1 | !------------------------ |
---|
2 | ! I Initialization |
---|
3 | ! I_a READ run.def |
---|
4 | ! I_b READ of start_evol.nc and starfi_evol.nc |
---|
5 | ! I_c Subslope parametrisation |
---|
6 | ! I_d READ GCM data and convert to the physical grid |
---|
7 | ! I_e Initialization of the PEM variable and soil |
---|
8 | ! I_f Compute tendencies & Save initial situation |
---|
9 | ! I_g Save initial PCM situation |
---|
10 | ! I_h Read the PEMstart |
---|
11 | ! I_i Compute orbit criterion |
---|
12 | |
---|
13 | ! II Run |
---|
14 | ! II_a Update pressure, ice and tracers |
---|
15 | ! II_b Evolution of the ice |
---|
16 | ! II_c CO2 & H2O glaciers flows |
---|
17 | ! II_d Update surface and soil temperatures |
---|
18 | ! II_e Update the tendencies |
---|
19 | ! II_f Checking the stopping criterion |
---|
20 | |
---|
21 | ! III Output |
---|
22 | ! III_a Update surface value for the PCM start files |
---|
23 | ! III_b Write restart_evol.nc and restartfi_evol.nc |
---|
24 | ! III_c Write restartfi_PEM.nc |
---|
25 | !------------------------ |
---|
26 | |
---|
27 | PROGRAM pem |
---|
28 | |
---|
29 | use phyetat0_mod, only: phyetat0 |
---|
30 | use phyredem, only: physdem0, physdem1 |
---|
31 | use netcdf, only: nf90_open, NF90_NOWRITE, nf90_get_var, nf90_inq_varid, nf90_close |
---|
32 | use turb_mod, only: q2, wstar |
---|
33 | use comslope_mod, only: nslope, def_slope, def_slope_mean, subslope_dist, iflat, major_slope, ini_comslope_h |
---|
34 | use logic_mod, only: iflag_phys |
---|
35 | use mod_const_mpi, only: COMM_LMDZ |
---|
36 | use comconst_mod, only: rad, g, cpp, pi |
---|
37 | use infotrac |
---|
38 | use geometry_mod, only: latitude_deg |
---|
39 | use conf_pem_mod, only: conf_pem |
---|
40 | use pemredem, only: pemdem0, pemdem1 |
---|
41 | use glaciers_mod, only: co2glaciers_evol, h2oglaciers_evol, co2glaciersflow, h2oglaciersflow |
---|
42 | use criterion_pem_stop_mod, only: criterion_waterice_stop, criterion_co2_stop |
---|
43 | use constants_marspem_mod, only: alpha_clap_co2, beta_clap_co2, alpha_clap_h2o, beta_clap_h2o, m_co2, & |
---|
44 | m_noco2, threshold_water_frost2perenial, threshold_co2_frost2perenial |
---|
45 | use evol_co2_ice_s_mod, only: evol_co2_ice_s |
---|
46 | use evol_h2o_ice_s_mod, only: evol_h2o_ice_s |
---|
47 | use comsoil_h_PEM, only: soil_pem, ini_comsoil_h_PEM, end_comsoil_h_PEM, nsoilmx_PEM, & |
---|
48 | TI_PEM, inertiedat_PEM, & ! soil thermal inertia |
---|
49 | tsoil_PEM, mlayer_PEM, layer_PEM, & ! Soil temp, number of subsurface layers, soil mid layer depths |
---|
50 | fluxgeo, & ! Geothermal flux for the PEM and GCM |
---|
51 | water_reservoir ! Water ressources |
---|
52 | use adsorption_mod, only: regolith_adsorption, adsorption_pem, & ! Bool to check if adsorption, main subroutine |
---|
53 | ini_adsorption_h_PEM, end_adsorption_h_PEM, & ! Allocate arrays |
---|
54 | co2_adsorbded_phys, h2o_adsorbded_phys ! Mass of co2 and h2O adsorbded |
---|
55 | use time_evol_mod, only: dt_pem, evol_orbit_pem, Max_iter_pem, convert_years, year_bp_ini |
---|
56 | use orbit_param_criterion_mod, only: orbit_param_criterion |
---|
57 | use recomp_orb_param_mod, only: recomp_orb_param |
---|
58 | use ice_table_mod, only: porefillingice_depth, porefillingice_thickness, end_ice_table_porefilling, & |
---|
59 | ini_ice_table_porefilling, computeice_table_equilibrium,compute_massh2o_exchange_ssi |
---|
60 | use soil_thermalproperties_mod, only: update_soil_thermalproperties |
---|
61 | use time_phylmdz_mod, only: daysec, dtphys, day_end |
---|
62 | |
---|
63 | #ifndef CPP_STD |
---|
64 | use comsoil_h, only: tsoil, nsoilmx, ini_comsoil_h, inertiedat, mlayer, volcapa, inertiesoil |
---|
65 | use surfdat_h, only: tsurf, emis, qsurf, watercap, ini_surfdat_h, & |
---|
66 | albedodat, zmea, zstd, zsig, zgam, zthe, & |
---|
67 | hmons, summit, base,albedo_h2o_frost, & |
---|
68 | frost_albedo_threshold, emissiv, watercaptag, perenial_co2ice, & |
---|
69 | emisice, albedice |
---|
70 | use dimradmars_mod, only: totcloudfrac, albedo |
---|
71 | use dust_param_mod, only: tauscaling |
---|
72 | use tracer_mod, only: noms,igcm_h2o_ice, igcm_co2, mmol, igcm_h2o_vap ! Tracer names and molar masses |
---|
73 | use mod_phys_lmdz_para, only: is_parallel, is_sequential, is_mpi_root, is_omp_root, is_master |
---|
74 | use planete_h, only: aphelie, periheli, year_day, peri_day, obliquit |
---|
75 | use comcstfi_h, only: r, mugaz |
---|
76 | use paleoclimate_mod, only: albedo_perenialco2 |
---|
77 | #else |
---|
78 | use tracer_h, only: noms, igcm_h2o_ice, igcm_co2 ! Tracer names |
---|
79 | use phys_state_var_mod, only: cloudfrac, totcloudfrac, albedo_snow_SPECTV,HICE,RNAT, & |
---|
80 | PCTSRF_SIC, TSLAB, TSEA_ICE, SEA_ICE, ALBEDO_BAREGROUND, & |
---|
81 | ALBEDO_CO2_ICE_SPECTV, phys_state_var_init |
---|
82 | use aerosol_mod, only: iniaerosol |
---|
83 | use planete_mod, only: apoastr, periastr, year_day, peri_day, obliquit |
---|
84 | use comcstfi_mod, only: r, mugaz |
---|
85 | #endif |
---|
86 | |
---|
87 | #ifndef CPP_1D |
---|
88 | use iniphysiq_mod, only: iniphysiq |
---|
89 | use control_mod, only: iphysiq, day_step, nsplit_phys |
---|
90 | #else |
---|
91 | use time_phylmdz_mod, only: iphysiq, day_step |
---|
92 | #endif |
---|
93 | |
---|
94 | #ifdef CPP_1D |
---|
95 | use regular_lonlat_mod, only: init_regular_lonlat |
---|
96 | use physics_distribution_mod, only: init_physics_distribution |
---|
97 | use mod_grid_phy_lmdz, only: regular_lonlat |
---|
98 | use init_phys_1d_mod, only: init_phys_1d |
---|
99 | #endif |
---|
100 | |
---|
101 | IMPLICIT NONE |
---|
102 | |
---|
103 | include "dimensions.h" |
---|
104 | include "paramet.h" |
---|
105 | include "comgeom.h" |
---|
106 | include "iniprint.h" |
---|
107 | include "callkeys.h" |
---|
108 | |
---|
109 | integer ngridmx |
---|
110 | parameter(ngridmx = 2 + (jjm - 1)*iim - 1/jjm) |
---|
111 | |
---|
112 | ! Same variable names as in the GCM |
---|
113 | integer :: ngrid ! Number of physical grid points |
---|
114 | integer :: nlayer ! Number of vertical layer |
---|
115 | integer :: nq ! Number of tracer |
---|
116 | integer :: day_ini ! First day of the simulation |
---|
117 | real :: pday ! Physical day |
---|
118 | real :: time_phys ! Same as GCM |
---|
119 | real :: ptimestep ! Same as GCM |
---|
120 | real :: ztime_fin ! Same as GCM |
---|
121 | |
---|
122 | ! Variables to read start.nc |
---|
123 | character(len = *), parameter :: FILE_NAME_start = "start_evol.nc" ! Name of the file used for initialsing the PEM |
---|
124 | |
---|
125 | ! Dynamic variables |
---|
126 | real :: vcov(ip1jm,llm), ucov(ip1jmp1,llm) ! vents covariants |
---|
127 | real :: teta(ip1jmp1,llm) ! temperature potentielle |
---|
128 | real, dimension(:,:,:), allocatable :: q ! champs advectes |
---|
129 | real :: ps(ip1jmp1) ! pression au sol |
---|
130 | real, dimension(:), allocatable :: ps_start_GCM !(ngrid) pression au sol |
---|
131 | real, dimension(:,:), allocatable :: ps_timeseries !(ngrid x timelen) ! pression au sol instantannées |
---|
132 | real :: masse(ip1jmp1,llm) ! masse d'air |
---|
133 | real :: phis(ip1jmp1) ! geopotentiel au sol |
---|
134 | real :: time_0 |
---|
135 | |
---|
136 | ! Variables to read starfi.nc |
---|
137 | character (len = *), parameter :: FILE_NAME = "startfi_evol.nc" !Name of the file used for initialsing the PEM |
---|
138 | character*2 str2 |
---|
139 | integer :: ncid, varid,status ! Variable for handling opening of files |
---|
140 | integer :: phydimid, subdimid, nlayerdimid, nqdimid ! Variable ID for Netcdf files |
---|
141 | integer :: lonvarid, latvarid, areavarid, sdvarid ! Variable ID for Netcdf files |
---|
142 | integer :: apvarid, bpvarid ! Variable ID for Netcdf files |
---|
143 | |
---|
144 | ! Variables to read starfi.nc and write restartfi.nc |
---|
145 | real, dimension(:), allocatable :: longitude ! Longitude read in FILE_NAME and written in restartfi |
---|
146 | real, dimension(:), allocatable :: latitude ! Latitude read in FILE_NAME and written in restartfi |
---|
147 | real, dimension(:), allocatable :: ap ! Coefficient ap read in FILE_NAME_start and written in restart |
---|
148 | real, dimension(:), allocatable :: bp ! Coefficient bp read in FILE_NAME_start and written in restart |
---|
149 | real, dimension(:), allocatable :: cell_area ! Cell_area read in FILE_NAME and written in restartfi |
---|
150 | real :: Total_surface ! Total surface of the planet |
---|
151 | |
---|
152 | ! Variables for h2o_ice evolution |
---|
153 | real :: ini_surf_h2o ! Initial surface of sublimating h2o ice |
---|
154 | real :: ini_surf_co2 ! Initial surface of sublimating co2 ice |
---|
155 | real :: global_ave_press_GCM ! constant: global average pressure retrieved in the GCM [Pa] |
---|
156 | real :: global_ave_press_old ! constant: Global average pressure of initial/previous time step |
---|
157 | real :: global_ave_press_new ! constant: Global average pressure of current time step |
---|
158 | real, dimension(:,:), allocatable :: zplev_new ! Physical x Atmospheric field : mass of the atmospheric layers in the pem at current time step [kg/m^2] |
---|
159 | real, dimension(:,:), allocatable :: zplev_gcm ! same but retrieved from the gcm [kg/m^2] |
---|
160 | real, dimension(:,:,:), allocatable :: zplev_new_timeseries ! Physical x Atmospheric x Time: same as zplev_new, but in times series [kg/m ^2] |
---|
161 | real, dimension(:,:,:), allocatable :: zplev_old_timeseries ! same but with the time series, for oldest time step |
---|
162 | logical :: STOPPING_water ! Logical : is the criterion (% of change in the surface of sublimating water ice) reached? |
---|
163 | logical :: STOPPING_1_water ! Logical : is there still water ice to sublimate? |
---|
164 | logical :: STOPPING_co2 ! Logical : is the criterion (% of change in the surface of sublimating water ice) reached? |
---|
165 | logical :: STOPPING_pressure ! Logical : is the criterion (% of change in the surface pressure) reached? |
---|
166 | integer :: criterion_stop ! which criterion is reached ? 1= h2o ice surf, 2 = co2 ice surf, 3 = ps, 4 = orb param |
---|
167 | real, save :: A , B, mmean ! Molar mass: intermediate A, B for computations of the mean molar mass of the layer [mol/kg] |
---|
168 | real, allocatable :: vmr_co2_gcm(:,:) ! Physics x Times co2 volume mixing ratio retrieve from the gcm [m^3/m^3] |
---|
169 | real, allocatable :: vmr_co2_pem_phys(:,:) ! Physics x Times co2 volume mixing ratio used in the PEM |
---|
170 | real, allocatable :: q_co2_PEM_phys(:,:) ! Physics x Times co2 mass mixing ratio in the first layer computed in the PEM, first value comes from GCM [kg/kg] |
---|
171 | real, allocatable :: q_h2o_PEM_phys(:,:) ! Physics x Times: h2o mass mixing ratio computed in the PEM, first value comes from GCM [kg/kg] |
---|
172 | integer :: timelen ! # time samples |
---|
173 | real :: ave ! intermediate varibale to compute average |
---|
174 | real, allocatable :: p(:,:) ! Physics x Atmosphere: pressure to recompute and write in restart (ngrid,llmp1) |
---|
175 | real :: extra_mass ! Intermediate variables Extra mass of a tracer if it is greater than 1 |
---|
176 | |
---|
177 | ! Variables for slopes |
---|
178 | real, dimension(:,:), allocatable :: min_co2_ice_1 ! ngrid field : minimum of co2 ice at each point for the first year [kg/m^2] |
---|
179 | real, dimension(:,:), allocatable :: min_co2_ice_2 ! ngrid field : minimum of co2 ice at each point for the second year [kg/m^2] |
---|
180 | real, dimension(:,:), allocatable :: min_h2o_ice_1 ! ngrid field : minimum of water ice at each point for the first year [kg/m^2] |
---|
181 | real, dimension(:,:), allocatable :: min_h2o_ice_2 ! ngrid field : minimum of water ice at each point for the second year [kg/m^2] |
---|
182 | real, dimension(:,:,:), allocatable :: co2_ice_GCM ! Physics x NSLOPE x Times field : co2 ice given by the GCM [kg/m^2] |
---|
183 | real, dimension(:,:), allocatable :: initial_co2_ice_sublim ! physical point field : Logical array indicating sublimating point of co2 ice |
---|
184 | real, dimension(:,:), allocatable :: initial_h2o_ice ! physical point field : Logical array indicating if there is water ice at initial state |
---|
185 | real, dimension(:,:), allocatable :: initial_co2_ice ! physical point field : Logical array indicating if there is co2 ice at initial state |
---|
186 | real, dimension(:,:), allocatable :: tendencies_co2_ice ! physical point xslope field : Tendency of evolution of perenial co2 ice over a year |
---|
187 | real, dimension(:,:), allocatable :: tendencies_co2_ice_ini ! physical point x slope field x nslope: Tendency of evolution of perenial co2 ice over a year in the GCM |
---|
188 | real, dimension(:,:), allocatable :: tendencies_h2o_ice ! physical pointx slope field : Tendency of evolution of perenial h2o ice |
---|
189 | real, dimension(:,:), allocatable :: flag_co2flow(:,:) ! (ngrid,nslope): Flag where there is a CO2 glacier flow |
---|
190 | real, dimension(:), allocatable :: flag_co2flow_mesh(:) ! (ngrid) : Flag where there is a CO2 glacier flow |
---|
191 | real, dimension(:,:), allocatable :: flag_h2oflow(:,:) ! (ngrid,nslope): Flag where there is a H2O glacier flow |
---|
192 | real, dimension(:), allocatable :: flag_h2oflow_mesh(:) ! (ngrid) : Flag where there is a H2O glacier flow |
---|
193 | |
---|
194 | ! Variables for surface and soil |
---|
195 | real, allocatable :: tsurf_ave(:,:) ! Physic x SLOPE field : Averaged Surface Temperature [K] |
---|
196 | real, allocatable :: tsoil_ave(:,:,:) ! Physic x SOIL x SLOPE field : Averaged Soil Temperature [K] |
---|
197 | real, allocatable :: tsurf_GCM_timeseries(:,:,:) ! ngrid x SLOPE XTULES field : Surface Temperature in timeseries [K] |
---|
198 | real, allocatable :: tsoil_phys_PEM_timeseries(:,:,:,:) ! IG x SLOPE XTULES field : NOn averaged Soil Temperature [K] |
---|
199 | real, allocatable :: tsoil_GCM_timeseries(:,:,:,:) ! IG x SLOPE XTULES field : NOn averaged Soil Temperature [K] |
---|
200 | real, allocatable :: tsurf_ave_yr1(:,:) ! Physic x SLOPE field : Averaged Surface Temperature of first call of the gcm [K] |
---|
201 | real, allocatable :: TI_locslope(:,:) ! Physic x Soil: Intermediate thermal inertia to compute Tsoil [SI] |
---|
202 | real, allocatable :: Tsoil_locslope(:,:) ! Physic x Soil: intermediate when computing Tsoil [K] |
---|
203 | real, allocatable :: Tsurf_locslope(:) ! Physic x Soil: Intermediate surface temperature to compute Tsoil [K] |
---|
204 | real, allocatable :: watersoil_density_timeseries(:,:,:,:) ! Physic x Soil x Slope x Times water soil density, time series [kg /m^3] |
---|
205 | real, allocatable :: watersurf_density_ave(:,:) ! Physic x Slope, water surface density, yearly averaged [kg/m^3] |
---|
206 | real, allocatable :: watersoil_density_PEM_timeseries(:,:,:,:) ! Physic x Soil x Slope x Times, water soil density, time series [kg/m^3] |
---|
207 | real, allocatable :: watersoil_density_PEM_ave(:,:,:) ! Physic x Soil x SLopes, water soil density, yearly averaged [kg/m^3] |
---|
208 | real, allocatable :: Tsurfave_before_saved(:,:) ! Surface temperature saved from previous time step [K] |
---|
209 | real, allocatable :: delta_co2_adsorbded(:) ! Physics: quantity of CO2 that is exchanged because of adsorption / desorption [kg/m^2] |
---|
210 | real, allocatable :: delta_h2o_adsorbded(:) ! Physics: quantity of H2O that is exchanged because of adsorption / desorption [kg/m^2] |
---|
211 | real :: totmassco2_adsorbded ! Total mass of CO2 that is exchanged because of adsorption / desoprtion over the planets [kg] |
---|
212 | real :: totmassh2o_adsorbded ! Total mass of H2O that is exchanged because of adsorption / desoprtion over the planets [kg] |
---|
213 | logical :: bool_sublim ! logical to check if there is sublimation or not |
---|
214 | real,allocatable :: porefillingice_thickness_prev_iter(:,:) ! ngrid x nslope: Thickness of the ice table at the previous iteration [m] |
---|
215 | real,allocatable :: delta_h2o_icetablesublim(:) ! ngrid x Total mass of the H2O that has sublimated / condenses from the ice table [kg] |
---|
216 | ! Some variables for the PEM run |
---|
217 | real, parameter :: year_step = 1 ! timestep for the pem |
---|
218 | integer :: year_iter ! number of iteration |
---|
219 | integer :: year_iter_max ! maximum number of iterations before stopping |
---|
220 | integer :: i_myear ! Global number of Martian years of the chained simulations |
---|
221 | integer :: n_myear ! Maximum number of Martian years of the chained simulations |
---|
222 | real :: timestep ! timestep [s] |
---|
223 | real :: watercap_sum ! total mass of water cap [kg/m^2] |
---|
224 | real :: water_sum ! total mass of water in the mesh [kg/m^2] |
---|
225 | |
---|
226 | #ifdef CPP_STD |
---|
227 | real :: frost_albedo_threshold = 0.05 ! frost albedo threeshold to convert fresh frost to old ice |
---|
228 | real :: albedo_h2o_frost ! albedo of h2o frost |
---|
229 | real, allocatable :: tsurf_read_generic(:) ! Temporary variable to do the subslope transfert dimensiion when reading form generic |
---|
230 | real, allocatable :: qsurf_read_generic(:,:) ! Temporary variable to do the subslope transfert dimensiion when reading form generic |
---|
231 | real, allocatable :: tsoil_read_generic(:,:) ! Temporary variable to do the subslope transfert dimensiion when reading form generic |
---|
232 | real, allocatable :: emis_read_generic(:) ! Temporary variable to do the subslope transfert dimensiion when reading form generic |
---|
233 | real, allocatable :: albedo_read_generic(:,:) ! Temporary variable to do the subslope transfert dimensiion when reading form generic |
---|
234 | real, allocatable :: tsurf(:,:) ! Subslope variable, only needed in the GENERIC case |
---|
235 | real, allocatable :: qsurf(:,:,:) ! Subslope variable, only needed in the GENERIC case |
---|
236 | real, allocatable :: tsoil(:,:,:) ! Subslope variable, only needed in the GENERIC case |
---|
237 | real, allocatable :: emis(:,:) ! Subslope variable, only needed in the GENERIC case |
---|
238 | real, allocatable :: watercap(:,:) ! Subslope variable, only needed in the GENERIC case =0 no watercap in generic model |
---|
239 | logical, allocatable :: WATERCAPTAG(:) ! Subslope variable, only needed in the GENERIC case =false no watercaptag in generic model |
---|
240 | real, allocatable :: albedo(:,:,:) ! Subslope variable, only needed in the GENERIC case |
---|
241 | real, allocatable :: inertiesoil(:,:,:) ! Subslope variable, only needed in the GENERIC case |
---|
242 | #endif |
---|
243 | |
---|
244 | #ifdef CPP_1D |
---|
245 | integer :: nsplit_phys |
---|
246 | integer, parameter :: jjm_value = jjm - 1 |
---|
247 | integer :: ierr |
---|
248 | #else |
---|
249 | integer, parameter :: jjm_value = jjm |
---|
250 | #endif |
---|
251 | |
---|
252 | ! Loop variables |
---|
253 | integer :: i, j, ig0, l, ig, nnq, t, islope, ig_loop, islope_loop, iloop, isoil, icap |
---|
254 | |
---|
255 | ! Parallel variables |
---|
256 | #ifndef CPP_STD |
---|
257 | is_sequential = .true. |
---|
258 | is_parallel = .false. |
---|
259 | is_mpi_root = .true. |
---|
260 | is_omp_root = .true. |
---|
261 | is_master = .true. |
---|
262 | #endif |
---|
263 | |
---|
264 | day_ini = 0 ! test |
---|
265 | time_phys = 0. ! test |
---|
266 | |
---|
267 | ! Some constants |
---|
268 | ngrid = ngridmx |
---|
269 | nlayer = llm |
---|
270 | |
---|
271 | A = (1/m_co2 - 1/m_noco2) |
---|
272 | B = 1/m_noco2 |
---|
273 | |
---|
274 | year_day = 669 |
---|
275 | daysec = 88775. |
---|
276 | timestep = year_day*daysec/year_step |
---|
277 | |
---|
278 | !----------------------------- INITIALIZATION -------------------------- |
---|
279 | !------------------------ |
---|
280 | ! I Initialization |
---|
281 | ! I_a READ run.def |
---|
282 | !------------------------ |
---|
283 | #ifndef CPP_1D |
---|
284 | dtphys = 0 |
---|
285 | call conf_gcm(99,.true.) |
---|
286 | call infotrac_init |
---|
287 | nq = nqtot |
---|
288 | allocate(q(ip1jmp1,llm,nqtot)) |
---|
289 | #else |
---|
290 | ! load tracer names from file 'traceur.def' |
---|
291 | open(90,file = 'traceur.def',status = 'old',form = 'formatted',iostat = ierr) |
---|
292 | if (ierr /= 0) then |
---|
293 | write(*,*) 'Cannot find required file "traceur.def"' |
---|
294 | write(*,*) ' If you want to run with tracers, I need it' |
---|
295 | write(*,*) ' ... might as well stop here ...' |
---|
296 | stop |
---|
297 | else |
---|
298 | write(*,*) "pem1d: Reading file traceur.def" |
---|
299 | ! read number of tracers: |
---|
300 | read(90,*,iostat = ierr) nq |
---|
301 | write(*,*) "nq",nq |
---|
302 | nqtot = nq ! set value of nqtot (in infotrac module) as nq |
---|
303 | if (ierr /= 0) then |
---|
304 | write(*,*) "pem1d: error reading number of tracers" |
---|
305 | write(*,*) " (first line of traceur.def) " |
---|
306 | stop |
---|
307 | endif |
---|
308 | if (nq < 1) then |
---|
309 | write(*,*) "pem1d: error number of tracers" |
---|
310 | write(*,*) "is nq=",nq," but must be >=1!" |
---|
311 | stop |
---|
312 | endif |
---|
313 | endif |
---|
314 | nq = nqtot |
---|
315 | allocate(q(ip1jmp1,llm,nqtot)) |
---|
316 | allocate(ap(nlayer + 1)) |
---|
317 | allocate(bp(nlayer + 1)) |
---|
318 | call init_phys_1d(llm,nqtot,vcov,ucov,teta,q,ps,time_0,ap,bp) |
---|
319 | pi = 2.*asin(1.) |
---|
320 | g = 3.72 |
---|
321 | nsplit_phys = 1 |
---|
322 | #endif |
---|
323 | |
---|
324 | call conf_pem(i_myear,n_myear) |
---|
325 | |
---|
326 | !------------------------ |
---|
327 | ! I Initialization |
---|
328 | ! I_b READ of start_evol.nc and starfi_evol.nc |
---|
329 | !------------------------ |
---|
330 | ! I_b.1 READ start_evol.nc |
---|
331 | allocate(ps_start_GCM(ngrid)) |
---|
332 | #ifndef CPP_1D |
---|
333 | call dynetat0(FILE_NAME_start,vcov,ucov,teta,q,masse,ps,phis,time_0) |
---|
334 | |
---|
335 | call gr_dyn_fi(1,iip1,jjp1,ngridmx,ps,ps_start_GCM) |
---|
336 | |
---|
337 | call iniconst !new |
---|
338 | call inigeom |
---|
339 | |
---|
340 | allocate(ap(nlayer + 1)) |
---|
341 | allocate(bp(nlayer + 1)) |
---|
342 | status = nf90_open(FILE_NAME_start,NF90_NOWRITE,ncid) |
---|
343 | status = nf90_inq_varid(ncid,"ap",apvarid) |
---|
344 | status = nf90_get_var(ncid,apvarid,ap) |
---|
345 | status = nf90_inq_varid(ncid,"bp",bpvarid) |
---|
346 | status = nf90_get_var(ncid,bpvarid,bp) |
---|
347 | status = nf90_close(ncid) |
---|
348 | |
---|
349 | call iniphysiq(iim,jjm,llm,(jjm-1)*iim+2,comm_lmdz,daysec,day_ini,dtphys/nsplit_phys, & |
---|
350 | rlatu,rlatv,rlonu,rlonv,aire,cu,cv,rad,g,r,cpp,iflag_phys) |
---|
351 | #else |
---|
352 | ps_start_GCM(1) = ps(1) |
---|
353 | #endif |
---|
354 | |
---|
355 | ! In the gcm, these values are given to the physic by the dynamic. |
---|
356 | ! Here we simply read them in the startfi_evol.nc file |
---|
357 | status =nf90_open(FILE_NAME, NF90_NOWRITE, ncid) |
---|
358 | |
---|
359 | allocate(longitude(ngrid)) |
---|
360 | allocate(latitude(ngrid)) |
---|
361 | allocate(cell_area(ngrid)) |
---|
362 | |
---|
363 | status = nf90_inq_varid(ncid,"longitude",lonvarid) |
---|
364 | status = nf90_get_var(ncid,lonvarid,longitude) |
---|
365 | |
---|
366 | status = nf90_inq_varid(ncid,"latitude",latvarid) |
---|
367 | status = nf90_get_var(ncid,latvarid,latitude) |
---|
368 | |
---|
369 | status = nf90_inq_varid(ncid,"area",areavarid) |
---|
370 | status = nf90_get_var(ncid,areavarid,cell_area) |
---|
371 | |
---|
372 | status = nf90_inq_varid(ncid,"soildepth",sdvarid) |
---|
373 | status = nf90_get_var(ncid,sdvarid,mlayer) |
---|
374 | |
---|
375 | status = nf90_close(ncid) |
---|
376 | |
---|
377 | ! I_b.2 READ startfi_evol.nc |
---|
378 | ! First we read the initial state (starfi.nc) |
---|
379 | #ifndef CPP_STD |
---|
380 | call phyetat0(FILE_NAME,0,0,nsoilmx,ngrid,nlayer,nq,day_ini,time_phys,tsurf, & |
---|
381 | tsoil,albedo,emis,q2,qsurf,tauscaling,totcloudfrac,wstar, & |
---|
382 | watercap,perenial_co2ice,def_slope,def_slope_mean,subslope_dist) |
---|
383 | |
---|
384 | ! Remove unphysical values of surface tracer |
---|
385 | do i = 1,ngrid |
---|
386 | do nnq = 1,nqtot |
---|
387 | do islope = 1,nslope |
---|
388 | if (qsurf(i,nnq,islope) < 0) qsurf(i,nnq,islope) = 0. |
---|
389 | enddo |
---|
390 | enddo |
---|
391 | enddo |
---|
392 | |
---|
393 | call surfini(ngrid,qsurf) |
---|
394 | #else |
---|
395 | call phys_state_var_init(nq) |
---|
396 | if (.not. allocated(noms)) allocate(noms(nq)) ! (because noms is an argument of physdem1 whether or not tracer is on) |
---|
397 | call initracer(ngrid,nq) |
---|
398 | call iniaerosol() |
---|
399 | allocate(tsurf_read_generic(ngrid)) |
---|
400 | allocate(qsurf_read_generic(ngrid,nq)) |
---|
401 | allocate(tsoil_read_generic(ngrid,nsoilmx)) |
---|
402 | allocate(emis_read_generic(ngrid)) |
---|
403 | allocate(tsurf(ngrid,1)) |
---|
404 | allocate(qsurf(ngrid,nq,1)) |
---|
405 | allocate(tsoil(ngrid,nsoilmx,1)) |
---|
406 | allocate(emis(ngrid,1)) |
---|
407 | allocate(watercap(ngrid,1)) |
---|
408 | allocate(watercaptag(ngrid)) |
---|
409 | allocate(albedo_read_generic(ngrid,2)) |
---|
410 | allocate(albedo(ngrid,2,1)) |
---|
411 | allocate(inertiesoil(ngrid,nsoilmx,1)) |
---|
412 | call phyetat0(.true.,ngrid,nlayer,FILE_NAME,0,0,nsoilmx,nq,day_ini,time_phys, & |
---|
413 | tsurf_read_generic,tsoil_read_generic,emis_read_generic,q2, & |
---|
414 | qsurf_read_generic,cloudfrac,totcloudfrac,hice,rnat,pctsrf_sic, & |
---|
415 | tslab, tsea_ice,sea_ice) |
---|
416 | call surfini(ngrid,nq,qsurf_read_generic,albedo_read_generic,albedo_bareground,albedo_snow_SPECTV,albedo_co2_ice_SPECTV) |
---|
417 | |
---|
418 | nslope = 1 |
---|
419 | call ini_comslope_h(ngrid,1) |
---|
420 | |
---|
421 | qsurf(:,:,1) = qsurf_read_generic(:,:) |
---|
422 | tsurf(:,1) = tsurf_read_generic(:) |
---|
423 | tsoil(:,:,1) = tsoil_read_generic(:,:) |
---|
424 | emis(:,1) = emis_read_generic(:) |
---|
425 | watercap(:,1) = 0. |
---|
426 | watercaptag(:) = .false. |
---|
427 | albedo(:,1,1) = albedo_read_generic(:,1) |
---|
428 | albedo(:,2,1) = albedo_read_generic(:,2) |
---|
429 | inertiesoil(:,:,1) = inertiedat(:,:) |
---|
430 | |
---|
431 | if (nslope == 1) then |
---|
432 | def_slope(1) = 0 |
---|
433 | def_slope(2) = 0 |
---|
434 | def_slope_mean = 0 |
---|
435 | subslope_dist(:,1) = 1. |
---|
436 | endif |
---|
437 | |
---|
438 | ! Remove unphysical values of surface tracer |
---|
439 | do i = 1,ngrid |
---|
440 | do nnq = 1,nqtot |
---|
441 | qsurf(i,nnq,1) = qsurf_read_generic(i,nnq) |
---|
442 | if (qsurf(i,nnq,1) < 0) qsurf(i,nnq,1) = 0. |
---|
443 | enddo |
---|
444 | enddo |
---|
445 | #endif |
---|
446 | |
---|
447 | do nnq = 1,nqtot ! Why not using ini_tracer ? |
---|
448 | if (noms(nnq) == "h2o_ice") igcm_h2o_ice = nnq |
---|
449 | if (noms(nnq) == "h2o_vap") then |
---|
450 | igcm_h2o_vap = nnq |
---|
451 | mmol(igcm_h2o_vap)=18. |
---|
452 | endif |
---|
453 | if (noms(nnq) == "co2") igcm_co2 = nnq |
---|
454 | enddo |
---|
455 | r = 8.314511*1000./mugaz |
---|
456 | |
---|
457 | !------------------------ |
---|
458 | ! I Initialization |
---|
459 | ! I_c Subslope parametrisation |
---|
460 | !------------------------ |
---|
461 | ! Define some slope statistics |
---|
462 | iflat = 1 |
---|
463 | do islope = 2,nslope |
---|
464 | if (abs(def_slope_mean(islope)) < abs(def_slope_mean(iflat))) iflat = islope |
---|
465 | enddo |
---|
466 | |
---|
467 | write(*,*) 'Flat slope for islope = ',iflat |
---|
468 | write(*,*) 'corresponding criterium = ',def_slope_mean(iflat) |
---|
469 | |
---|
470 | allocate(flag_co2flow(ngrid,nslope)) |
---|
471 | allocate(flag_co2flow_mesh(ngrid)) |
---|
472 | allocate(flag_h2oflow(ngrid,nslope)) |
---|
473 | allocate(flag_h2oflow_mesh(ngrid)) |
---|
474 | |
---|
475 | flag_co2flow(:,:) = 0 |
---|
476 | flag_co2flow_mesh(:) = 0 |
---|
477 | flag_h2oflow(:,:) = 0 |
---|
478 | flag_h2oflow_mesh(:) = 0 |
---|
479 | |
---|
480 | !------------------------ |
---|
481 | ! I Initialization |
---|
482 | ! I_d READ GCM data and convert to the physical grid |
---|
483 | !------------------------ |
---|
484 | ! First we read the evolution of water and co2 ice (and the mass mixing ratio) over the first year of the GCM run, saving only the minimum value |
---|
485 | call nb_time_step_GCM("data_GCM_Y1.nc",timelen) |
---|
486 | |
---|
487 | allocate(tsoil_ave(ngrid,nsoilmx,nslope)) |
---|
488 | allocate(watersoil_density_PEM_ave(ngrid,nsoilmx_PEM,nslope)) |
---|
489 | allocate(vmr_co2_gcm(ngrid,timelen)) |
---|
490 | allocate(ps_timeseries(ngrid,timelen)) |
---|
491 | allocate(min_co2_ice_1(ngrid,nslope)) |
---|
492 | allocate(min_h2o_ice_1(ngrid,nslope)) |
---|
493 | allocate(min_co2_ice_2(ngrid,nslope)) |
---|
494 | allocate(min_h2o_ice_2(ngrid,nslope)) |
---|
495 | allocate(tsurf_ave_yr1(ngrid,nslope)) |
---|
496 | allocate(tsurf_ave(ngrid,nslope)) |
---|
497 | allocate(tsurf_GCM_timeseries(ngrid,nslope,timelen)) |
---|
498 | allocate(tsoil_GCM_timeseries(ngrid,nsoilmx,nslope,timelen)) |
---|
499 | allocate(q_co2_PEM_phys(ngrid,timelen)) |
---|
500 | allocate(q_h2o_PEM_phys(ngrid,timelen)) |
---|
501 | allocate(co2_ice_GCM(ngrid,nslope,timelen)) |
---|
502 | allocate(watersurf_density_ave(ngrid,nslope)) |
---|
503 | allocate(watersoil_density_timeseries(ngrid,nsoilmx,nslope,timelen)) |
---|
504 | allocate(Tsurfave_before_saved(ngrid,nslope)) |
---|
505 | allocate(tsoil_phys_PEM_timeseries(ngrid,nsoilmx_PEM,nslope,timelen)) |
---|
506 | allocate(watersoil_density_PEM_timeseries(ngrid,nsoilmx_PEM,nslope,timelen)) |
---|
507 | allocate(delta_co2_adsorbded(ngrid)) |
---|
508 | allocate(porefillingice_thickness_prev_iter(ngrid,nslope)) |
---|
509 | allocate(delta_h2o_icetablesublim(ngrid)) |
---|
510 | allocate(delta_h2o_adsorbded(ngrid)) |
---|
511 | allocate(vmr_co2_pem_phys(ngrid,timelen)) |
---|
512 | |
---|
513 | write(*,*) "Downloading data Y1..." |
---|
514 | call read_data_GCM("data_GCM_Y1.nc",timelen, iim,jjm_value,ngrid,nslope,vmr_co2_gcm,ps_timeseries,min_co2_ice_1,min_h2o_ice_1, & |
---|
515 | tsurf_ave_yr1,tsoil_ave, tsurf_GCM_timeseries,tsoil_GCM_timeseries,q_co2_PEM_phys,q_h2o_PEM_phys, & |
---|
516 | co2_ice_GCM,watersurf_density_ave,watersoil_density_timeseries) |
---|
517 | write(*,*) "Downloading data Y1 done" |
---|
518 | |
---|
519 | ! Then we read the evolution of water and co2 ice (and the mass mixing ratio) over the second year of the GCM run, saving only the minimum value |
---|
520 | write(*,*) "Downloading data Y2" |
---|
521 | call read_data_GCM("data_GCM_Y2.nc",timelen,iim,jjm_value,ngrid,nslope,vmr_co2_gcm,ps_timeseries,min_co2_ice_2,min_h2o_ice_2, & |
---|
522 | tsurf_ave,tsoil_ave, tsurf_GCM_timeseries,tsoil_GCM_timeseries,q_co2_PEM_phys,q_h2o_PEM_phys, & |
---|
523 | co2_ice_GCM,watersurf_density_ave,watersoil_density_timeseries) |
---|
524 | write(*,*) "Downloading data Y2 done" |
---|
525 | |
---|
526 | !------------------------ |
---|
527 | ! I Initialization |
---|
528 | ! I_e Initialization of the PEM variables and soil |
---|
529 | !------------------------ |
---|
530 | call end_comsoil_h_PEM |
---|
531 | call ini_comsoil_h_PEM(ngrid,nslope) |
---|
532 | call end_adsorption_h_PEM |
---|
533 | call ini_adsorption_h_PEM(ngrid,nslope,nsoilmx_PEM) |
---|
534 | call end_ice_table_porefilling |
---|
535 | call ini_ice_table_porefilling(ngrid,nslope) |
---|
536 | |
---|
537 | if (soil_pem) then |
---|
538 | call soil_settings_PEM(ngrid,nslope,nsoilmx_PEM,nsoilmx,inertiesoil,TI_PEM) |
---|
539 | do l=1,nsoilmx |
---|
540 | tsoil_PEM(:,l,:)=tsoil_ave(:,l,:) |
---|
541 | tsoil_phys_PEM_timeseries(:,l,:,:)=tsoil_GCM_timeseries(:,l,:,:) |
---|
542 | watersoil_density_PEM_timeseries(:,l,:,:)=watersoil_density_timeseries(:,l,:,:) |
---|
543 | enddo |
---|
544 | do l=nsoilmx+1,nsoilmx_PEM |
---|
545 | tsoil_PEM(:,l,:)=tsoil_ave(:,nsoilmx,:) |
---|
546 | watersoil_density_PEM_timeseries(:,l,:,:)=watersoil_density_timeseries(:,nsoilmx,:,:) |
---|
547 | enddo |
---|
548 | watersoil_density_PEM_ave(:,:,:) = SUM(watersoil_density_PEM_timeseries(:,:,:,:),4)/timelen |
---|
549 | endif !soil_pem |
---|
550 | deallocate(tsoil_ave,tsoil_GCM_timeseries) |
---|
551 | |
---|
552 | !------------------------ |
---|
553 | ! I Initialization |
---|
554 | ! I_f Compute tendencies & Save initial situation |
---|
555 | !------------------------ |
---|
556 | allocate(tendencies_co2_ice(ngrid,nslope)) |
---|
557 | allocate(tendencies_co2_ice_ini(ngrid,nslope)) |
---|
558 | allocate(tendencies_h2o_ice(ngrid,nslope)) |
---|
559 | |
---|
560 | ! Compute the tendencies of the evolution of ice over the years |
---|
561 | call compute_tendencies_slope(ngrid,nslope,min_co2_ice_1,min_co2_ice_2,tendencies_co2_ice) |
---|
562 | tendencies_co2_ice_ini(:,:) = tendencies_co2_ice(:,:) |
---|
563 | call compute_tendencies_slope(ngrid,nslope,min_h2o_ice_1,min_h2o_ice_2,tendencies_h2o_ice) |
---|
564 | |
---|
565 | deallocate(min_co2_ice_1,min_co2_ice_2,min_h2o_ice_1,min_h2o_ice_2) |
---|
566 | |
---|
567 | !------------------------ |
---|
568 | ! I Initialization |
---|
569 | ! I_g Save initial PCM situation |
---|
570 | !------------------------ |
---|
571 | allocate(initial_co2_ice_sublim(ngrid,nslope)) |
---|
572 | allocate(initial_co2_ice(ngrid,nslope)) |
---|
573 | allocate(initial_h2o_ice(ngrid,nslope)) |
---|
574 | |
---|
575 | ! We save the places where water ice is sublimating |
---|
576 | ! We compute the surface of water ice sublimating |
---|
577 | ini_surf_co2 = 0. |
---|
578 | ini_surf_h2o = 0. |
---|
579 | Total_surface = 0. |
---|
580 | do i = 1,ngrid |
---|
581 | Total_surface = Total_surface+cell_area(i) |
---|
582 | do islope = 1,nslope |
---|
583 | if (tendencies_co2_ice(i,islope) < 0) then |
---|
584 | initial_co2_ice_sublim(i,islope) = 1. |
---|
585 | ini_surf_co2 = ini_surf_co2+cell_area(i)*subslope_dist(i,islope) |
---|
586 | else |
---|
587 | initial_co2_ice_sublim(i,islope) = 0. |
---|
588 | endif |
---|
589 | if (qsurf(i,igcm_co2,islope) > 0) then |
---|
590 | initial_co2_ice(i,islope) = 1. |
---|
591 | else |
---|
592 | initial_co2_ice(i,islope) = 0. |
---|
593 | endif |
---|
594 | if (tendencies_h2o_ice(i,islope) < 0) then |
---|
595 | initial_h2o_ice(i,islope) = 1. |
---|
596 | ini_surf_h2o=ini_surf_h2o + cell_area(i)*subslope_dist(i,islope) |
---|
597 | else |
---|
598 | initial_h2o_ice(i,islope) = 0. |
---|
599 | endif |
---|
600 | enddo |
---|
601 | enddo |
---|
602 | |
---|
603 | write(*,*) "Total initial surface of co2ice sublimating (slope)=", ini_surf_co2 |
---|
604 | write(*,*) "Total initial surface of h2o ice sublimating (slope)=", ini_surf_h2o |
---|
605 | write(*,*) "Total surface of the planet=", Total_surface |
---|
606 | allocate(zplev_gcm(ngrid,nlayer + 1)) |
---|
607 | |
---|
608 | do l = 1,nlayer + 1 |
---|
609 | do ig = 1,ngrid |
---|
610 | zplev_gcm(ig,l) = ap(l) + bp(l)*ps_start_GCM(ig) |
---|
611 | enddo |
---|
612 | enddo |
---|
613 | |
---|
614 | global_ave_press_old = 0. |
---|
615 | do i = 1,ngrid |
---|
616 | global_ave_press_old = global_ave_press_old + cell_area(i)*ps_start_GCM(i)/Total_surface |
---|
617 | enddo |
---|
618 | |
---|
619 | global_ave_press_GCM = global_ave_press_old |
---|
620 | global_ave_press_new = global_ave_press_old |
---|
621 | write(*,*) "Initial global average pressure=", global_ave_press_GCM |
---|
622 | |
---|
623 | !------------------------ |
---|
624 | ! I Initialization |
---|
625 | ! I_h Read the PEMstart |
---|
626 | !------------------------ |
---|
627 | call pemetat0("startfi_PEM.nc",ngrid,nsoilmx,nsoilmx_PEM,nslope,timelen,timestep,TI_PEM,tsoil_PEM,porefillingice_depth, & |
---|
628 | porefillingice_thickness,tsurf_ave_yr1, tsurf_ave, q_co2_PEM_phys, q_h2o_PEM_phys,ps_timeseries, & |
---|
629 | tsoil_phys_PEM_timeseries,tendencies_h2o_ice,tendencies_co2_ice,qsurf(:,igcm_co2,:), & |
---|
630 | qsurf(:,igcm_h2o_ice,:),global_ave_press_GCM,watersurf_density_ave,watersoil_density_PEM_ave, & |
---|
631 | co2_adsorbded_phys,delta_co2_adsorbded,h2o_adsorbded_phys,delta_h2o_adsorbded,water_reservoir) |
---|
632 | |
---|
633 | delta_h2o_icetablesublim(:) = 0. |
---|
634 | |
---|
635 | do ig = 1,ngrid |
---|
636 | do islope = 1,nslope |
---|
637 | qsurf(ig,igcm_h2o_ice,islope) = qsurf(ig,igcm_h2o_ice,islope) + watercap(ig,islope) + water_reservoir(ig)*cos(pi*def_slope_mean(islope)/180.) |
---|
638 | enddo |
---|
639 | enddo |
---|
640 | |
---|
641 | if (adsorption_pem) then |
---|
642 | totmassco2_adsorbded = 0. |
---|
643 | totmassh2o_adsorbded = 0. |
---|
644 | do ig = 1,ngrid |
---|
645 | do islope = 1, nslope |
---|
646 | do l = 1,nsoilmx_PEM - 1 |
---|
647 | totmassco2_adsorbded = totmassco2_adsorbded + co2_adsorbded_phys(ig,l,islope)*(layer_PEM(l+1) - layer_PEM(l))* & |
---|
648 | subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig) |
---|
649 | totmassh2o_adsorbded = totmassh2o_adsorbded + h2o_adsorbded_phys(ig,l,islope)*(layer_PEM(l+1) - layer_PEM(l))* & |
---|
650 | subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig) |
---|
651 | enddo |
---|
652 | enddo |
---|
653 | enddo |
---|
654 | |
---|
655 | write(*,*) "Tot mass of CO2 in the regolith=", totmassco2_adsorbded |
---|
656 | write(*,*) "Tot mass of H2O in the regolith=", totmassh2o_adsorbded |
---|
657 | endif ! adsorption |
---|
658 | deallocate(tsurf_ave_yr1) |
---|
659 | |
---|
660 | !------------------------ |
---|
661 | ! I Initialization |
---|
662 | ! I_i Compute orbit criterion |
---|
663 | !------------------------ |
---|
664 | #ifndef CPP_STD |
---|
665 | call iniorbit(aphelie,periheli,year_day,peri_day,obliquit) |
---|
666 | #else |
---|
667 | call iniorbit(apoastr,periastr,year_day,peri_day,obliquit) |
---|
668 | #endif |
---|
669 | |
---|
670 | if (evol_orbit_pem) then |
---|
671 | call orbit_param_criterion(i_myear,year_iter_max) |
---|
672 | else |
---|
673 | year_iter_max = Max_iter_pem |
---|
674 | endif |
---|
675 | !-------------------------- END INITIALIZATION ------------------------- |
---|
676 | |
---|
677 | !-------------------------------- RUN ---------------------------------- |
---|
678 | !------------------------ |
---|
679 | ! II Run |
---|
680 | ! II_a Update pressure, ice and tracers |
---|
681 | !------------------------ |
---|
682 | year_iter = 0 |
---|
683 | |
---|
684 | do while (year_iter < year_iter_max .and. i_myear < n_myear) |
---|
685 | ! II.a.1. Compute updated global pressure |
---|
686 | write(*,*) "Recomputing the new pressure..." |
---|
687 | |
---|
688 | do i = 1,ngrid |
---|
689 | do islope = 1,nslope |
---|
690 | global_ave_press_new = global_ave_press_new-g*cell_area(i)*tendencies_co2_ice(i,islope)*subslope_dist(i,islope)/cos(pi*def_slope_mean(islope)/180.)/Total_surface |
---|
691 | enddo |
---|
692 | enddo |
---|
693 | write(*,*) 'Global average pressure old time step',global_ave_press_old |
---|
694 | call WRITEDIAGFI(ngrid,'ps_ave','Global average pressure','Pa',0,global_ave_press_new) |
---|
695 | |
---|
696 | if (adsorption_pem) then |
---|
697 | do i = 1,ngrid |
---|
698 | global_ave_press_new = global_ave_press_new - g*cell_area(i)*delta_co2_adsorbded(i)/Total_surface |
---|
699 | enddo |
---|
700 | write(*,*) 'Global average pressure old time step',global_ave_press_old |
---|
701 | write(*,*) 'Global average pressure new time step',global_ave_press_new |
---|
702 | endif |
---|
703 | |
---|
704 | ! II.a.2. Old pressure levels for the timeseries, this value is deleted when unused and recreated each time (big memory consuption) |
---|
705 | allocate(zplev_old_timeseries(ngrid,nlayer+1,timelen)) |
---|
706 | write(*,*) "Recomputing the old pressure levels timeserie adapted to the old pressure..." |
---|
707 | do l = 1,nlayer + 1 |
---|
708 | do ig = 1,ngrid |
---|
709 | zplev_old_timeseries(ig,l,:) = ap(l) + bp(l)*ps_timeseries(ig,:) |
---|
710 | enddo |
---|
711 | enddo |
---|
712 | |
---|
713 | ! II.a.3. Surface pressure timeseries |
---|
714 | write(*,*) "Recomputing the surface pressure timeserie adapted to the new pressure..." |
---|
715 | do ig = 1,ngrid |
---|
716 | ps_timeseries(ig,:) = ps_timeseries(ig,:)*global_ave_press_new/global_ave_press_old |
---|
717 | enddo |
---|
718 | |
---|
719 | ! II.a.4. New pressure levels timeseries |
---|
720 | allocate(zplev_new_timeseries(ngrid,nlayer+1,timelen)) |
---|
721 | write(*,*) "Recomputing the new pressure levels timeserie adapted to the new pressure..." |
---|
722 | do l = 1,nlayer + 1 |
---|
723 | do ig = 1,ngrid |
---|
724 | zplev_new_timeseries(ig,l,:) = ap(l) + bp(l)*ps_timeseries(ig,:) |
---|
725 | enddo |
---|
726 | enddo |
---|
727 | |
---|
728 | ! II.a.5. Tracers timeseries |
---|
729 | write(*,*) "Recomputing of tracer VMR timeseries for the new pressure..." |
---|
730 | |
---|
731 | l = 1 |
---|
732 | do ig = 1,ngrid |
---|
733 | do t = 1,timelen |
---|
734 | q_h2o_PEM_phys(ig,t) = q_h2o_PEM_phys(ig,t)*(zplev_old_timeseries(ig,l,t) - zplev_old_timeseries(ig,l + 1,t))/ & |
---|
735 | (zplev_new_timeseries(ig,l,t) - zplev_new_timeseries(ig,l + 1,t)) |
---|
736 | if (q_h2o_PEM_phys(ig,t) < 0) q_h2o_PEM_phys(ig,t) = 1.e-30 |
---|
737 | if (q_h2o_PEM_phys(ig,t) > 1) q_h2o_PEM_phys(ig,t) = 1. |
---|
738 | enddo |
---|
739 | enddo |
---|
740 | |
---|
741 | do ig = 1,ngrid |
---|
742 | do t = 1, timelen |
---|
743 | q_co2_PEM_phys(ig,t) = q_co2_PEM_phys(ig,t)*(zplev_old_timeseries(ig,l,t) - zplev_old_timeseries(ig,l + 1,t))/ & |
---|
744 | (zplev_new_timeseries(ig,l,t) - zplev_new_timeseries(ig,l + 1,t)) & |
---|
745 | + ((zplev_new_timeseries(ig,l,t) - zplev_new_timeseries(ig,l + 1,t)) & |
---|
746 | - (zplev_old_timeseries(ig,l,t) - zplev_old_timeseries(ig,l + 1,t)))/ & |
---|
747 | (zplev_new_timeseries(ig,l,t) - zplev_new_timeseries(ig,l + 1,t)) |
---|
748 | if (q_co2_PEM_phys(ig,t) < 0) then |
---|
749 | q_co2_PEM_phys(ig,t) = 1.e-30 |
---|
750 | elseif (q_co2_PEM_phys(ig,t) > 1) then |
---|
751 | q_co2_PEM_phys(ig,t) = 1. |
---|
752 | endif |
---|
753 | mmean=1/(A*q_co2_PEM_phys(ig,t) + B) |
---|
754 | vmr_co2_pem_phys(ig,t) = q_co2_PEM_phys(ig,t)*mmean/m_co2 |
---|
755 | enddo |
---|
756 | enddo |
---|
757 | |
---|
758 | deallocate(zplev_new_timeseries,zplev_old_timeseries) |
---|
759 | |
---|
760 | !------------------------ |
---|
761 | ! II Run |
---|
762 | ! II_b Evolution of the ice |
---|
763 | !------------------------ |
---|
764 | write(*,*) "Evolution of h2o ice" |
---|
765 | call evol_h2o_ice_s(ngrid,nslope,cell_area,delta_h2o_adsorbded,delta_h2o_icetablesublim,qsurf(:,igcm_h2o_ice,:),tendencies_h2o_ice,STOPPING_1_water) |
---|
766 | |
---|
767 | write(*,*) "Evolution of co2 ice" |
---|
768 | call evol_co2_ice_s(qsurf(:,igcm_co2,:),tendencies_co2_ice,iim,jjm_value,ngrid,cell_area,nslope) |
---|
769 | |
---|
770 | do islope=1, nslope |
---|
771 | write(str2(1:2),'(i2.2)') islope |
---|
772 | call WRITEDIAGFI(ngrid,'h2o_ice_s_slope'//str2,'H2O ice','kg.m-2',2,qsurf(:,igcm_h2o_ice,islope)) |
---|
773 | call WRITEDIAGFI(ngrid,'tendencies_h2o_ice_slope'//str2,'H2O ice tend','kg.m-2.year-1',2,tendencies_h2o_ice(:,islope)) |
---|
774 | call WRITEDIAGFI(ngrid,'c2ice_slope'//str2,'CO2 ice','kg.m-2',2,qsurf(:,igcm_co2,islope)) |
---|
775 | call WRITEDIAGFI(ngrid,'tendencies_co2_ice_slope'//str2,'CO2 ice tend','kg.m-2.year-1',2,tendencies_co2_ice(:,islope)) |
---|
776 | enddo |
---|
777 | |
---|
778 | !------------------------ |
---|
779 | ! II Run |
---|
780 | ! II_c CO2 & H2O glaciers flows |
---|
781 | !------------------------ |
---|
782 | write(*,*) "CO2 glacier flows" |
---|
783 | |
---|
784 | if (co2glaciersflow) call co2glaciers_evol(timelen,ngrid,nslope,iflat,subslope_dist,def_slope_mean,vmr_co2_pem_phys,ps_timeseries, & |
---|
785 | global_ave_press_GCM,global_ave_press_new,qsurf(:,igcm_co2,:),flag_co2flow,flag_co2flow_mesh) |
---|
786 | |
---|
787 | write(*,*) "H2O glacier flows" |
---|
788 | |
---|
789 | if (h2oglaciersflow) call h2oglaciers_evol(timelen,ngrid,nslope,iflat,subslope_dist,def_slope_mean,tsurf_ave,qsurf(:,igcm_h2o_ice,:),flag_h2oflow,flag_h2oflow_mesh) |
---|
790 | |
---|
791 | do islope = 1,nslope |
---|
792 | write(str2(1:2),'(i2.2)') islope |
---|
793 | call WRITEDIAGFI(ngrid,'co2ice_slope'//str2,'CO2 ice','kg.m-2',2,qsurf(:,igcm_co2,islope)) |
---|
794 | call WRITEDIAGFI(ngrid,'tendencies_co2_ice_slope'//str2,'CO2 ice tend','kg.m-2.year-1',2,tendencies_co2_ice(:,islope)) |
---|
795 | call WRITEDIAGFI(ngrid,'Flow_co2ice_slope'//str2,'CO2 ice flow','Boolean',2,flag_co2flow(:,islope)) |
---|
796 | enddo |
---|
797 | |
---|
798 | !------------------------ |
---|
799 | ! II Run |
---|
800 | ! II_d Update surface and soil temperatures |
---|
801 | !------------------------ |
---|
802 | ! II_d.1 Update Tsurf |
---|
803 | write(*,*) "Updating the new Tsurf" |
---|
804 | bool_sublim = .false. |
---|
805 | Tsurfave_before_saved(:,:) = tsurf_ave(:,:) |
---|
806 | do ig = 1,ngrid |
---|
807 | do islope = 1,nslope |
---|
808 | if (initial_co2_ice(ig,islope) > 0.5 .and. qsurf(ig,igcm_co2,islope) < 1.e-10) then !co2ice disappeared, look for closest point without co2ice |
---|
809 | if (latitude_deg(ig) > 0) then |
---|
810 | do ig_loop = ig,ngrid |
---|
811 | do islope_loop = islope,iflat,-1 |
---|
812 | if (initial_co2_ice(ig_loop,islope_loop) < 0.5 .and. qsurf(ig_loop,igcm_co2,islope_loop) < 1.e-10) then |
---|
813 | tsurf_ave(ig,islope) = tsurf_ave(ig_loop,islope_loop) |
---|
814 | bool_sublim = .true. |
---|
815 | exit |
---|
816 | endif |
---|
817 | enddo |
---|
818 | if (bool_sublim) exit |
---|
819 | enddo |
---|
820 | else |
---|
821 | do ig_loop = ig,1,-1 |
---|
822 | do islope_loop = islope,iflat |
---|
823 | if(initial_co2_ice(ig_loop,islope_loop) < 0.5 .and. qsurf(ig_loop,igcm_co2,islope_loop) < 1.e-10) then |
---|
824 | tsurf_ave(ig,islope) = tsurf_ave(ig_loop,islope_loop) |
---|
825 | bool_sublim = .true. |
---|
826 | exit |
---|
827 | endif |
---|
828 | enddo |
---|
829 | if (bool_sublim) exit |
---|
830 | enddo |
---|
831 | endif |
---|
832 | initial_co2_ice(ig,islope) = 0 |
---|
833 | if ((qsurf(ig,igcm_co2,islope) < 1.e-10) .and. (qsurf(ig,igcm_h2o_ice,islope) > frost_albedo_threshold)) then |
---|
834 | albedo(ig,1,islope) = albedo_h2o_frost |
---|
835 | albedo(ig,2,islope) = albedo_h2o_frost |
---|
836 | else |
---|
837 | albedo(ig,1,islope) = albedodat(ig) |
---|
838 | albedo(ig,2,islope) = albedodat(ig) |
---|
839 | emis(ig,islope) = emissiv |
---|
840 | endif |
---|
841 | else if ((qsurf(ig,igcm_co2,islope) > 1.e-3) .and. (tendencies_co2_ice(ig,islope) > 1.e-10)) then !Put tsurf as tcond co2 |
---|
842 | ave = 0. |
---|
843 | do t = 1,timelen |
---|
844 | if (co2_ice_GCM(ig,islope,t) > 1.e-3) then |
---|
845 | ave = ave + beta_clap_co2/(alpha_clap_co2-log(vmr_co2_pem_phys(ig,t)*ps_timeseries(ig,t)/100.)) |
---|
846 | else |
---|
847 | ave = ave + tsurf_GCM_timeseries(ig,islope,t) |
---|
848 | endif |
---|
849 | enddo |
---|
850 | tsurf_ave(ig,islope) = ave/timelen |
---|
851 | ! set the surface albedo to be the ice albedo |
---|
852 | if (latitude_deg(ig) > 0) then |
---|
853 | icap = 1 |
---|
854 | else |
---|
855 | icap = 2 |
---|
856 | endif |
---|
857 | albedo(ig,1,islope) = albedice(icap) |
---|
858 | albedo(ig,2,islope) = albedice(icap) |
---|
859 | emis(ig,islope) = emisice(icap) |
---|
860 | endif |
---|
861 | enddo |
---|
862 | enddo |
---|
863 | |
---|
864 | do t = 1,timelen |
---|
865 | tsurf_GCM_timeseries(:,:,t) = tsurf_GCM_timeseries(:,:,t) + (tsurf_ave(:,:) - Tsurfave_before_saved(:,:)) |
---|
866 | enddo |
---|
867 | ! for the start |
---|
868 | do ig = 1,ngrid |
---|
869 | do islope = 1,nslope |
---|
870 | tsurf(ig,islope) = tsurf(ig,islope) - (Tsurfave_before_saved(ig,islope) - tsurf_ave(ig,islope)) |
---|
871 | enddo |
---|
872 | enddo |
---|
873 | |
---|
874 | do islope = 1,nslope |
---|
875 | write(str2(1:2),'(i2.2)') islope |
---|
876 | call WRITEDIAGFI(ngrid,'tsurf_slope'//str2,'tsurf','K',2,tsurf(:,islope)) |
---|
877 | enddo |
---|
878 | |
---|
879 | if (soil_pem) then |
---|
880 | |
---|
881 | ! II_d.2 Update soil temperature |
---|
882 | allocate(TI_locslope(ngrid,nsoilmx_PEM)) |
---|
883 | allocate(Tsoil_locslope(ngrid,nsoilmx_PEM)) |
---|
884 | allocate(Tsurf_locslope(ngrid)) |
---|
885 | write(*,*)"Updating soil temperature" |
---|
886 | |
---|
887 | ! Soil averaged |
---|
888 | do islope = 1,nslope |
---|
889 | TI_locslope(:,:) = TI_PEM(:,:,islope) |
---|
890 | do t = 1,timelen |
---|
891 | Tsoil_locslope(:,:) = tsoil_phys_PEM_timeseries(:,:,islope,t) |
---|
892 | Tsurf_locslope(:) = tsurf_GCM_timeseries(:,islope,t) |
---|
893 | call soil_pem_routine(ngrid,nsoilmx_PEM,.true.,TI_locslope,timestep/timelen,Tsurf_locslope,Tsoil_locslope) |
---|
894 | call soil_pem_routine(ngrid,nsoilmx_PEM,.false.,TI_locslope,timestep/timelen,Tsurf_locslope,Tsoil_locslope) |
---|
895 | tsoil_phys_PEM_timeseries(:,:,islope,t) = Tsoil_locslope(:,:) |
---|
896 | do ig = 1,ngrid |
---|
897 | do isoil = 1,nsoilmx_PEM |
---|
898 | watersoil_density_PEM_timeseries(ig,isoil,islope,t) = exp(beta_clap_h2o/Tsoil_locslope(ig,isoil) + alpha_clap_h2o)/Tsoil_locslope(ig,isoil)*mmol(igcm_h2o_vap)/(mugaz*r) |
---|
899 | if (isnan(Tsoil_locslope(ig,isoil))) call abort_pem("PEM - Update Tsoil","NaN detected in Tsoil ",1) |
---|
900 | enddo |
---|
901 | enddo |
---|
902 | enddo |
---|
903 | enddo |
---|
904 | tsoil_PEM(:,:,:) = SUM(tsoil_phys_PEM_timeseries(:,:,:,:),4)/timelen |
---|
905 | watersoil_density_PEM_ave(:,:,:)= SUM(watersoil_density_PEM_timeseries(:,:,:,:),4)/timelen |
---|
906 | |
---|
907 | write(*,*) "Update of soil temperature done" |
---|
908 | |
---|
909 | deallocate(TI_locslope,Tsoil_locslope,Tsurf_locslope) |
---|
910 | write(*,*) "Compute ice table" |
---|
911 | |
---|
912 | ! II_d.3 Update the ice table |
---|
913 | porefillingice_thickness_prev_iter(:,:) = porefillingice_thickness(:,:) |
---|
914 | call computeice_table_equilibrium(ngrid,nslope,nsoilmx_PEM,watercaptag,watersurf_density_ave,watersoil_density_PEM_ave,TI_PEM(:,1,:),porefillingice_depth,porefillingice_thickness) |
---|
915 | |
---|
916 | call compute_massh2o_exchange_ssi(ngrid,nslope,nsoilmx_PEM,porefillingice_thickness_prev_iter,porefillingice_thickness,porefillingice_depth,tsoil_PEM, & |
---|
917 | delta_h2o_icetablesublim) ! Mass of H2O exchange between the ssi and the atmosphere |
---|
918 | |
---|
919 | write(*,*) "Update soil propreties" |
---|
920 | |
---|
921 | ! II_d.4 Update the soil thermal properties |
---|
922 | call update_soil_thermalproperties(ngrid,nslope,nsoilmx_PEM,tendencies_h2o_ice,qsurf(:,igcm_h2o_ice,:),global_ave_press_new, & |
---|
923 | porefillingice_depth,porefillingice_thickness,TI_PEM) |
---|
924 | |
---|
925 | ! II_d.5 Update the mass of the regolith adsorbded |
---|
926 | if (adsorption_pem) then |
---|
927 | call regolith_adsorption(ngrid,nslope,nsoilmx_PEM,timelen,tendencies_h2o_ice,tendencies_co2_ice, & |
---|
928 | qsurf(:,igcm_h2o_ice,:),qsurf(:,igcm_co2,:),tsoil_PEM,TI_PEM,ps_timeseries, & |
---|
929 | q_co2_PEM_phys,q_h2o_PEM_phys,h2o_adsorbded_phys,delta_h2o_adsorbded,co2_adsorbded_phys,delta_co2_adsorbded) |
---|
930 | |
---|
931 | totmassco2_adsorbded = 0. |
---|
932 | totmassh2o_adsorbded = 0. |
---|
933 | do ig = 1,ngrid |
---|
934 | do islope =1, nslope |
---|
935 | do l = 1,nsoilmx_PEM - 1 |
---|
936 | totmassco2_adsorbded = totmassco2_adsorbded + co2_adsorbded_phys(ig,l,islope)*(layer_PEM(l+1) - layer_PEM(l))* & |
---|
937 | subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.) * & |
---|
938 | cell_area(ig) |
---|
939 | totmassh2o_adsorbded = totmassh2o_adsorbded + h2o_adsorbded_phys(ig,l,islope)*(layer_PEM(l+1) - layer_PEM(l))* & |
---|
940 | subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.) * & |
---|
941 | cell_area(ig) |
---|
942 | enddo |
---|
943 | enddo |
---|
944 | enddo |
---|
945 | write(*,*) "Tot mass of CO2 in the regolith=", totmassco2_adsorbded |
---|
946 | write(*,*) "Tot mass of H2O in the regolith=", totmassh2o_adsorbded |
---|
947 | endif |
---|
948 | endif !soil_pem |
---|
949 | |
---|
950 | !------------------------ |
---|
951 | ! II Run |
---|
952 | ! II_e Update the tendencies |
---|
953 | !------------------------ |
---|
954 | write(*,*) "Adaptation of the new co2 tendencies to the current pressure" |
---|
955 | call recomp_tend_co2_slope(tendencies_co2_ice,tendencies_co2_ice_ini,qsurf(:,igcm_co2,:),vmr_co2_gcm,vmr_co2_pem_phys,ps_timeseries, & |
---|
956 | global_ave_press_GCM,global_ave_press_new,timelen,ngrid,nslope) |
---|
957 | |
---|
958 | !------------------------ |
---|
959 | ! II Run |
---|
960 | ! II_f Checking the stopping criterion |
---|
961 | !------------------------ |
---|
962 | call criterion_waterice_stop(cell_area,ini_surf_h2o,qsurf(:,igcm_h2o_ice,:),STOPPING_water,ngrid,initial_h2o_ice) |
---|
963 | |
---|
964 | call criterion_co2_stop(cell_area,ini_surf_co2,qsurf(:,igcm_co2,:),STOPPING_co2,STOPPING_pressure,ngrid, & |
---|
965 | initial_co2_ice_sublim,global_ave_press_GCM,global_ave_press_new,nslope) |
---|
966 | |
---|
967 | year_iter = year_iter + dt_pem |
---|
968 | i_myear = i_myear + dt_pem |
---|
969 | |
---|
970 | write(*,*) "Checking all the stopping criterion." |
---|
971 | if (STOPPING_water) then |
---|
972 | write(*,*) "STOPPING because surface of water ice sublimating is too low, see message above", STOPPING_water |
---|
973 | criterion_stop = 1 |
---|
974 | endif |
---|
975 | if (STOPPING_1_water) then |
---|
976 | write(*,*) "STOPPING because tendencies on water ice=0, see message above", STOPPING_1_water |
---|
977 | criterion_stop = 1 |
---|
978 | endif |
---|
979 | if (STOPPING_co2) then |
---|
980 | write(*,*) "STOPPING because surface of co2 ice sublimating is too low, see message above", STOPPING_co2 |
---|
981 | criterion_stop = 2 |
---|
982 | endif |
---|
983 | if (STOPPING_pressure) then |
---|
984 | write(*,*) "STOPPING because surface global pressure changed too much, see message above", STOPPING_pressure |
---|
985 | criterion_stop = 3 |
---|
986 | endif |
---|
987 | if (year_iter >= year_iter_max) then |
---|
988 | write(*,*) "STOPPING because maximum number of iterations reached" |
---|
989 | criterion_stop = 4 |
---|
990 | endif |
---|
991 | if (i_myear >= n_myear) then |
---|
992 | write(*,*) "STOPPING because maximum number of Martian years to be simulated reached" |
---|
993 | criterion_stop = 5 |
---|
994 | endif |
---|
995 | |
---|
996 | if (STOPPING_water .or. STOPPING_1_water .or. STOPPING_co2 .or. STOPPING_pressure) then |
---|
997 | exit |
---|
998 | else |
---|
999 | write(*,*) "We continue!" |
---|
1000 | write(*,*) "Number of iterations of the PEM: year_iter =", year_iter |
---|
1001 | write(*,*) "Number of simulated Martian years: i_myear =", i_myear |
---|
1002 | endif |
---|
1003 | |
---|
1004 | global_ave_press_old=global_ave_press_new |
---|
1005 | |
---|
1006 | enddo ! big time iteration loop of the pem |
---|
1007 | !------------------------------ END RUN -------------------------------- |
---|
1008 | |
---|
1009 | !------------------------------- OUTPUT -------------------------------- |
---|
1010 | !------------------------ |
---|
1011 | ! III Output |
---|
1012 | ! III_a Update surface value for the PCM start files |
---|
1013 | !------------------------ |
---|
1014 | ! III_a.1 Ice update (for startfi) |
---|
1015 | |
---|
1016 | ! H2O ice |
---|
1017 | do ig = 1,ngrid |
---|
1018 | if (watercaptag(ig)) then |
---|
1019 | watercap_sum = 0. |
---|
1020 | do islope = 1,nslope |
---|
1021 | if (qsurf(ig,igcm_h2o_ice,islope) > (watercap(ig,islope) + water_reservoir(ig)*cos(pi*def_slope_mean(islope)/180.))) then ! water_reservoir and water cap have not changed since PCM call: here we check if we have accumulate frost or not. 1st case we have more ice than initialy |
---|
1022 | qsurf(ig,igcm_h2o_ice,islope) = qsurf(ig,igcm_h2o_ice,islope) - (watercap(ig,islope) + water_reservoir(ig)*cos(pi*def_slope_mean(islope)/180.)) ! put back ancien frost |
---|
1023 | else |
---|
1024 | ! 2nd case: we have sublimate ice: then let's put qsurf = 0. and add the difference in watercap |
---|
1025 | watercap(ig,islope) = watercap(ig,islope) + qsurf(ig,igcm_h2o_ice,islope) - (watercap(ig,islope) + water_reservoir(ig)*cos(pi*def_slope_mean(islope)/180.)) |
---|
1026 | qsurf(ig,igcm_h2o_ice,islope)=0. |
---|
1027 | endif |
---|
1028 | watercap_sum = watercap_sum+watercap(ig,islope)*subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.) |
---|
1029 | watercap(ig,islope) = 0. |
---|
1030 | enddo |
---|
1031 | water_reservoir(ig) = water_reservoir(ig) + watercap_sum |
---|
1032 | endif |
---|
1033 | enddo |
---|
1034 | |
---|
1035 | do ig = 1,ngrid |
---|
1036 | water_sum = 0. |
---|
1037 | do islope = 1,nslope |
---|
1038 | water_sum = water_sum + qsurf(ig,igcm_h2o_ice,islope)*subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.) |
---|
1039 | enddo |
---|
1040 | if (.not. watercaptag(ig)) then ! let's check if we have an 'infinite' source of water that has been forming. |
---|
1041 | if (water_sum > threshold_water_frost2perenial) then ! the overall mesh can be considered as an infite source of water. No need to change the albedo: done in II.d.1 |
---|
1042 | watercaptag(ig) = .true. |
---|
1043 | water_reservoir(ig) = water_reservoir(ig) + threshold_water_frost2perenial/2. ! half of the excess ices goes to the reservoir, we let the rest to be frost |
---|
1044 | do islope = 1,nslope |
---|
1045 | qsurf(ig,igcm_h2o_ice,islope) = qsurf(ig,igcm_h2o_ice,islope) - threshold_water_frost2perenial/2.*cos(pi*def_slope_mean(islope)/180.) |
---|
1046 | enddo |
---|
1047 | endif |
---|
1048 | else ! let's check that the infinite source of water disapear |
---|
1049 | if ((water_sum + water_reservoir(ig)) < threshold_water_frost2perenial) then |
---|
1050 | watercaptag(ig) = .false. |
---|
1051 | do islope = 1,nslope |
---|
1052 | qsurf(ig,igcm_h2o_ice,islope) = qsurf(ig,igcm_h2o_ice,islope) + water_reservoir(ig)*cos(pi*def_slope_mean(islope)/180.) |
---|
1053 | enddo |
---|
1054 | water_reservoir(ig) = 0. |
---|
1055 | endif |
---|
1056 | endif |
---|
1057 | enddo |
---|
1058 | |
---|
1059 | ! CO2 ice |
---|
1060 | do ig = 1,ngrid |
---|
1061 | do islope = 1,nslope |
---|
1062 | if (qsurf(ig,igcm_co2,islope) > threshold_co2_frost2perenial) then |
---|
1063 | perenial_co2ice(ig,islope) = 0.5*qsurf(ig,igcm_co2,islope) |
---|
1064 | qsurf(ig,igcm_co2,islope) = 0.5*qsurf(ig,igcm_co2,islope) |
---|
1065 | albedo(ig,1,islope) = albedo_perenialco2 |
---|
1066 | albedo(ig,2,islope) = albedo_perenialco2 |
---|
1067 | endif |
---|
1068 | enddo |
---|
1069 | enddo |
---|
1070 | |
---|
1071 | ! III_a.2 Tsoil update (for startfi) |
---|
1072 | if (soil_pem) then |
---|
1073 | call interpolate_TIPEM_TIGCM(ngrid,nslope,nsoilmx_PEM,nsoilmx,TI_PEM,inertiesoil) |
---|
1074 | tsoil(:,:,:) = tsoil_phys_PEM_timeseries(:,1:nsoilmx,:,timelen) |
---|
1075 | endif |
---|
1076 | |
---|
1077 | ! III_a.4 Pressure (for start) |
---|
1078 | do i = 1,ip1jmp1 |
---|
1079 | ps(i) = ps(i)*global_ave_press_new/global_ave_press_GCM |
---|
1080 | enddo |
---|
1081 | |
---|
1082 | do i = 1,ngrid |
---|
1083 | ps_start_GCM(i) = ps_start_GCM(i)*global_ave_press_new/global_ave_press_GCM |
---|
1084 | enddo |
---|
1085 | |
---|
1086 | ! III_a.5 Tracer (for start) |
---|
1087 | allocate(zplev_new(ngrid,nlayer + 1)) |
---|
1088 | |
---|
1089 | do l = 1,nlayer + 1 |
---|
1090 | do ig = 1,ngrid |
---|
1091 | zplev_new(ig,l) = ap(l) + bp(l)*ps_start_GCM(ig) |
---|
1092 | enddo |
---|
1093 | enddo |
---|
1094 | |
---|
1095 | do nnq = 1,nqtot |
---|
1096 | if (noms(nnq) /= "co2") then |
---|
1097 | do l = 1,llm - 1 |
---|
1098 | do ig = 1,ngrid |
---|
1099 | q(ig,l,nnq) = q(ig,l,nnq)*(zplev_gcm(ig,l) - zplev_gcm(ig,l + 1))/(zplev_new(ig,l) - zplev_new(ig,l + 1)) |
---|
1100 | enddo |
---|
1101 | q(:,llm,nnq) = q(:,llm - 1,nnq) |
---|
1102 | enddo |
---|
1103 | else |
---|
1104 | do l = 1,llm - 1 |
---|
1105 | do ig = 1,ngrid |
---|
1106 | q(ig,l,nnq) = q(ig,l,nnq)*(zplev_gcm(ig,l) - zplev_gcm(ig,l + 1))/(zplev_new(ig,l) - zplev_new(ig,l + 1)) & |
---|
1107 | + ((zplev_new(ig,l) - zplev_new(ig,l + 1)) - (zplev_gcm(ig,l) - zplev_gcm(ig,l + 1)))/ & |
---|
1108 | (zplev_new(ig,l) - zplev_new(ig,l + 1)) |
---|
1109 | enddo |
---|
1110 | q(:,llm,nnq) = q(:,llm - 1,nnq) |
---|
1111 | enddo |
---|
1112 | endif |
---|
1113 | enddo |
---|
1114 | |
---|
1115 | ! Conserving the tracers mass for GCM start files |
---|
1116 | do nnq = 1,nqtot |
---|
1117 | do ig = 1,ngrid |
---|
1118 | do l = 1,llm - 1 |
---|
1119 | if (q(ig,l,nnq) > 1 .and. (noms(nnq) /= "dust_number") .and. (noms(nnq) /= "ccn_number") .and. (noms(nnq) /= "stormdust_number") .and. (noms(nnq) /= "topdust_number")) then |
---|
1120 | extra_mass=(q(ig,l,nnq)-1)*(zplev_new(ig,l)-zplev_new(ig,l+1)) |
---|
1121 | q(ig,l,nnq)=1. |
---|
1122 | q(ig,l+1,nnq)=q(ig,l+1,nnq)+extra_mass*(zplev_new(ig,l+1)-zplev_new(ig,l+2)) |
---|
1123 | write(*,*) 'extra ',noms(nnq),extra_mass, noms(nnq) /= "dust_number",noms(nnq) /= "ccn_number" |
---|
1124 | endif |
---|
1125 | if (q(ig,l,nnq) < 0) q(ig,l,nnq) = 1.e-30 |
---|
1126 | enddo |
---|
1127 | enddo |
---|
1128 | enddo |
---|
1129 | |
---|
1130 | if (evol_orbit_pem) call recomp_orb_param(i_myear,year_iter) |
---|
1131 | |
---|
1132 | !------------------------ |
---|
1133 | ! III Output |
---|
1134 | ! III_b Write restart_evol.nc and restartfi_evol.nc |
---|
1135 | !------------------------ |
---|
1136 | ! III_b.1 Write restart_evol.nc |
---|
1137 | ptimestep = iphysiq*daysec/real(day_step)/nsplit_phys ! dtphys/nsplit_phys |
---|
1138 | pday = day_ini |
---|
1139 | ztime_fin = time_phys |
---|
1140 | |
---|
1141 | allocate(p(ip1jmp1,nlayer + 1)) |
---|
1142 | #ifndef CPP_1D |
---|
1143 | call pression (ip1jmp1,ap,bp,ps,p) |
---|
1144 | call massdair(p,masse) |
---|
1145 | call dynredem0("restart_evol.nc",day_ini,phis) |
---|
1146 | call dynredem1("restart_evol.nc",time_0,vcov,ucov,teta,q,masse,ps) |
---|
1147 | write(*,*) "restart_evol.nc has been written" |
---|
1148 | #else |
---|
1149 | do nnq = 1, nqtot |
---|
1150 | call writeprofile(nlayer,q(1,:,nnq),noms(nnq),nnq,qsurf) |
---|
1151 | enddo |
---|
1152 | #endif |
---|
1153 | |
---|
1154 | ! III_b.2 Write restartfi_evol.nc |
---|
1155 | #ifndef CPP_STD |
---|
1156 | call physdem0("restartfi_evol.nc",longitude,latitude,nsoilmx,ngrid, & |
---|
1157 | nlayer,nq,ptimestep,pday,0.,cell_area,albedodat, & |
---|
1158 | inertiedat,def_slope,subslope_dist) |
---|
1159 | |
---|
1160 | call physdem1("restartfi_evol.nc",nsoilmx,ngrid,nlayer,nq, & |
---|
1161 | ptimestep,ztime_fin,tsurf,tsoil,inertiesoil, & |
---|
1162 | albedo,emis,q2,qsurf,tauscaling,totcloudfrac, & |
---|
1163 | wstar,watercap,perenial_co2ice) |
---|
1164 | #else |
---|
1165 | call physdem0("restartfi_evol.nc",longitude,latitude,nsoilmx,ngrid, & |
---|
1166 | nlayer,nq,ptimestep,pday,time_phys,cell_area, & |
---|
1167 | albedo_bareground,inertiedat,zmea,zstd,zsig,zgam,zthe) |
---|
1168 | |
---|
1169 | call physdem1("restartfi_evol.nc",nsoilmx,ngrid,nlayer,nq, & |
---|
1170 | ptimestep,ztime_fin,tsurf,tsoil,emis,q2,qsurf, & |
---|
1171 | cloudfrac,totcloudfrac,hice,rnat,pctsrf_sic, & |
---|
1172 | tslab,tsea_ice,sea_ice) |
---|
1173 | #endif |
---|
1174 | write(*,*) "restartfi_evol.nc has been written" |
---|
1175 | |
---|
1176 | !------------------------ |
---|
1177 | ! III Output |
---|
1178 | ! III_c Write restartfi_PEM.nc |
---|
1179 | !------------------------ |
---|
1180 | call pemdem0("restartfi_PEM.nc",longitude,latitude,cell_area,nsoilmx_PEM,ngrid, & |
---|
1181 | float(day_ini),0.,nslope,def_slope,subslope_dist) |
---|
1182 | |
---|
1183 | |
---|
1184 | call pemdem1("restartfi_PEM.nc",i_myear,nsoilmx_PEM,ngrid,nslope,tsoil_PEM, & |
---|
1185 | TI_PEM, porefillingice_depth,porefillingice_thickness, & |
---|
1186 | co2_adsorbded_phys,h2o_adsorbded_phys,water_reservoir) |
---|
1187 | write(*,*) "restartfi_PEM.nc has been written" |
---|
1188 | |
---|
1189 | call info_run_PEM(year_iter,criterion_stop,i_myear,n_myear) |
---|
1190 | |
---|
1191 | write(*,*) "The PEM has run for", year_iter, "Martian years." |
---|
1192 | write(*,*) "The chained simulation has run for", i_myear, "Martian years =", i_myear*convert_years, "Earth years." |
---|
1193 | write(*,*) "The reached date is now", (year_bp_ini + i_myear)*convert_years, "Earth years." |
---|
1194 | write(*,*) "LL & RV & JBC: so far, so good!" |
---|
1195 | |
---|
1196 | deallocate(vmr_co2_gcm,ps_timeseries,tsurf_GCM_timeseries,q_co2_PEM_phys,q_h2o_PEM_phys) |
---|
1197 | deallocate(co2_ice_GCM,watersurf_density_ave,watersoil_density_timeseries,Tsurfave_before_saved) |
---|
1198 | deallocate(tsoil_phys_PEM_timeseries,watersoil_density_PEM_timeseries,watersoil_density_PEM_ave) |
---|
1199 | deallocate(delta_co2_adsorbded,delta_h2o_adsorbded,vmr_co2_pem_phys,delta_h2o_icetablesublim,porefillingice_thickness_prev_iter) |
---|
1200 | !----------------------------- END OUTPUT ------------------------------ |
---|
1201 | |
---|
1202 | END PROGRAM pem |
---|
1203 | |
---|