_ice_ini(ig_loop,islope_loop) < 0.5 .and. co2_ice(ig_loop,islope_loop) < 1.e-10) then
785                                tsurf_ave(ig,islope) = tsurf_ave(ig_loop,islope_loop)
786                                bool_sublim = .true.
787                                exit
788                            endif
789                        enddo
790                        if (bool_sublim) exit
791                    enddo
792                else
793                    do ig_loop = ig,1,-1
794                        do islope_loop = islope,iflat
795                            if(co2_ice_ini(ig_loop,islope_loop) < 0.5 .and. co2_ice(ig_loop,islope_loop) < 1.e-10) then
796                                tsurf_ave(ig,islope) = tsurf_ave(ig_loop,islope_loop)
797                                bool_sublim = .true.
798                                exit
799                            endif
800                        enddo
801                        if (bool_sublim) exit
802                    enddo
803                endif
804                co2_ice_ini(ig,islope) = 0
805                if ((co2_ice(ig,islope) < 1.e-10) .and. (h2o_ice(ig,islope) > frost_albedo_threshold)) then
806                    albedo(ig,1,islope) = albedo_h2o_frost
807                    albedo(ig,2,islope) = albedo_h2o_frost
808                else
809                    albedo(ig,1,islope) = albedodat(ig)
810                    albedo(ig,2,islope) = albedodat(ig)
811                    emis(ig,islope) = emissiv
812                endif
813            else if ((co2_ice(ig,islope) > 1.e-3) .and. (tend_co2_ice(ig,islope) > 1.e-10)) then ! Put tsurf as tcond co2
814                ave = 0.
815                do t = 1,timelen
816                    if (co2_ice_PCM(ig,islope,t) > 1.e-3) then
817                        ave = ave + beta_clap_co2/(alpha_clap_co2 - log(vmr_co2_PEM_phys(ig,t)*ps_timeseries(ig,t)/100.))
818                    else
819                        ave = ave + tsurf_PCM_timeseries(ig,islope,t)
820                    endif
821                enddo
822                tsurf_ave(ig,islope) = ave/timelen
823                ! set the surface albedo to be the ice albedo
824                if (latitude_deg(ig) > 0) then
825                   icap = 1
826                else
827                   icap = 2
828                endif
829                albedo(ig,1,islope) = albedice(icap)
830                albedo(ig,2,islope) = albedice(icap)
831                emis(ig,islope) = emisice(icap)
832            endif
833        enddo
834    enddo
835
836    do t = 1,timelen
837        tsurf_PCM_timeseries(:,:,t) = tsurf_PCM_timeseries(:,:,t) + tsurf_ave - Tsurfavg_before_saved
838    enddo
839    ! for the start
840    do ig = 1,ngrid
841        do islope = 1,nslope
842            tsurf(ig,islope) =  tsurf(ig,islope) - (Tsurfavg_before_saved(ig,islope) - tsurf_ave(ig,islope))
843        enddo
844    enddo
845
846    if (soil_pem) then
847
848! II_d.2 Update soil temperature
849        allocate(TI_locslope(ngrid,nsoilmx_PEM))
850        allocate(Tsoil_locslope(ngrid,nsoilmx_PEM))
851        allocate(Tsurf_locslope(ngrid))
852        write(*,*)"Updating soil temperature"
853
854        ! Soil averaged
855        do islope = 1,nslope
856            TI_locslope = TI_PEM(:,:,islope)
857            do t = 1,timelen
858                Tsoil_locslope = tsoil_phys_PEM_timeseries(:,:,islope,t)
859                Tsurf_locslope = tsurf_PCM_timeseries(:,islope,t)
860                call compute_tsoil_pem(ngrid,nsoilmx_PEM,.true.,TI_locslope,timestep/timelen,Tsurf_locslope,Tsoil_locslope)
861                call compute_tsoil_pem(ngrid,nsoilmx_PEM,.false.,TI_locslope,timestep/timelen,Tsurf_locslope,Tsoil_locslope)
862                tsoil_phys_PEM_timeseries(:,:,islope,t) = Tsoil_locslope
863                do ig = 1,ngrid
864                    do isoil = 1,nsoilmx_PEM
865                        watersoil_density_PEM_timeseries(ig,isoil,islope,t) = exp(beta_clap_h2o/Tsoil_locslope(ig,isoil) + alpha_clap_h2o)/Tsoil_locslope(ig,isoil)*mmol(igcm_h2o_vap)/(mugaz*r)
866                        if (isnan(Tsoil_locslope(ig,isoil))) call abort_pem("PEM - Update Tsoil","NaN detected in Tsoil ",1)
867                    enddo
868                enddo
869            enddo
870        enddo
871        tsoil_PEM = sum(tsoil_phys_PEM_timeseries,4)/timelen
872        watersoil_density_PEM_ave = sum(watersoil_density_PEM_timeseries,4)/timelen
873
874        write(*,*) "Update of soil temperature done"
875
876        deallocate(TI_locslope,Tsoil_locslope,Tsurf_locslope)
877
878! II_d.3 Update the ice table
879        if (icetable_equilibrium) then
880            write(*,*) "Compute ice table"
881            porefillingice_thickness_prev_iter = porefillingice_thickness
882            call computeice_table_equilibrium(ngrid,nslope,nsoilmx_PEM,watercaptag,watersurf_density_ave,watersoil_density_PEM_ave,TI_PEM(:,1,:),porefillingice_depth,porefillingice_thickness)
883            call compute_massh2o_exchange_ssi(ngrid,nslope,nsoilmx_PEM,porefillingice_thickness_prev_iter,porefillingice_thickness,porefillingice_depth,tsurf_ave, tsoil_PEM,delta_h2o_icetablesublim) ! Mass of H2O exchange between the ssi and the atmosphere
884        endif
885! II_d.4 Update the soil thermal properties
886        call update_soil_thermalproperties(ngrid,nslope,nsoilmx_PEM,tend_h2o_ice,h2o_ice,global_avg_press_new,porefillingice_depth,porefillingice_thickness,TI_PEM)
887
888! II_d.5 Update the mass of the regolith adsorbed
889        if (adsorption_pem) then
890            call regolith_adsorption(ngrid,nslope,nsoilmx_PEM,timelen,tend_h2o_ice,tend_co2_ice,                   &
891                                     h2o_ice,co2_ice,tsoil_PEM,TI_PEM,ps_timeseries,q_co2_PEM_phys,q_h2o_PEM_phys, &
892                                     h2o_adsorbded_phys,delta_h2o_adsorbded,co2_adsorbded_phys,delta_co2_adsorbded)
893
894            totmassco2_adsorbded = 0.
895            totmassh2o_adsorbded = 0.
896            do ig = 1,ngrid
897                do islope =1, nslope
898                    do l = 1,nsoilmx_PEM
899                        if (l==1) then
900                            totmassco2_adsorbded = totmassco2_adsorbded + co2_adsorbded_phys(ig,l,islope)*(layer_PEM(l))* &
901                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
902                            totmassh2o_adsorbded = totmassh2o_adsorbded + h2o_adsorbded_phys(ig,l,islope)*(layer_PEM(l))* &
903                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
904                        else
905                            totmassco2_adsorbded = totmassco2_adsorbded + co2_adsorbded_phys(ig,l,islope)*(layer_PEM(l) - layer_PEM(l-1))* &
906                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
907                            totmassh2o_adsorbded = totmassh2o_adsorbded + h2o_adsorbded_phys(ig,l,islope)*(layer_PEM(l) - layer_PEM(l-1))* &
908                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
909                        endif
910                    enddo
911                enddo
912            enddo
913            write(*,*) "Tot mass of CO2 in the regolith=", totmassco2_adsorbded
914            write(*,*) "Tot mass of H2O in the regolith=", totmassh2o_adsorbded
915        endif
916    endif !soil_pem
917
918!------------------------
919! II  Run
920!    II_e Outputs
921!------------------------
922    call writediagpem(ngrid,'ps_ave','Global average pressure','Pa',0,(/global_avg_press_new/))
923    do islope = 1,nslope
924        write(str2(1:2),'(i2.2)') islope
925        call writediagpem(ngrid,'h2o_ice_slope'//str2,'H2O ice','kg.m-2',2,h2o_ice(:,islope))
926        call writediagpem(ngrid,'co2_ice_slope'//str2,'CO2 ice','kg.m-2',2,co2_ice(:,islope))
927        call writediagpem(ngrid,'tend_h2o_ice_slope'//str2,'H2O ice tend','kg.m-2.year-1',2,tend_h2o_ice(:,islope))
928        call writediagpem(ngrid,'tend_co2_ice_slope'//str2,'CO2 ice tend','kg.m-2.year-1',2,tend_co2_ice(:,islope))
929        call writediagpem(ngrid,'Flow_co2ice_slope'//str2,'CO2 ice flow','Boolean',2,flag_co2flow(:,islope))
930        call writediagpem(ngrid,'tsurf_slope'//str2,'tsurf','K',2,tsurf(:,islope))
931        if(icetable_equilibrium) then
932            call writediagpem(ngrid,'ssi_depth_slope'//str2,'ice table depth','m',2,porefillingice_depth(:,islope))
933            call writediagpem(ngrid,'ssi_thick_slope'//str2,'ice table depth','m',2,porefillingice_thickness(:,islope))
934        endif
935        if(soil_pem) then
936            call writediagsoilpem(ngrid,'tsoil_PEM_slope'//str2,'tsoil_PEM','K',3,tsoil_PEM(:,:,islope))
937            call writediagsoilpem(ngrid,'inertiesoil_PEM_slope'//str2,'TI_PEM','K',3,TI_PEM(:,:,islope))
938            if (adsorption_pem) then
939                call writediagsoilpem(ngrid,'co2_ads_slope'//str2,'co2_ads','K',3,co2_adsorbded_phys(:,:,islope))
940                call writediagsoilpem(ngrid,'h2o_ads_slope'//str2,'h2o_ads','K',3,h2o_adsorbded_phys(:,:,islope))
941            endif                       
942        endif
943    enddo
944
945!------------------------
946! II  Run
947!    II_f Update the tendencies
948!------------------------
949    call recomp_tend_co2_slope(ngrid,nslope,timelen,tend_co2_ice,tend_co2_ice_ini,co2_ice,emis,vmr_co2_PCM,vmr_co2_PEM_phys,ps_timeseries, &
950                               global_avg_press_PCM,global_avg_press_new)
951
952!------------------------
953! II  Run
954!    II_g Checking the stopping criterion
955!------------------------
956    call stopping_crit_h2o_ice(cell_area,h2o_surf_ini,h2o_ice,stopPEM,ngrid)
957    call stopping_crit_co2(cell_area,co2_surf_ini,co2_ice,stopPEM,ngrid,global_avg_press_PCM,global_avg_press_new,nslope)
958
959    year_iter = year_iter + dt_pem
960    i_myear = i_myear + dt_pem
961
962    write(*,*) "Checking the stopping criteria..."
963    if (year_iter >= year_iter_max) stopPEM = 5
964    if (i_myear >= n_myear) stopPEM = 6
965    if (stopPEM > 0) then
966        select case (stopPEM)
967            case(1)
968                write(*,*) "STOPPING because surface of h2o ice sublimating is too low:", stopPEM, "See message above."
969            case(2)
970                write(*,*) "STOPPING because tendencies on h2o ice = 0:", stopPEM, "See message above."
971            case(3)
972                write(*,*) "STOPPING because surface of co2 ice sublimating is too low:", stopPEM, "See message above."
973            case(4)
974                write(*,*) "STOPPING because surface global pressure changed too much:", stopPEM, "See message above."
975            case(5)
976                write(*,*) "STOPPING because maximum number of iterations due to orbital parameters is reached:", stopPEM
977            case(6)
978                write(*,*) "STOPPING because maximum number of Martian years to be simulated is reached:", stopPEM
979            case default
980                write(*,*) "STOPPING with unknown stopping criterion code:", stopPEM
981        end select
982        exit
983    else
984        write(*,*) "The PEM can continue!"
985        write(*,*) "Number of iterations of the PEM: year_iter =", year_iter
986        write(*,*) "Number of simulated Martian years: i_myear =", i_myear
987    endif
988
989    global_avg_press_old = global_avg_press_new
990
991enddo ! big time iteration loop of the pem
992!------------------------------ END RUN --------------------------------
993
994!------------------------------- OUTPUT --------------------------------
995!------------------------
996! III Output
997!    III_a Update surface value for the PCM start files
998!------------------------
999! III_a.1 Ice update (for startfi)
1000
1001watercap = 0.
1002perennial_co2ice = co2_ice
1003do ig = 1,ngrid
1004    ! H2O ice metamorphism
1005    if (metam_h2oice .and. sum(qsurf(ig,igcm_h2o_ice,:)*subslope_dist(ig,:)/cos(pi*def_slope_mean(:)/180.)) > metam_h2oice_threshold) then
1006        h2o_ice(ig,:) = h2o_ice(ig,:) + qsurf(ig,igcm_h2o_ice,:) - metam_h2oice_threshold
1007        qsurf(ig,igcm_h2o_ice,:) = metam_h2oice_threshold
1008    endif
1009
1010    ! Is H2O ice still considered as an infinite reservoir for the PCM?
1011    if (sum(h2o_ice(ig,:)*subslope_dist(ig,:)/cos(pi*def_slope_mean(:)/180.)) > inf_h2oice_threshold) then
1012        ! There is enough ice to be considered as an infinite reservoir
1013        watercaptag(ig) = .true.
1014    else
1015        ! There too little ice to be considered as an infinite reservoir so ice is transferred to the frost
1016        watercaptag(ig) = .false.
1017        qsurf(ig,igcm_h2o_ice,:) = qsurf(ig,igcm_h2o_ice,:) + h2o_ice(ig,:)
1018        h2o_ice(ig,:) = 0.
1019    endif
1020
1021    ! CO2 ice metamorphism
1022    if (metam_co2ice .and. sum(qsurf(ig,igcm_co2,:)*subslope_dist(ig,:)/cos(pi*def_slope_mean(:)/180.)) > metam_co2ice_threshold) then
1023        perennial_co2ice(ig,:) = perennial_co2ice(ig,:) + qsurf(ig,igcm_co2,:) - metam_co2ice_threshold
1024        qsurf(ig,igcm_co2,:) = metam_co2ice_threshold
1025    endif
1026enddo
1027
1028! III_a.2  Tsoil update (for startfi)
1029if (soil_pem) then
1030    call interpol_TI_PEM2PCM(ngrid,nslope,nsoilmx_PEM,nsoilmx,TI_PEM,inertiesoil)
1031    tsoil = tsoil_PEM(:,1:nsoilmx,:) + tsoil_anom
1032    deallocate(tsoil_anom)
1033#ifndef CPP_STD
1034    flux_geo = fluxgeo
1035#endif
1036endif
1037
1038! III_a.4 Pressure (for start)
1039ps = ps*global_avg_press_new/global_avg_press_PCM
1040ps_start_PCM = ps_start_PCM*global_avg_press_new/global_avg_press_PCM
1041
1042! III_a.5 Tracer (for start)
1043allocate(zplev_new(ngrid,nlayer + 1))
1044
1045do l = 1,nlayer + 1
1046    zplev_new(:,l) = ap(l) + bp(l)*ps_start_PCM
1047enddo
1048
1049do nnq = 1,nqtot
1050    if (noms(nnq) /= "co2") then
1051        do l = 1,llm - 1
1052            do ig = 1,ngrid
1053                q(ig,l,nnq) = q(ig,l,nnq)*(zplev_PCM(ig,l) - zplev_PCM(ig,l + 1))/(zplev_new(ig,l) - zplev_new(ig,l + 1))
1054            enddo
1055            q(:,llm,nnq) = q(:,llm - 1,nnq)
1056        enddo
1057    else
1058        do l = 1,llm - 1
1059            do ig = 1,ngrid
1060                q(ig,l,nnq) = q(ig,l,nnq)*(zplev_PCM(ig,l) - zplev_PCM(ig,l + 1))/(zplev_new(ig,l) - zplev_new(ig,l + 1)) &
1061                              + ((zplev_new(ig,l) - zplev_new(ig,l + 1)) - (zplev_PCM(ig,l) - zplev_PCM(ig,l + 1)))/(zplev_new(ig,l) - zplev_new(ig,l + 1))
1062            enddo
1063            q(:,llm,nnq) = q(:,llm - 1,nnq)
1064        enddo
1065    endif
1066enddo
1067
1068! Conserving the tracers mass for PCM start files
1069do nnq = 1,nqtot
1070    do ig = 1,ngrid
1071        do l = 1,llm - 1
1072            if (q(ig,l,nnq) > 1 .and. (noms(nnq) /= "dust_number") .and. (noms(nnq) /= "ccn_number") .and. (noms(nnq) /= "stormdust_number") .and. (noms(nnq) /= "topdust_number")) then
1073                extra_mass = (q(ig,l,nnq) - 1)*(zplev_new(ig,l) - zplev_new(ig,l + 1))
1074                q(ig,l,nnq) = 1.
1075                q(ig,l + 1,nnq) = q(ig,l + 1,nnq) + extra_mass*(zplev_new(ig,l + 1) - zplev_new(ig,l + 2))
1076                write(*,*) 'extra ',noms(nnq),extra_mass, noms(nnq) /= "dust_number",noms(nnq) /= "ccn_number"
1077           endif
1078            if (q(ig,l,nnq) < 0) q(ig,l,nnq) = 1.e-30
1079        enddo
1080    enddo
1081enddo
1082
1083if (evol_orbit_pem) call recomp_orb_param(i_myear,year_iter)
1084
1085!------------------------
1086! III Output
1087!    III_b Write "restart.nc" and "restartfi.nc"
1088!------------------------
1089! III_b.1 Write "restart.nc"
1090ptimestep = iphysiq*daysec/real(day_step)/nsplit_phys ! dtphys/nsplit_phys
1091pday = day_ini
1092ztime_fin = time_phys
1093
1094allocate(p(ip1jmp1,nlayer + 1))
1095#ifndef CPP_1D
1096    call pression (ip1jmp1,ap,bp,ps,p)
1097    call massdair(p,masse)
1098    call dynredem0("restart.nc",day_ini,phis)
1099    call dynredem1("restart.nc",time_0,vcov,ucov,teta,q,masse,ps)
1100    write(*,*) "restart.nc has been written"
1101#else
1102    call writerestart1D('restart1D_evol.txt',ps(1),tsurf(1,:),nlayer,size(tsurf,2),teta,ucov,vcov,nq,noms,qsurf(1,:,:),q)
1103    write(*,*) "restart1D_evol.txt has been written"
1104#endif
1105
1106! III_b.2 Write the "restartfi.nc"
1107#ifndef CPP_STD
1108    call physdem0("restartfi.nc",longitude,latitude,nsoilmx,ngrid, &
1109                  nlayer,nq,ptimestep,pday,0.,cell_area,albedodat,      &
1110                  inertiedat,def_slope,subslope_dist)
1111    call physdem1("restartfi.nc",nsoilmx,ngrid,nlayer,nq,nqsoil, &
1112                  ptimestep,ztime_fin,tsurf,tsoil,inertiesoil,        &
1113                  albedo,emis,q2,qsurf,qsoil,tauscaling,totcloudfrac, &
1114                  wstar,watercap,perennial_co2ice)
1115#else
1116    call physdem0("restartfi.nc",longitude,latitude,nsoilmx,ngrid, &
1117                  nlayer,nq,ptimestep,pday,time_phys,cell_area,         &
1118                  albedo_bareground,inertiedat,zmea,zstd,zsig,zgam,zthe)
1119    call physdem1("restartfi.nc",nsoilmx,ngrid,nlayer,nq,nqsoil,  &
1120                  ptimestep,ztime_fin,tsurf,tsoil,emis,q2,qsurf,qsoil, &
1121                  cloudfrac,totcloudfrac,hice,rnat,pctsrf_sic,tslab,   &
1122                  tsea_ice,sea_ice)
1123#endif
1124write(*,*) "restartfi.nc has been written"
1125
1126!------------------------
1127! III Output
1128!    III_c Write the "restartpem.nc"
1129!------------------------
1130if (layering_algo) nb_str_max = get_nb_str_max(stratif,ngrid,nslope) ! Get the maximum number of "stratum" in the stratification (layerings)
1131call pemdem0("restartpem.nc",longitude,latitude,cell_area,ngrid,nslope,def_slope,subslope_dist)
1132call pemdem1("restartpem.nc",i_myear,nsoilmx_PEM,ngrid,nslope,tsoil_PEM, &
1133             TI_PEM,porefillingice_depth,porefillingice_thickness,       &
1134             co2_adsorbded_phys,h2o_adsorbded_phys,h2o_ice,stratif)
1135write(*,*) "restartpem.nc has been written"
1136
1137call info_PEM(year_iter,stopPEM,i_myear,n_myear)
1138
1139write(*,*) "The PEM has run for", year_iter, "Martian years."
1140write(*,*) "The chained simulation has run for", i_myear, "Martian years =", i_myear*convert_years, "Earth years."
1141write(*,*) "The reached date is now", (year_bp_ini + i_myear)*convert_years, "Earth years."
1142write(*,*) "LL & RV & JBC: so far, so good!"
1143
1144if (layering_algo) then
1145    do islope = 1,nslope
1146        do i = 1,ngrid
1147            call del_layering(stratif(i,islope))
1148        enddo
1149    enddo
1150    deallocate(new_str,new_lag1,new_lag2,current1,current2)
1151endif
1152deallocate(vmr_co2_PCM,ps_timeseries,tsurf_PCM_timeseries,q_co2_PEM_phys,q_h2o_PEM_phys)
1153deallocate(co2_ice_PCM,watersurf_density_ave,watersoil_density_timeseries,Tsurfavg_before_saved)
1154deallocate(tsoil_phys_PEM_timeseries,watersoil_density_PEM_timeseries,watersoil_density_PEM_ave)
1155deallocate(delta_co2_adsorbded,delta_h2o_adsorbded,vmr_co2_PEM_phys,delta_h2o_icetablesublim,porefillingice_thickness_prev_iter)
1156deallocate(co2_ice_ini,stratif)
1157!----------------------------- END OUTPUT ------------------------------
1158
1159END PROGRAM pem
Note: See TracBrowser for help on using the repository browser.