1 | |
---|
2 | !------------------------ |
---|
3 | |
---|
4 | ! I Initialisation |
---|
5 | ! I_a READ run.def |
---|
6 | ! I_b READ of start_evol.nc and starfi_evol.nc |
---|
7 | ! I_c Subslope parametrisation |
---|
8 | ! I_d READ GCM data and convert to the physical grid |
---|
9 | ! I_e Initialisation of the PEM variable and soil |
---|
10 | ! I_f Compute tendencies & Save initial situation |
---|
11 | ! I_g Save initial PCM situation |
---|
12 | ! I_h Read the PEMstart |
---|
13 | ! I_i Compute orbit criterion |
---|
14 | |
---|
15 | ! II Run |
---|
16 | ! II_a update pressure, ice and tracers |
---|
17 | ! II_b Evolution of the ice |
---|
18 | ! II_c CO2 glaciers flows |
---|
19 | ! II_d Update surface and soil temperatures |
---|
20 | ! II_e Update the tendencies |
---|
21 | ! II_f Checking the stopping criterion |
---|
22 | |
---|
23 | ! III Output |
---|
24 | ! III_a Update surface value for the PCM start files |
---|
25 | ! III_b Write start and starfi.nc |
---|
26 | ! III_c Write start_pem |
---|
27 | |
---|
28 | !------------------------ |
---|
29 | |
---|
30 | PROGRAM pem |
---|
31 | |
---|
32 | !module needed for INITIALISATION |
---|
33 | #ifndef CPP_STD |
---|
34 | use comsoil_h, only: tsoil, nsoilmx, ini_comsoil_h,inertiedat, mlayer,volcapa |
---|
35 | use surfdat_h, only: tsurf, co2ice, emis,& |
---|
36 | qsurf,watercap, ini_surfdat_h, & |
---|
37 | albedodat, zmea, zstd, zsig, zgam, zthe, & |
---|
38 | hmons, summit, base,albedo_h2o_frost, & |
---|
39 | frost_albedo_threshold,emissiv |
---|
40 | use dimradmars_mod, only: totcloudfrac, albedo |
---|
41 | use dust_param_mod, only: tauscaling |
---|
42 | use tracer_mod, only: noms,igcm_h2o_ice ! tracer names |
---|
43 | #else |
---|
44 | use comsoil_h, only: nsoilmx, ini_comsoil_h,inertiedat, mlayer,volcapa |
---|
45 | use surfdat_h, only: albedodat, zmea, zstd, zsig, zgam, zthe, & |
---|
46 | emissiv |
---|
47 | use tracer_h, only: noms,igcm_h2o_ice,igcm_co2_ice ! tracer names |
---|
48 | use phys_state_var_mod |
---|
49 | #endif |
---|
50 | use phyetat0_mod, only: phyetat0 |
---|
51 | use phyredem, only: physdem0, physdem1 |
---|
52 | use turb_mod, only: q2, wstar |
---|
53 | use netcdf, only: nf90_open,NF90_NOWRITE,nf90_noerr,nf90_strerror, & |
---|
54 | nf90_get_var, nf90_inq_varid, nf90_inq_dimid, & |
---|
55 | nf90_inquire_dimension,nf90_close |
---|
56 | |
---|
57 | ! For phyredem : |
---|
58 | USE control_mod, ONLY: iphysiq, day_step,nsplit_phys |
---|
59 | USE iniphysiq_mod, ONLY: iniphysiq |
---|
60 | USE logic_mod, ONLY: iflag_phys |
---|
61 | #ifndef CPP_STD |
---|
62 | use mod_phys_lmdz_para, only: is_parallel, is_sequential, & |
---|
63 | is_mpi_root, is_omp_root, & |
---|
64 | is_master |
---|
65 | use planete_h, only: aphelie, periheli, year_day, peri_day, & |
---|
66 | obliquit |
---|
67 | #else |
---|
68 | ! USE comcstfi_mod, ONLY: rad,g,r,cpp,pi |
---|
69 | ! USE inifis_mod, ONLY: inifis |
---|
70 | use planete_mod, only: apoastr, periastr, year_day, peri_day, & |
---|
71 | obliquit |
---|
72 | #endif |
---|
73 | USE mod_const_mpi, ONLY: COMM_LMDZ |
---|
74 | USE comslope_mod, ONLY: nslope,def_slope,def_slope_mean, & |
---|
75 | subslope_dist,co2ice_slope, & |
---|
76 | tsurf_slope,tsoil_slope,fluxgrd_slope,& |
---|
77 | fluxrad_sky_slope,sky_slope,callsubslope,& |
---|
78 | co2iceflow, beta_slope, capcal_slope,& |
---|
79 | albedo_slope,emiss_slope,qsurf_slope,& |
---|
80 | iflat,major_slope,ini_comslope_h |
---|
81 | use time_phylmdz_mod, only: daysec,dtphys |
---|
82 | USE comconst_mod, ONLY: rad,g,r,cpp,pi |
---|
83 | USE infotrac |
---|
84 | USE geometry_mod, only: latitude_deg |
---|
85 | use conf_pem_mod, only: conf_pem |
---|
86 | use pemredem, only: pemdem1 |
---|
87 | use co2glaciers_mod,only: co2glaciers_evol |
---|
88 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!! SOIL |
---|
89 | use comsoil_h_PEM, only: soil_pem,ini_comsoil_h_PEM,end_comsoil_h_PEM,nsoilmx_PEM, & |
---|
90 | TI_PEM,inertiedat_PEM,alph_PEM, beta_PEM, & ! soil thermal inertia |
---|
91 | tsoil_PEM, mlayer_PEM,layer_PEM, & !number of subsurface layers, soil mid layer depths |
---|
92 | fluxgeo, co2_adsorbded_phys, h2o_adsorbded_phys ! geothermal flux, mass of co2 & h2o in the regolith |
---|
93 | use adsorption_mod, only : regolith_adsorption |
---|
94 | |
---|
95 | !!! For orbit parameters |
---|
96 | USE temps_mod_evol, ONLY: dt_pem, evol_orbit_pem, Max_iter_pem |
---|
97 | use orbit_param_criterion_mod, only : orbit_param_criterion |
---|
98 | use recomp_orb_param_mod, only: recomp_orb_param |
---|
99 | |
---|
100 | |
---|
101 | IMPLICIT NONE |
---|
102 | |
---|
103 | include "dimensions.h" |
---|
104 | include "paramet.h" |
---|
105 | |
---|
106 | INTEGER ngridmx |
---|
107 | PARAMETER( ngridmx = 2+(jjm-1)*iim - 1/jjm ) |
---|
108 | |
---|
109 | include "comdissnew.h" |
---|
110 | include "comgeom.h" |
---|
111 | include "iniprint.h" |
---|
112 | ! Same variable's name as in the GCM |
---|
113 | |
---|
114 | INTEGER :: ngrid !Number of physical grid points |
---|
115 | INTEGER :: nlayer !Number of vertical layer |
---|
116 | INTEGER :: nq !Number of tracer |
---|
117 | INTEGER :: day_ini !First day of the simulation |
---|
118 | REAL :: pday !Physical day |
---|
119 | REAL :: time_phys !Same as GCM |
---|
120 | REAL :: ptimestep !Same as GCM |
---|
121 | REAL :: ztime_fin !Same as GCM |
---|
122 | |
---|
123 | ! Variable for reading start.nc |
---|
124 | character (len = *), parameter :: FILE_NAME_start = "start_evol.nc" !Name of the file used for initialsing the PEM |
---|
125 | ! variables dynamiques |
---|
126 | REAL vcov(ip1jm,llm),ucov(ip1jmp1,llm) ! vents covariants |
---|
127 | REAL teta(ip1jmp1,llm) ! temperature potentielle |
---|
128 | REAL, ALLOCATABLE, DIMENSION(:,:,:):: q! champs advectes |
---|
129 | REAL ps(ip1jmp1) ! pression au sol |
---|
130 | REAL, dimension(:),allocatable :: ps_phys !(ngrid) ! pression au sol |
---|
131 | REAL, dimension(:,:),allocatable :: ps_phys_timeseries !(ngrid x timelen) ! pression au sol instantannées |
---|
132 | REAL, dimension(:,:),allocatable :: ps_phys_timeseries_yr1 !(ngrid x timelen) ! pression au sol instantannées for the first year of the gcm |
---|
133 | |
---|
134 | REAL masse(ip1jmp1,llm) ! masse d'air |
---|
135 | REAL phis(ip1jmp1) ! geopotentiel au sol |
---|
136 | REAL time_0 |
---|
137 | |
---|
138 | ! Variable for reading starfi.nc |
---|
139 | |
---|
140 | character (len = *), parameter :: FILE_NAME = "startfi_evol.nc" !Name of the file used for initialsing the PEM |
---|
141 | integer :: ncid, varid,status !Variable for handling opening of files |
---|
142 | integer :: phydimid, subdimid, nlayerdimid, nqdimid !Variable ID for Netcdf files |
---|
143 | integer :: lonvarid, latvarid, areavarid,sdvarid !Variable ID for Netcdf files |
---|
144 | integer :: apvarid,bpvarid !Variable ID for Netcdf files |
---|
145 | |
---|
146 | ! Variable for reading starfi.nc and writting restartfi.nc |
---|
147 | |
---|
148 | REAL, dimension(:),allocatable :: longitude !Longitude read in FILE_NAME and written in restartfi |
---|
149 | REAL, dimension(:),allocatable :: latitude !Latitude read in FILE_NAME and written in restartfi |
---|
150 | REAL, dimension(:),allocatable :: ap !Coefficient ap read in FILE_NAME_start and written in restart |
---|
151 | REAL, dimension(:),allocatable :: bp !Coefficient bp read in FILE_NAME_start and written in restart |
---|
152 | REAL, dimension(:),allocatable :: cell_area !Cell_area read in FILE_NAME and written in restartfi |
---|
153 | REAL :: Total_surface !Total surface of the planet |
---|
154 | |
---|
155 | ! Variable for h2o_ice evolution |
---|
156 | |
---|
157 | REAL , dimension(:,:), allocatable :: tendencies_h2o_ice ! LON x LAT field : Tendency of evolution of perenial ice over a year |
---|
158 | REAL, dimension(:),allocatable :: tendencies_h2o_ice_phys ! physical point field : Tendency of evolution of perenial ice over a year |
---|
159 | |
---|
160 | REAL , dimension(:,:), allocatable :: tendencies_co2_ice ! LON x LAT field : Tendency of evolution of perenial co2 ice over a year |
---|
161 | REAL, dimension(:),allocatable :: tendencies_co2_ice_phys ! physical point field : Tendency of evolution of perenial co2 ice over a year |
---|
162 | |
---|
163 | REAL :: ini_surf ! Initial surface of sublimating water ice |
---|
164 | REAL :: ini_surf_h2o ! Initial surface of sublimating water ice |
---|
165 | REAL, dimension(:),allocatable :: initial_h2o_ice ! physical point field : Logical array indicating sublimating point |
---|
166 | |
---|
167 | REAL :: ini_surf_co2 ! Initial surface of sublimating co2 ice |
---|
168 | REAL, dimension(:),allocatable :: initial_co2_ice ! physical point field : Logical array indicating sublimating point of co2 ice |
---|
169 | |
---|
170 | REAL , dimension(:,:), allocatable :: min_h2o_ice_s_1 ! LON x LAT field : minimum of water ice at each point for the first year |
---|
171 | REAL , dimension(:,:), allocatable :: min_h2o_ice_s_2 ! LON x LAT field : minimum of water ice at each point for the second year |
---|
172 | |
---|
173 | REAL , dimension(:,:), allocatable :: min_co2_ice_s_1 ! LON x LAT field : minimum of water ice at each point for the first year |
---|
174 | REAL , dimension(:,:), allocatable :: min_co2_ice_s_2 ! LON x LAT field : minimum of water ice at each point for the second year |
---|
175 | |
---|
176 | REAL :: global_ave_press_GCM ! constant: global average pressure retrieved in the GCM [Pa] |
---|
177 | REAL :: global_ave_press_old ! constant: Global average pressure of initial/previous time step |
---|
178 | REAL :: global_ave_press_new ! constant: Global average pressure of current time step |
---|
179 | |
---|
180 | REAL , dimension(:,:), allocatable :: zplev_new ! Physical x Atmospheric field : mass of the atmospheric layers in the pem at current time step [kg/m^2] |
---|
181 | REAL , dimension(:,:), allocatable :: zplev_gcm ! same but retrieved from the gcm [kg/m^2] |
---|
182 | REAL , dimension(:,:,:), allocatable :: zplev_new_timeseries ! Physical x Atmospheric x Time: same as zplev_new, but in times series [kg/m ^2] |
---|
183 | REAL , dimension(:,:,:), allocatable :: zplev_old_timeseries ! same but with the time series, for oldest time step |
---|
184 | |
---|
185 | LOGICAL :: STOPPING_water ! Logical : is the criterion (% of change in the surface of sublimating water ice) reached? |
---|
186 | LOGICAL :: STOPPING_1_water ! Logical : is there still water ice to sublimate? |
---|
187 | LOGICAL :: STOPPING_co2 ! Logical : is the criterion (% of change in the surface of sublimating water ice) reached? |
---|
188 | LOGICAL :: STOPPING_1_co2 ! Logical : is there still water ice to sublimate? |
---|
189 | |
---|
190 | REAL, dimension(:,:,:),allocatable :: q_co2_GCM ! Lon x Lat x Time : mass mixing ratio of co2 in the first layer [kg/kg] |
---|
191 | |
---|
192 | real,save :: m_co2, m_noco2, A , B, mmean ! Molar mass of co2, no co2 (Ar, ...), intermediate A, B for computations, mean molar mass of the layer [mol/kg] |
---|
193 | real ,allocatable :: vmr_co2_gcm_phys(:,:) ! Physics x Times co2 volume mixing ratio retrieve from the gcm [m^3/m^3] |
---|
194 | real ,allocatable :: vmr_co2_pem_phys(:,:) ! Physics x Times co2 volume mixing ratio used in the PEM |
---|
195 | real ,allocatable :: q_h2o_GCM_phys(:,:) ! Physics x Times h2o mass mixing ratio in the first layer from the GCM [kg/kg] |
---|
196 | real ,allocatable :: q_co2_GCM_phys(:,:) ! Physics x Times co2 mass mixing ratio in the first layer from the GCM [kg/kg] |
---|
197 | real ,allocatable :: q_co2_PEM_phys(:,:) ! Physics x Times co2 mass mixing ratio in the first layer computed in the PEM [kg/kg] |
---|
198 | REAL, ALLOCATABLE :: ps_GCM(:,:,:) ! Lon x Lat x Times: surface pressure from the GCM [Pa] |
---|
199 | REAL, ALLOCATABLE :: ps_GCM_yr1(:,:,:) ! Lon x Lat x Times: surface pressure from the 1st year of the GCM [Pa] |
---|
200 | REAL, ALLOCATABLE :: vmr_co2_gcm(:,:,:) ! Lon x Lat x Times: co2 volumemixing ratio retrieve from the gcm [m^3/m^3] |
---|
201 | REAL, ALLOCATABLE :: q_h2o_GCM(:,:,:) ! Lon x Lat x Times: h2o volume mixing ratio retrieved from the GCM |
---|
202 | REAL ,allocatable :: q_h2o_PEM_phys(:,:) ! Physics x Times: h2o mass mixing ratio computed in the PEM |
---|
203 | integer :: timelen ! # time samples |
---|
204 | REAL :: ave ! intermediate varibale to compute average |
---|
205 | |
---|
206 | REAL, ALLOCATABLE :: p(:,:) ! Physics x Atmosphere: pressure to recompute and write in restart (ngrid,llmp1) |
---|
207 | REAL :: extra_mass ! Intermediate variables Extra mass of a tracer if it is greater than 1 |
---|
208 | REAL :: beta_clap_co2 = 3182.48 ! clapeyron's law for CO2 |
---|
209 | REAL :: alpha_clap_co2 = 23.3494 ! Clapeyron's law for CO2 |
---|
210 | |
---|
211 | |
---|
212 | !!!!!!!!!!!!!!!!!!!!!!!! SLOPE |
---|
213 | REAL ,allocatable :: watercap_slope(:,:) ! Physics x Nslope: watercap per slope |
---|
214 | REAL , dimension(:,:,:), allocatable :: min_co2_ice_slope_1 ! LON x LAT field : minimum of co2 ice at each point for the first year [kg/m^2] |
---|
215 | REAL , dimension(:,:,:), allocatable :: min_co2_ice_slope_2 ! LON x LAT field : minimum of co2 ice at each point for the second year [kg/m^2] |
---|
216 | REAL , dimension(:,:,:), allocatable :: min_h2o_ice_slope_1 ! LON x LAT field : minimum of water ice at each point for the first year [kg/m^2] |
---|
217 | REAL , dimension(:,:,:), allocatable :: min_h2o_ice_slope_2 ! LON x LAT field : minimum of water ice at each point for the second year [kg/m^2] |
---|
218 | REAL , dimension(:,:,:,:), allocatable :: co2_ice_GCM_slope ! LON x LATX NSLOPE x Times field : co2 ice given by the GCM [kg/m^2] |
---|
219 | REAL , dimension(:,:,:), allocatable :: co2_ice_GCM_phys_slope ! Physics x NSLOPE x Times field : co2 ice given by the GCM [kg/m^2] |
---|
220 | REAL, dimension(:,:),allocatable :: initial_co2_ice_sublim_slope ! physical point field : Logical array indicating sublimating point of co2 ice |
---|
221 | REAL, dimension(:,:),allocatable :: initial_h2o_ice_slope ! physical point field : Logical array indicating if there is water ice at initial state |
---|
222 | REAL, dimension(:,:),allocatable :: initial_co2_ice_slope ! physical point field : Logical array indicating if there is co2 ice at initial state |
---|
223 | REAL , dimension(:,:,:), allocatable :: tendencies_co2_ice_slope ! LON x LAT x nslope field : Tendency of evolution of perenial co2 ice over a year |
---|
224 | REAL , dimension(:,:,:), allocatable :: tendencies_h2o_ice_slope ! LON x LAT x slope field : Tendency of evolution of perenial water ice over a year |
---|
225 | REAL, dimension(:,:),allocatable :: tendencies_co2_ice_phys_slope ! physical point xslope field : Tendency of evolution of perenial co2 ice over a year |
---|
226 | REAL, dimension(:,:),allocatable :: tendencies_co2_ice_phys_slope_ini ! physical point x slope field x nslope: Tendency of evolution of perenial co2 ice over a year in the GCM |
---|
227 | REAL, dimension(:,:),allocatable :: tendencies_h2o_ice_phys_slope ! physical pointx slope field : Tendency of evolution of perenial co2 ice |
---|
228 | REAL , dimension(:,:), allocatable :: flag_co2flow(:,:) !(ngrid,nslope) ! To flag where there is a glacier flow |
---|
229 | REAL , dimension(:), allocatable :: flag_co2flow_mesh(:) !(ngrid) ! To flag where there is a glacier flow |
---|
230 | |
---|
231 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!! SURFACE/SOIL |
---|
232 | |
---|
233 | REAL, ALLOCATABLE :: tsurf_ave(:,:,:) ! LON x LAT x SLOPE field : Averaged Surface Temperature [K] |
---|
234 | REAL, ALLOCATABLE :: tsurf_ave_phys(:,:) ! Physic x LAT x SLOPE field : Averaged Surface Temperature [K] |
---|
235 | REAL, ALLOCATABLE :: tsoil_ave(:,:,:,:) ! LON x LAT x SLOPE field : Averaged Soil Temperature [K] |
---|
236 | REAL, ALLOCATABLE :: tsoil_ave_yr1(:,:,:,:) ! LON x LAT x SLOPE field : Averaged Soil Temperature during 1st year of the GCM [K] |
---|
237 | REAL, ALLOCATABLE :: tsoil_ave_phys_yr1(:,:,:) ! Physics x SLOPE field : Averaged Soil Temperature during 1st year [K] |
---|
238 | REAL, ALLOCATABLE :: TI_GCM(:,:,:,:) ! LON x LAT x SLOPE field : Averaged Thermal Inertia [SI] |
---|
239 | REAL, ALLOCATABLE :: tsurf_GCM_timeseries(:,:,:,:) ! LON X LAT x SLOPE XTULES field : Surface Temperature in timeseries [K] |
---|
240 | REAL, ALLOCATABLE :: tsurf_phys_GCM_timeseries(:,:,:) ! Physic x SLOPE XTULES field : NOn averaged Surf Temperature [K] |
---|
241 | |
---|
242 | REAL, ALLOCATABLE :: tsoil_phys_PEM_timeseries(:,:,:,:) !IG x SLOPE XTULES field : NOn averaged Soil Temperature [K] |
---|
243 | REAL, ALLOCATABLE :: tsoil_GCM_timeseries(:,:,:,:,:) !IG x SLOPE XTULES field : NOn averaged Soil Temperature [K] |
---|
244 | REAL, ALLOCATABLE :: tsurf_ave_yr1(:,:,:) ! LON x LAT x SLOPE field : Averaged Surface Temperature of the first year of the gcm [K] |
---|
245 | REAL, ALLOCATABLE :: tsurf_ave_phys_yr1(:,:) ! Physic SLOPE field : Averaged Surface Temperature of first call of the gcm [K] |
---|
246 | REAL, ALLOCATABLE :: inertiesoil(:,:) !Physic x Depth Thermal inertia of the mesh for restart [SI] |
---|
247 | |
---|
248 | REAL, ALLOCATABLE :: TI_GCM_phys(:,:,:) ! Physic x Depth x Slope Averaged GCM Thermal Inertia per slope [SI] |
---|
249 | REAL, ALLOCATABLE :: TI_GCM_start(:,:,:) ! Same but for the start |
---|
250 | |
---|
251 | REAL,ALLOCATABLE :: ice_depth(:,:) ! Physic x SLope: Ice table depth [m] |
---|
252 | REAL,ALLOCATABLE :: TI_locslope(:,:) ! Physic x Soil: Intermediate thermal inertia to compute Tsoil [SI] |
---|
253 | REAL,ALLOCATABLE :: Tsoil_locslope(:,:) ! Physic x Soil: intermediate when computing Tsoil [K] |
---|
254 | REAL,ALLOCATABLE :: Tsurf_locslope(:) ! Physic x Soil: Intermediate surface temperature to compute Tsoil [K] |
---|
255 | REAL,ALLOCATABLE :: alph_locslope(:,:) ! Physic x Soil: Intermediate to compute Tsoil [1] |
---|
256 | REAL,ALLOCATABLE :: beta_locslope(:,:) ! Physic x Soil : Intermediate tocompute Tsoil [K] |
---|
257 | REAL,ALLOCATABLE :: watersurf_density_timeseries(:,:,:,:) ! Lon x Lat x Slope x Times: water surface density, time series [kg/m^3] |
---|
258 | REAL,ALLOCATABLE :: watersoil_density_timeseries(:,:,:,:,:) ! Lon x Lat x Soil x Slope x Times water soil density, time series [kg /m^3] |
---|
259 | REAL,ALLOCATABLE :: watersurf_density_phys_timeseries(:,:,:) ! Physic x Slope x Times, water surface density, time series [kg/m^3] |
---|
260 | REAL,ALLOCATABLE :: watersurf_density_phys_ave(:,:) ! Physic x Slope, water surface density, yearly averaged [kg/m^3] |
---|
261 | REAL,ALLOCATABLE :: watersoil_density_phys_PEM_timeseries(:,:,:,:) ! Physic x Soil x Slope x Times, water soil density, time series [kg/m^3] |
---|
262 | REAL,ALLOCATABLE :: watersoil_density_phys_PEM_ave(:,:,:) ! Physic x Soil x SLopes, water soil density, yearly averaged [kg/m^3] |
---|
263 | REAL,ALLOCATABLE :: Tsurfave_before_saved(:,:) ! Surface temperature saved from previous time step [K] |
---|
264 | REAL, ALLOCATABLE :: delta_co2_adsorbded(:) ! Physics: quantity of CO2 that is exchanged because of adsorption / desorption [kg/m^2] |
---|
265 | REAL, ALLOCATABLE :: delta_h2o_adsorbded(:) ! Physics: quantity of H2O that is exchanged because of adsorption / desorption [kg/m^2] |
---|
266 | REAL :: totmassco2_adsorbded ! Total mass of CO2 that is exchanged because of adsorption / desoprtion over the planets [kg] |
---|
267 | REAL :: totmassh2o_adsorbded ! Total mass of H2O that is exchanged because of adsorption / desoprtion over the planets [kg] |
---|
268 | REAL :: alpha_clap_h2o = -6143.7 ! coeffcient to compute psat, from Murphie et Kood 2005 [K] |
---|
269 | REAL :: beta_clap_h2o = 28.9074 ! coefficient to compute psat, from Murphie et Kood 2005 [1] |
---|
270 | LOGICAL :: bool_sublim ! logical to check if there is sublimation or not |
---|
271 | |
---|
272 | !! Some parameters for the PEM run |
---|
273 | REAL, PARAMETER :: year_step = 1 ! timestep for the pem |
---|
274 | INTEGER :: year_iter ! number of iteration |
---|
275 | INTEGER :: year_iter_max ! maximum number of iterations before stopping |
---|
276 | REAL :: timestep ! timestep [s] |
---|
277 | #ifdef CPP_STD |
---|
278 | ! INTEGER :: nsplit_phys=1 |
---|
279 | ! LOGICAL :: iflag_phys=.true. |
---|
280 | REAL :: frost_albedo_threshold=0.05 ! frost albedo threeshold to convert fresh frost to old ice |
---|
281 | REAL :: albedo_h2o_frost ! albedo of h2o frost |
---|
282 | REAL,ALLOCATABLE :: co2ice(:) ! Physics: co2 ice mesh averaged [kg/m^2] |
---|
283 | #endif |
---|
284 | |
---|
285 | !!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
286 | |
---|
287 | ! Loop variable |
---|
288 | INTEGER :: i,j,ig0,l,ig,nnq,t,islope,ig_loop,islope_loop,iloop,isoil |
---|
289 | #ifndef CPP_STD |
---|
290 | ! Parallel variables |
---|
291 | is_sequential=.true. |
---|
292 | is_parallel=.false. |
---|
293 | is_mpi_root=.true. |
---|
294 | is_omp_root=.true. |
---|
295 | is_master=.true. |
---|
296 | #endif |
---|
297 | |
---|
298 | day_ini=0 !test |
---|
299 | time_phys=0. !test |
---|
300 | |
---|
301 | ! Some constants |
---|
302 | |
---|
303 | ngrid=ngridmx |
---|
304 | nlayer=llm |
---|
305 | |
---|
306 | m_co2 = 44.01E-3 ! CO2 molecular mass (kg/mol) |
---|
307 | m_noco2 = 33.37E-3 ! Non condensible mol mass (kg/mol) |
---|
308 | A =(1/m_co2 - 1/m_noco2) |
---|
309 | B=1/m_noco2 |
---|
310 | |
---|
311 | year_day=669 |
---|
312 | daysec=88775. |
---|
313 | dtphys=0 |
---|
314 | timestep=year_day*daysec/year_step |
---|
315 | |
---|
316 | !------------------------ |
---|
317 | |
---|
318 | ! I Initialisation |
---|
319 | ! I_a READ run.def |
---|
320 | |
---|
321 | !------------------------ |
---|
322 | |
---|
323 | !----------------------------READ run.def --------------------- |
---|
324 | CALL conf_gcm( 99, .TRUE. ) |
---|
325 | CALL conf_pem |
---|
326 | |
---|
327 | call infotrac_init |
---|
328 | nq=nqtot |
---|
329 | |
---|
330 | !------------------------ |
---|
331 | |
---|
332 | ! I Initialisation |
---|
333 | ! I_a READ run.def |
---|
334 | ! I_b READ of start_evol.nc and starfi_evol.nc |
---|
335 | |
---|
336 | !------------------------ |
---|
337 | |
---|
338 | !----------------------------Initialisation : READ some constant of startfi_evol.nc --------------------- |
---|
339 | |
---|
340 | ! In the gcm, these values are given to the physic by the dynamic. |
---|
341 | ! Here we simply read them in the startfi_evol.nc file |
---|
342 | status =nf90_open(FILE_NAME, NF90_NOWRITE, ncid) |
---|
343 | |
---|
344 | allocate(longitude(ngrid)) |
---|
345 | allocate(latitude(ngrid)) |
---|
346 | allocate(cell_area(ngrid)) |
---|
347 | |
---|
348 | status = nf90_inq_varid(ncid, "longitude", lonvarid) |
---|
349 | status = nf90_get_var(ncid, lonvarid, longitude) |
---|
350 | |
---|
351 | status = nf90_inq_varid(ncid, "latitude", latvarid) |
---|
352 | status = nf90_get_var(ncid, latvarid, latitude) |
---|
353 | |
---|
354 | status = nf90_inq_varid(ncid, "area", areavarid) |
---|
355 | status = nf90_get_var(ncid, areavarid, cell_area) |
---|
356 | |
---|
357 | call ini_comsoil_h(ngrid) |
---|
358 | |
---|
359 | status = nf90_inq_varid(ncid, "soildepth", sdvarid) |
---|
360 | status = nf90_get_var(ncid, sdvarid, mlayer) |
---|
361 | |
---|
362 | status =nf90_close(ncid) |
---|
363 | |
---|
364 | !----------------------------READ start.nc --------------------- |
---|
365 | |
---|
366 | allocate(q(ip1jmp1,llm,nqtot)) |
---|
367 | CALL dynetat0(FILE_NAME_start,vcov,ucov, & |
---|
368 | teta,q,masse,ps,phis, time_0) |
---|
369 | |
---|
370 | CALL iniconst !new |
---|
371 | CALL inigeom |
---|
372 | allocate(ap(nlayer+1)) |
---|
373 | allocate(bp(nlayer+1)) |
---|
374 | status =nf90_open(FILE_NAME_start, NF90_NOWRITE, ncid) |
---|
375 | status = nf90_inq_varid(ncid, "ap", apvarid) |
---|
376 | status = nf90_get_var(ncid, apvarid, ap) |
---|
377 | status = nf90_inq_varid(ncid, "bp", bpvarid) |
---|
378 | status = nf90_get_var(ncid, bpvarid, bp) |
---|
379 | status =nf90_close(ncid) |
---|
380 | |
---|
381 | CALL iniphysiq(iim,jjm,llm, & |
---|
382 | (jjm-1)*iim+2,comm_lmdz, & |
---|
383 | daysec,day_ini,dtphys/nsplit_phys, & |
---|
384 | rlatu,rlatv,rlonu,rlonv,aire,cu,cv,rad,g,r,cpp, & |
---|
385 | iflag_phys) |
---|
386 | |
---|
387 | !----------------------------READ startfi.nc --------------------- |
---|
388 | |
---|
389 | ! First we read the initial state (starfi.nc) |
---|
390 | |
---|
391 | allocate(watercap_slope(ngrid,nslope)) |
---|
392 | allocate(TI_GCM_start(ngrid,nsoilmx,nslope)) |
---|
393 | allocate(inertiesoil(ngrid,nsoilmx)) |
---|
394 | |
---|
395 | #ifndef CPP_STD |
---|
396 | CALL phyetat0 (FILE_NAME,0,0, & |
---|
397 | nsoilmx,ngrid,nlayer,nq, & |
---|
398 | day_ini,time_phys, & |
---|
399 | tsurf,tsoil,albedo,emis, & |
---|
400 | q2,qsurf,co2ice,tauscaling,totcloudfrac,wstar, & |
---|
401 | watercap,inertiesoil,nslope,tsurf_slope, & |
---|
402 | tsoil_slope,co2ice_slope,def_slope,def_slope_mean, & |
---|
403 | subslope_dist,major_slope,albedo_slope,emiss_slope, TI_GCM_start, & |
---|
404 | qsurf_slope,watercap_slope) |
---|
405 | |
---|
406 | if(soil_pem) then |
---|
407 | deallocate(TI_GCM_start) !not used then |
---|
408 | endif |
---|
409 | |
---|
410 | ! Remove unphysical values of surface tracer |
---|
411 | DO i=1,ngrid |
---|
412 | DO nnq=1,nqtot |
---|
413 | DO islope=1,nslope |
---|
414 | if(qsurf_slope(i,nnq,islope).LT.0) then |
---|
415 | qsurf_slope(i,nnq,islope)=0. |
---|
416 | endif |
---|
417 | enddo |
---|
418 | enddo |
---|
419 | enddo |
---|
420 | |
---|
421 | #else |
---|
422 | call phys_state_var_init(nq) |
---|
423 | IF (.NOT.ALLOCATED(noms)) ALLOCATE(noms(nq)) ! (because noms is an argument of physdem1 whether or not tracer is on) |
---|
424 | call initracer(ngrid,nq) |
---|
425 | call iniaerosol() |
---|
426 | call phyetat0(.true., & |
---|
427 | ngrid,nlayer,FILE_NAME,0,0,nsoilmx,nq, & |
---|
428 | day_ini,time_phys,tsurf,tsoil,emis,q2,qsurf, & |
---|
429 | cloudfrac,totcloudfrac,hice, & |
---|
430 | rnat,pctsrf_sic,tslab, tsea_ice,sea_ice) |
---|
431 | call surfini(ngrid,nq,qsurf,albedo,albedo_bareground,albedo_snow_SPECTV,albedo_co2_ice_SPECTV) |
---|
432 | |
---|
433 | call ini_comslope_h(ngrid,nsoilmx,nq) |
---|
434 | |
---|
435 | allocate(co2ice(ngrid)) |
---|
436 | co2ice(:)=qsurf(:,igcm_co2_ice) |
---|
437 | co2ice_slope(:,1)=co2ice(:) |
---|
438 | tsurf_slope(:,1)=tsurf(:) |
---|
439 | |
---|
440 | if (nslope.eq.1) then |
---|
441 | def_slope(1) = 0 |
---|
442 | def_slope(2) = 0 |
---|
443 | def_slope_mean=0 |
---|
444 | subslope_dist(:,1) = 1. |
---|
445 | endif |
---|
446 | |
---|
447 | ! Remove unphysical values of surface tracer |
---|
448 | DO i=1,ngrid |
---|
449 | DO nnq=1,nqtot |
---|
450 | qsurf_slope(i,nnq,1)=qsurf(i,nnq) |
---|
451 | if(qsurf(i,nnq).LT.0) then |
---|
452 | qsurf(i,nnq)=0. |
---|
453 | endif |
---|
454 | enddo |
---|
455 | enddo |
---|
456 | #endif |
---|
457 | |
---|
458 | DO nnq=1,nqtot |
---|
459 | if(noms(nnq).eq."h2o_ice") igcm_h2o_ice = nnq |
---|
460 | ENDDO |
---|
461 | |
---|
462 | !------------------------ |
---|
463 | |
---|
464 | ! I Initialisation |
---|
465 | ! I_a READ run.def |
---|
466 | ! I_b READ of start_evol.nc and starfi_evol.nc |
---|
467 | ! I_c Subslope parametrisation |
---|
468 | |
---|
469 | !------------------------ |
---|
470 | |
---|
471 | !----------------------------Subslope parametrisation definition --------------------- |
---|
472 | |
---|
473 | ! Define some slope statistics |
---|
474 | iflat=1 |
---|
475 | DO islope=2,nslope |
---|
476 | IF(abs(def_slope_mean(islope)).lt. & |
---|
477 | abs(def_slope_mean(iflat))) THEN |
---|
478 | iflat = islope |
---|
479 | ENDIF |
---|
480 | ENDDO |
---|
481 | |
---|
482 | PRINT*,'Flat slope for islope = ',iflat |
---|
483 | PRINT*,'corresponding criterium = ',def_slope_mean(iflat) |
---|
484 | |
---|
485 | |
---|
486 | allocate(flag_co2flow(ngrid,nslope)) |
---|
487 | allocate(flag_co2flow_mesh(ngrid)) |
---|
488 | |
---|
489 | flag_co2flow(:,:) = 0. |
---|
490 | flag_co2flow_mesh(:) = 0. |
---|
491 | |
---|
492 | |
---|
493 | !---------------------------- READ GCM data --------------------- |
---|
494 | |
---|
495 | ! I Initialisation |
---|
496 | ! I_a READ run.def |
---|
497 | ! I_b READ of start_evol.nc and starfi_evol.nc |
---|
498 | ! I_c Subslope parametrisation |
---|
499 | ! I_d READ GCM data and convert to the physical grid |
---|
500 | |
---|
501 | !------------------------ |
---|
502 | |
---|
503 | ! First we read the evolution of water and co2 ice (and the mass mixing ratio) over the first year of the GCM run, saving only the minimum value |
---|
504 | |
---|
505 | call nb_time_step_GCM("data_GCM_Y1.nc",timelen) |
---|
506 | |
---|
507 | allocate(min_h2o_ice_s_1(iim+1,jjm+1)) |
---|
508 | allocate(min_co2_ice_s_1(iim+1,jjm+1)) |
---|
509 | allocate(vmr_co2_gcm(iim+1,jjm+1,timelen)) |
---|
510 | allocate(q_h2o_GCM(iim+1,jjm+1,timelen)) |
---|
511 | allocate(q_co2_GCM(iim+1,jjm+1,timelen)) |
---|
512 | allocate(ps_GCM(iim+1,jjm+1,timelen)) |
---|
513 | allocate(ps_GCM_yr1(iim+1,jjm+1,timelen)) |
---|
514 | allocate(min_co2_ice_slope_1(iim+1,jjm+1,nslope)) |
---|
515 | allocate(min_h2o_ice_slope_1(iim+1,jjm+1,nslope)) |
---|
516 | allocate(tsurf_ave(iim+1,jjm+1,nslope)) |
---|
517 | allocate(tsurf_ave_yr1(iim+1,jjm+1,nslope)) |
---|
518 | allocate(tsurf_ave_phys(ngrid,nslope)) |
---|
519 | allocate(tsurf_ave_phys_yr1(ngrid,nslope)) |
---|
520 | allocate(tsurf_GCM_timeseries(iim+1,jjm+1,nslope,timelen)) |
---|
521 | allocate(tsurf_phys_GCM_timeseries(ngrid,nslope,timelen)) |
---|
522 | allocate(co2_ice_GCM_phys_slope(ngrid,nslope,timelen)) |
---|
523 | allocate(co2_ice_GCM_slope(iim+1,jjm+1,nslope,timelen)) |
---|
524 | allocate(Tsurfave_before_saved(ngrid,nslope)) |
---|
525 | allocate(tsoil_ave(iim+1,jjm+1,nsoilmx,nslope)) |
---|
526 | allocate(tsoil_ave_yr1(iim+1,jjm+1,nsoilmx,nslope)) |
---|
527 | allocate(tsoil_ave_phys_yr1(ngrid,nsoilmx_PEM,nslope)) |
---|
528 | allocate(TI_GCM(iim+1,jjm+1,nsoilmx,nslope)) |
---|
529 | allocate(tsoil_GCM_timeseries(iim+1,jjm+1,nsoilmx,nslope,timelen)) |
---|
530 | allocate(tsoil_phys_PEM_timeseries(ngrid,nsoilmx_PEM,nslope,timelen)) |
---|
531 | allocate(delta_co2_adsorbded(ngrid)) |
---|
532 | allocate(delta_h2o_adsorbded(ngrid)) |
---|
533 | allocate(watersurf_density_timeseries(iim+1,jjm+1,nslope,timelen)) |
---|
534 | allocate(watersoil_density_timeseries(iim+1,jjm+1,nsoilmx,nslope,timelen)) |
---|
535 | allocate(watersurf_density_phys_timeseries(ngrid,nslope,timelen)) |
---|
536 | allocate(watersurf_density_phys_ave(ngrid,nslope)) |
---|
537 | allocate(watersoil_density_phys_PEM_timeseries(ngrid,nsoilmx_PEM,nslope,timelen)) |
---|
538 | allocate(watersoil_density_phys_PEM_ave(ngrid,nsoilmx_PEM,nslope)) |
---|
539 | print *, "Downloading data Y1..." |
---|
540 | |
---|
541 | call read_data_GCM("data_GCM_Y1.nc",timelen, iim,jjm, min_h2o_ice_s_1,min_co2_ice_s_1,vmr_co2_gcm,ps_GCM_yr1,min_co2_ice_slope_1,min_h2o_ice_slope_1,& |
---|
542 | nslope,tsurf_ave_yr1,tsoil_ave_yr1, tsurf_GCM_timeseries,tsoil_GCM_timeseries,TI_GCM,q_co2_GCM,q_h2o_GCM,co2_ice_GCM_slope, & |
---|
543 | watersurf_density_timeseries,watersoil_density_timeseries) |
---|
544 | |
---|
545 | ! Then we read the evolution of water and co2 ice (and the mass mixing ratio) over the second year of the GCM run, saving only the minimum value |
---|
546 | |
---|
547 | print *, "Downloading data Y1 done" |
---|
548 | |
---|
549 | allocate(min_h2o_ice_s_2(iim+1,jjm+1)) |
---|
550 | allocate(min_co2_ice_s_2(iim+1,jjm+1)) |
---|
551 | allocate(min_co2_ice_slope_2(iim+1,jjm+1,nslope)) |
---|
552 | allocate(min_h2o_ice_slope_2(iim+1,jjm+1,nslope)) |
---|
553 | |
---|
554 | print *, "Downloading data Y2" |
---|
555 | |
---|
556 | call read_data_GCM("data_GCM_Y2.nc",timelen,iim,jjm ,min_h2o_ice_s_2,min_co2_ice_s_2,vmr_co2_gcm,ps_GCM,min_co2_ice_slope_2,min_h2o_ice_slope_2, & |
---|
557 | nslope,tsurf_ave,tsoil_ave, tsurf_GCM_timeseries,tsoil_GCM_timeseries,TI_GCM,q_co2_GCM,q_h2o_GCM,co2_ice_GCM_slope, & |
---|
558 | watersurf_density_timeseries,watersoil_density_timeseries) |
---|
559 | |
---|
560 | print *, "Downloading data Y2 done" |
---|
561 | |
---|
562 | ! The variables in the dynamic grid are transfered to the physical grid |
---|
563 | |
---|
564 | allocate(vmr_co2_gcm_phys(ngrid,timelen)) |
---|
565 | allocate(vmr_co2_pem_phys(ngrid,timelen)) |
---|
566 | allocate(q_h2o_GCM_phys(ngrid,timelen)) |
---|
567 | allocate(q_h2o_PEM_phys(ngrid,timelen)) |
---|
568 | allocate(q_co2_GCM_phys(ngrid,timelen)) |
---|
569 | allocate(q_co2_PEM_phys(ngrid,timelen)) |
---|
570 | allocate(ps_phys(ngrid)) |
---|
571 | allocate(ps_phys_timeseries(ngrid,timelen)) |
---|
572 | allocate(ps_phys_timeseries_yr1(ngrid,timelen)) |
---|
573 | |
---|
574 | CALL gr_dyn_fi(timelen,iip1,jjp1,ngridmx,vmr_co2_gcm,vmr_co2_gcm_phys) |
---|
575 | CALL gr_dyn_fi(timelen,iip1,jjp1,ngridmx,q_h2o_GCM,q_h2o_GCM_phys) |
---|
576 | CALL gr_dyn_fi(timelen,iip1,jjp1,ngridmx,q_co2_GCM,q_co2_GCM_phys) |
---|
577 | call gr_dyn_fi(1,iip1,jjp1,ngridmx,ps,ps_phys) |
---|
578 | call gr_dyn_fi(timelen,iip1,jjp1,ngridmx,ps_GCM,ps_phys_timeseries) |
---|
579 | call gr_dyn_fi(timelen,iip1,jjp1,ngridmx,ps_GCM_yr1,ps_phys_timeseries_yr1) |
---|
580 | CALL gr_dyn_fi(nslope,iip1,jjp1,ngridmx,tsurf_ave,tsurf_ave_phys) |
---|
581 | CALL gr_dyn_fi(nslope,iip1,jjp1,ngridmx,tsurf_ave_yr1,tsurf_ave_phys_yr1) |
---|
582 | |
---|
583 | deallocate(vmr_co2_gcm) |
---|
584 | deallocate(q_h2o_GCM) |
---|
585 | deallocate(q_co2_GCM) |
---|
586 | deallocate(ps_GCM) |
---|
587 | deallocate(ps_GCM_yr1) |
---|
588 | deallocate(tsurf_ave) |
---|
589 | deallocate(tsurf_ave_yr1) |
---|
590 | |
---|
591 | q_co2_PEM_phys(:,:)= q_co2_GCM_phys(:,:) |
---|
592 | q_h2o_PEM_phys(:,:)= q_h2o_GCM_phys(:,:) |
---|
593 | |
---|
594 | !------------------------ |
---|
595 | |
---|
596 | ! I Initialisation |
---|
597 | ! I_a READ run.def |
---|
598 | ! I_b READ of start_evol.nc and starfi_evol.nc |
---|
599 | ! I_c Subslope parametrisation |
---|
600 | ! I_d READ GCM data and convert to the physical grid |
---|
601 | ! I_e Initialisation of the PEM variable and soil |
---|
602 | |
---|
603 | !------------------------ |
---|
604 | |
---|
605 | !---------------------------- Initialisation of the PEM soil and values --------------------- |
---|
606 | |
---|
607 | call end_comsoil_h_PEM |
---|
608 | call ini_comsoil_h_PEM(ngrid,nslope) |
---|
609 | |
---|
610 | allocate(ice_depth(ngrid,nslope)) |
---|
611 | ice_depth(:,:) = 0. |
---|
612 | allocate(TI_GCM_phys(ngrid,nsoilmx,nslope)) |
---|
613 | |
---|
614 | DO islope = 1,nslope |
---|
615 | if(soil_pem) then |
---|
616 | CALL gr_dyn_fi(nsoilmx,iip1,jjp1,ngridmx,TI_GCM(:,:,:,islope),TI_GCM_phys(:,:,islope)) |
---|
617 | endif !soil_pem |
---|
618 | DO t=1,timelen |
---|
619 | CALL gr_dyn_fi(1,iip1,jjp1,ngridmx,tsurf_GCM_timeseries(:,:,islope,t),tsurf_phys_GCM_timeseries(:,islope,t)) |
---|
620 | CALL gr_dyn_fi(1,iip1,jjp1,ngridmx,co2_ice_GCM_slope(:,:,islope,t),co2_ice_GCM_phys_slope(:,islope,t)) |
---|
621 | enddo |
---|
622 | ENDDO |
---|
623 | |
---|
624 | deallocate(co2_ice_GCM_slope) |
---|
625 | deallocate(TI_GCM) |
---|
626 | deallocate(tsurf_GCM_timeseries) |
---|
627 | |
---|
628 | |
---|
629 | if(soil_pem) then |
---|
630 | call soil_settings_PEM(ngrid,nslope,nsoilmx_PEM,nsoilmx,TI_GCM_phys,TI_PEM) |
---|
631 | DO islope = 1,nslope |
---|
632 | DO t=1,timelen |
---|
633 | CALL gr_dyn_fi(1,iip1,jjp1,ngridmx,watersurf_density_timeseries(:,:,islope,t),watersurf_density_phys_timeseries(:,islope,t)) |
---|
634 | ENDDO |
---|
635 | DO l=1,nsoilmx |
---|
636 | CALL gr_dyn_fi(1,iip1,jjp1,ngridmx,tsoil_ave_yr1(:,:,l,islope),tsoil_ave_phys_yr1(:,l,islope)) |
---|
637 | CALL gr_dyn_fi(1,iip1,jjp1,ngridmx,tsoil_ave(:,:,l,islope),tsoil_PEM(:,l,islope)) |
---|
638 | DO t=1,timelen |
---|
639 | CALL gr_dyn_fi(1,iip1,jjp1,ngridmx,tsoil_GCM_timeseries(:,:,l,islope,t),tsoil_phys_PEM_timeseries(:,l,islope,t)) |
---|
640 | CALL gr_dyn_fi(1,iip1,jjp1,ngridmx,watersoil_density_timeseries(:,:,l,islope,t),watersoil_density_phys_PEM_timeseries(:,l,islope,t)) |
---|
641 | ENDDO |
---|
642 | |
---|
643 | ENDDO |
---|
644 | DO l=nsoilmx+1,nsoilmx_PEM |
---|
645 | CALL gr_dyn_fi(1,iip1,jjp1,ngridmx,tsoil_ave_yr1(:,:,nsoilmx,islope),tsoil_ave_phys_yr1(:,l,islope)) |
---|
646 | CALL gr_dyn_fi(1,iip1,jjp1,ngridmx,tsoil_ave(:,:,nsoilmx,islope),tsoil_PEM(:,l,islope)) |
---|
647 | DO t=1,timelen |
---|
648 | watersoil_density_phys_PEM_timeseries(:,l,islope,t) = watersoil_density_phys_PEM_timeseries(:,nsoilmx,islope,t) |
---|
649 | ENDDO |
---|
650 | ENDDO |
---|
651 | ENDDO |
---|
652 | watersoil_density_phys_PEM_ave(:,:,:) = SUM(watersoil_density_phys_PEM_timeseries(:,:,:,:),4)/timelen |
---|
653 | watersurf_density_phys_ave(:,:) = SUM(watersurf_density_phys_timeseries(:,:,:),3)/timelen |
---|
654 | deallocate(watersurf_density_timeseries) |
---|
655 | deallocate(watersurf_density_phys_timeseries) |
---|
656 | deallocate(watersoil_density_timeseries) |
---|
657 | deallocate(tsoil_ave_yr1) |
---|
658 | deallocate(tsoil_ave) |
---|
659 | deallocate(tsoil_GCM_timeseries) |
---|
660 | endif !soil_pem |
---|
661 | |
---|
662 | !------------------------ |
---|
663 | |
---|
664 | ! I Initialisation |
---|
665 | ! I_a READ run.def |
---|
666 | ! I_b READ of start_evol.nc and starfi_evol.nc |
---|
667 | ! I_c Subslope parametrisation |
---|
668 | ! I_d READ GCM data and convert to the physical grid |
---|
669 | ! I_e Initialisation of the PEM variable and soil |
---|
670 | ! I_f Compute tendencies & Save initial situation |
---|
671 | |
---|
672 | !----- Compute tendencies from the PCM run |
---|
673 | |
---|
674 | allocate(tendencies_h2o_ice(iim+1,jjm+1)) |
---|
675 | allocate(tendencies_h2o_ice_phys(ngrid)) |
---|
676 | allocate(tendencies_co2_ice(iim+1,jjm+1)) |
---|
677 | allocate(tendencies_co2_ice_phys(ngrid)) |
---|
678 | allocate(tendencies_co2_ice_slope(iim+1,jjm+1,nslope)) |
---|
679 | allocate(tendencies_co2_ice_phys_slope(ngrid,nslope)) |
---|
680 | allocate(tendencies_co2_ice_phys_slope_ini(ngrid,nslope)) |
---|
681 | allocate(tendencies_h2o_ice_slope(iim+1,jjm+1,nslope)) |
---|
682 | allocate(tendencies_h2o_ice_phys_slope(ngrid,nslope)) |
---|
683 | |
---|
684 | ! Compute the tendencies of the evolution of ice over the years |
---|
685 | |
---|
686 | call compute_tendencies(tendencies_h2o_ice,min_h2o_ice_s_1,& |
---|
687 | min_h2o_ice_s_2,iim,jjm,ngrid,tendencies_h2o_ice_phys) |
---|
688 | |
---|
689 | call compute_tendencies(tendencies_co2_ice,min_co2_ice_s_1,& |
---|
690 | min_co2_ice_s_2,iim,jjm,ngrid,tendencies_co2_ice_phys) |
---|
691 | |
---|
692 | call compute_tendencies_slope(tendencies_co2_ice_slope,min_co2_ice_slope_1,& |
---|
693 | min_co2_ice_slope_2,iim,jjm,ngrid,tendencies_co2_ice_phys_slope,nslope) |
---|
694 | |
---|
695 | tendencies_co2_ice_phys_slope_ini(:,:)=tendencies_co2_ice_phys_slope(:,:) |
---|
696 | |
---|
697 | call compute_tendencies_slope(tendencies_h2o_ice_slope,min_h2o_ice_slope_1,& |
---|
698 | min_h2o_ice_slope_2,iim,jjm,ngrid,tendencies_h2o_ice_phys_slope,nslope) |
---|
699 | |
---|
700 | !------------------------ |
---|
701 | |
---|
702 | ! I Initialisation |
---|
703 | ! I_a READ run.def |
---|
704 | ! I_b READ of start_evol.nc and starfi_evol.nc |
---|
705 | ! I_c Subslope parametrisation |
---|
706 | ! I_d READ GCM data and convert to the physical grid |
---|
707 | ! I_e Initialisation of the PEM variable and soil |
---|
708 | ! I_f Compute tendencies & Save initial situation |
---|
709 | ! I_g Save initial PCM situation |
---|
710 | |
---|
711 | !---------------------------- Save initial PCM situation --------------------- |
---|
712 | |
---|
713 | allocate(initial_h2o_ice(ngrid)) |
---|
714 | allocate(initial_co2_ice(ngrid)) |
---|
715 | allocate(initial_co2_ice_sublim_slope(ngrid,nslope)) |
---|
716 | allocate(initial_co2_ice_slope(ngrid,nslope)) |
---|
717 | allocate(initial_h2o_ice_slope(ngrid,nslope)) |
---|
718 | |
---|
719 | ! We save the places where water ice is sublimating |
---|
720 | ! We compute the surface of water ice sublimating |
---|
721 | ini_surf=0. |
---|
722 | ini_surf_co2=0. |
---|
723 | ini_surf_h2o=0. |
---|
724 | Total_surface=0. |
---|
725 | do i=1,ngrid |
---|
726 | Total_surface=Total_surface+cell_area(i) |
---|
727 | if (tendencies_h2o_ice_phys(i).LT.0) then |
---|
728 | initial_h2o_ice(i)=1. |
---|
729 | ini_surf=ini_surf+cell_area(i) |
---|
730 | else |
---|
731 | initial_h2o_ice(i)=0. |
---|
732 | endif |
---|
733 | do islope=1,nslope |
---|
734 | if (tendencies_co2_ice_phys_slope(i,islope).LT.0) then |
---|
735 | initial_co2_ice_sublim_slope(i,islope)=1. |
---|
736 | ini_surf_co2=ini_surf_co2+cell_area(i)*subslope_dist(i,islope) |
---|
737 | else |
---|
738 | initial_co2_ice_sublim_slope(i,islope)=0. |
---|
739 | endif |
---|
740 | if (co2ice_slope(i,islope).GT.0) then |
---|
741 | initial_co2_ice_slope(i,islope)=1. |
---|
742 | else |
---|
743 | initial_co2_ice_slope(i,islope)=0. |
---|
744 | endif |
---|
745 | if (tendencies_h2o_ice_phys_slope(i,islope).LT.0) then |
---|
746 | initial_h2o_ice_slope(i,islope)=1. |
---|
747 | ini_surf_h2o=ini_surf_h2o+cell_area(i)*subslope_dist(i,islope) |
---|
748 | else |
---|
749 | initial_h2o_ice_slope(i,islope)=0. |
---|
750 | endif |
---|
751 | enddo |
---|
752 | enddo |
---|
753 | |
---|
754 | print *, "Total initial surface of co2ice sublimating (slope)=", ini_surf_co2 |
---|
755 | print *, "Total initial surface of h2o ice sublimating=", ini_surf |
---|
756 | print *, "Total initial surface of h2o ice sublimating (slope)=", ini_surf_h2o |
---|
757 | print *, "Total surface of the planet=", Total_surface |
---|
758 | |
---|
759 | allocate(zplev_gcm(ngrid,nlayer+1)) |
---|
760 | |
---|
761 | DO l=1,nlayer+1 |
---|
762 | DO ig=1,ngrid |
---|
763 | zplev_gcm(ig,l) = ap(l) + bp(l)*ps_phys(ig) |
---|
764 | ENDDO |
---|
765 | ENDDO |
---|
766 | |
---|
767 | global_ave_press_old=0. |
---|
768 | do i=1,ngrid |
---|
769 | global_ave_press_old=global_ave_press_old+cell_area(i)*ps_phys(i)/Total_surface |
---|
770 | enddo |
---|
771 | |
---|
772 | global_ave_press_GCM=global_ave_press_old |
---|
773 | global_ave_press_new=global_ave_press_old |
---|
774 | print *, "Initial global average pressure=", global_ave_press_GCM |
---|
775 | |
---|
776 | !------------------------ |
---|
777 | |
---|
778 | ! I Initialisation |
---|
779 | ! I_a READ run.def |
---|
780 | ! I_b READ of start_evol.nc and starfi_evol.nc |
---|
781 | ! I_c Subslope parametrisation |
---|
782 | ! I_d READ GCM data and convert to the physical grid |
---|
783 | ! I_e Initialisation of the PEM variable and soil |
---|
784 | ! I_f Compute tendencies & Save initial situation |
---|
785 | ! I_g Save initial PCM situation |
---|
786 | ! I_h Read the PEMstart |
---|
787 | |
---|
788 | !---------------------------- Read the PEMstart --------------------- |
---|
789 | |
---|
790 | call pemetat0("startfi_PEM.nc",ngrid,nsoilmx,nsoilmx_PEM,nslope,timelen,timestep,TI_PEM,tsoil_ave_phys_yr1,tsoil_PEM,ice_depth, & |
---|
791 | tsurf_ave_phys_yr1, tsurf_ave_phys, q_co2_PEM_phys, q_h2o_PEM_phys,ps_phys_timeseries,tsoil_phys_PEM_timeseries,& |
---|
792 | tendencies_h2o_ice_phys_slope,tendencies_co2_ice_phys_slope,co2ice_slope,qsurf_slope(:,igcm_h2o_ice,:),global_ave_press_GCM,& |
---|
793 | watersurf_density_phys_ave,watersoil_density_phys_PEM_ave, & |
---|
794 | co2_adsorbded_phys,delta_co2_adsorbded,h2o_adsorbded_phys,delta_h2o_adsorbded) |
---|
795 | |
---|
796 | if(soil_pem) then |
---|
797 | totmassco2_adsorbded = 0. |
---|
798 | totmassh2o_adsorbded = 0. |
---|
799 | do ig = 1,ngrid |
---|
800 | do islope =1, nslope |
---|
801 | do l = 1,nsoilmx_PEM - 1 |
---|
802 | totmassco2_adsorbded = totmassco2_adsorbded + co2_adsorbded_phys(ig,l,islope)*(layer_PEM(l+1) - layer_PEM(l))* & |
---|
803 | subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.) * & |
---|
804 | cell_area(ig) |
---|
805 | totmassh2o_adsorbded = totmassh2o_adsorbded + h2o_adsorbded_phys(ig,l,islope)*(layer_PEM(l+1) - layer_PEM(l))* & |
---|
806 | subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.) * & |
---|
807 | cell_area(ig) |
---|
808 | enddo |
---|
809 | enddo |
---|
810 | enddo |
---|
811 | |
---|
812 | write(*,*) "Tot mass of CO2 in the regolith=", totmassco2_adsorbded |
---|
813 | write(*,*) "Tot mass of H2O in the regolith=", totmassh2o_adsorbded |
---|
814 | deallocate(tsoil_ave_phys_yr1) |
---|
815 | endif !soil_pem |
---|
816 | deallocate(tsurf_ave_phys_yr1) |
---|
817 | deallocate(ps_phys_timeseries_yr1) |
---|
818 | |
---|
819 | !------------------------ |
---|
820 | |
---|
821 | ! I Initialisation |
---|
822 | ! I_a READ run.def |
---|
823 | ! I_b READ of start_evol.nc and starfi_evol.nc |
---|
824 | ! I_c Subslope parametrisation |
---|
825 | ! I_d READ GCM data and convert to the physical grid |
---|
826 | ! I_e Initialisation of the PEM variable and soil |
---|
827 | ! I_f Compute tendencies & Save initial situation |
---|
828 | ! I_g Save initial PCM situation |
---|
829 | ! I_h Read the PEMstar |
---|
830 | ! I_i Compute orbit criterion |
---|
831 | #ifndef CPP_STD |
---|
832 | CALL iniorbit(aphelie,periheli,year_day,peri_day,obliquit) |
---|
833 | #else |
---|
834 | CALL iniorbit(apoastr, periastr, year_day, peri_day,obliquit) |
---|
835 | #endif |
---|
836 | |
---|
837 | if(evol_orbit_pem) then |
---|
838 | call orbit_param_criterion(year_iter_max) |
---|
839 | else |
---|
840 | year_iter_max=Max_iter_pem |
---|
841 | endif |
---|
842 | |
---|
843 | !--------------------------- END INITIALISATION --------------------- |
---|
844 | |
---|
845 | !---------------------------- RUN --------------------- |
---|
846 | |
---|
847 | !------------------------ |
---|
848 | |
---|
849 | ! II Run |
---|
850 | ! II_a update pressure,ice and tracers |
---|
851 | |
---|
852 | !------------------------ |
---|
853 | year_iter=0 |
---|
854 | do while (year_iter.LT.year_iter_max) |
---|
855 | |
---|
856 | ! II.a.1. Compute updated global pressure |
---|
857 | print *, "Recomputing the new pressure..." |
---|
858 | do i=1,ngrid |
---|
859 | do islope=1,nslope |
---|
860 | global_ave_press_new=global_ave_press_new-g*cell_area(i)*tendencies_co2_ice_phys_slope(i,islope)*subslope_dist(i,islope)/cos(pi*def_slope_mean(islope)/180.)/Total_surface |
---|
861 | enddo |
---|
862 | enddo |
---|
863 | print *, 'Global average pressure old time step',global_ave_press_old |
---|
864 | print *, 'Global average pressure new time step',global_ave_press_new |
---|
865 | |
---|
866 | if(soil_pem) then |
---|
867 | do i=1,ngrid |
---|
868 | global_ave_press_new = global_ave_press_new -g*cell_area(i)*delta_co2_adsorbded(i)/Total_surface |
---|
869 | enddo |
---|
870 | endif |
---|
871 | print *, 'Global average pressure old time step',global_ave_press_old |
---|
872 | print *, 'Global average pressure new time step',global_ave_press_new |
---|
873 | |
---|
874 | ! II.a.2. Old pressure levels for the timeseries, this value is deleted when unused and recreated each time (big memory consuption) |
---|
875 | allocate(zplev_old_timeseries(ngrid,nlayer+1,timelen)) |
---|
876 | print *, "Recomputing the old pressure levels timeserie adapted to the old pressure..." |
---|
877 | DO l=1,nlayer+1 |
---|
878 | DO ig=1,ngrid |
---|
879 | zplev_old_timeseries(ig,l,:) = ap(l) + bp(l)*ps_phys_timeseries(ig,:) |
---|
880 | ENDDO |
---|
881 | ENDDO |
---|
882 | |
---|
883 | ! II.a.3. Surface pressure timeseries |
---|
884 | print *, "Recomputing the surface pressure timeserie adapted to the new pressure..." |
---|
885 | do i = 1,ngrid |
---|
886 | ps_phys_timeseries(i,:) = ps_phys_timeseries(i,:)*global_ave_press_new/global_ave_press_old |
---|
887 | enddo |
---|
888 | |
---|
889 | ! II.a.4. New pressure levels timeseries |
---|
890 | allocate(zplev_new_timeseries(ngrid,nlayer+1,timelen)) |
---|
891 | print *, "Recomputing the new pressure levels timeserie adapted to the new pressure..." |
---|
892 | do l=1,nlayer+1 |
---|
893 | do ig=1,ngrid |
---|
894 | zplev_new_timeseries(ig,l,:) = ap(l) + bp(l)*ps_phys_timeseries(ig,:) |
---|
895 | enddo |
---|
896 | enddo |
---|
897 | |
---|
898 | ! II.a.5. Tracers timeseries |
---|
899 | print *, "Recomputing of tracer VMR timeseries for the new pressure..." |
---|
900 | |
---|
901 | l=1 |
---|
902 | DO ig=1,ngrid |
---|
903 | DO t = 1, timelen |
---|
904 | q_h2o_PEM_phys(ig,t)=q_h2o_PEM_phys(ig,t)*(zplev_old_timeseries(ig,l,t)-zplev_old_timeseries(ig,l+1,t))/(zplev_new_timeseries(ig,l,t)-zplev_new_timeseries(ig,l+1,t)) |
---|
905 | if(q_h2o_PEM_phys(ig,t).LT.0) then |
---|
906 | q_h2o_PEM_phys(ig,t)=1E-30 |
---|
907 | endif |
---|
908 | if(q_h2o_PEM_phys(ig,t).GT.1) then |
---|
909 | q_h2o_PEM_phys(ig,t)=1. |
---|
910 | endif |
---|
911 | enddo |
---|
912 | enddo |
---|
913 | |
---|
914 | DO ig=1,ngrid |
---|
915 | DO t = 1, timelen |
---|
916 | q_co2_PEM_phys(ig,t)=q_co2_PEM_phys(ig,t)*(zplev_old_timeseries(ig,l,t)-zplev_old_timeseries(ig,l+1,t))/(zplev_new_timeseries(ig,l,t)-zplev_new_timeseries(ig,l+1,t)) & |
---|
917 | + ( (zplev_new_timeseries(ig,l,t)-zplev_new_timeseries(ig,l+1,t)) - & |
---|
918 | (zplev_old_timeseries(ig,l,t)-zplev_old_timeseries(ig,l+1,t)) ) / & |
---|
919 | (zplev_new_timeseries(ig,l,t)-zplev_new_timeseries(ig,l+1,t)) |
---|
920 | if (q_co2_PEM_phys(ig,t).LT.0) then |
---|
921 | q_co2_PEM_phys(ig,t)=1E-30 |
---|
922 | elseif (q_co2_PEM_phys(ig,t).GT.1) then |
---|
923 | q_co2_PEM_phys(ig,t)=1. |
---|
924 | endif |
---|
925 | mmean=1/(A*q_co2_PEM_phys(ig,t) +B) |
---|
926 | vmr_co2_pem_phys(ig,t) = q_co2_PEM_phys(ig,t)*mmean/m_co2 |
---|
927 | ENDDO |
---|
928 | ENDDO |
---|
929 | |
---|
930 | deallocate(zplev_new_timeseries) |
---|
931 | deallocate(zplev_old_timeseries) |
---|
932 | |
---|
933 | ! II Run |
---|
934 | ! II_a update pressure, ice and tracers |
---|
935 | ! II_b Evolution of the ice |
---|
936 | |
---|
937 | ! II.b. Evolution of the ice |
---|
938 | print *, "Evolution of h2o ice" |
---|
939 | call evol_h2o_ice_s_slope(qsurf_slope(:,igcm_h2o_ice,:),tendencies_h2o_ice_phys_slope,iim,jjm,ngrid,cell_area,STOPPING_1_water,nslope) |
---|
940 | |
---|
941 | |
---|
942 | print *, "Evolution of co2 ice" |
---|
943 | call evol_co2_ice_s_slope(co2ice_slope,tendencies_co2_ice_phys_slope,iim,jjm,ngrid,cell_area,STOPPING_1_co2,nslope) |
---|
944 | |
---|
945 | !------------------------ |
---|
946 | |
---|
947 | ! II Run |
---|
948 | ! II_a update pressure, ice and tracers |
---|
949 | ! II_b Evolution of the ice |
---|
950 | ! II_c CO2 glaciers flows |
---|
951 | |
---|
952 | !------------------------ |
---|
953 | |
---|
954 | print *, "Co2 glacier flows" |
---|
955 | |
---|
956 | |
---|
957 | |
---|
958 | call co2glaciers_evol(timelen,ngrid,nslope,iflat,subslope_dist,def_slope_mean,vmr_co2_pem_phys,ps_phys_timeseries,& |
---|
959 | global_ave_press_GCM,global_ave_press_new,co2ice_slope,flag_co2flow,flag_co2flow_mesh) |
---|
960 | |
---|
961 | |
---|
962 | |
---|
963 | |
---|
964 | |
---|
965 | !------------------------ |
---|
966 | |
---|
967 | ! II Run |
---|
968 | ! II_a update pressure, ice and tracers |
---|
969 | ! II_b Evolution of the ice |
---|
970 | ! II_c CO2 glaciers flows |
---|
971 | ! II_d Update surface and soil temperatures |
---|
972 | |
---|
973 | !------------------------ |
---|
974 | |
---|
975 | ! II_d.1 Update Tsurf |
---|
976 | |
---|
977 | print *, "Updating the new Tsurf" |
---|
978 | bool_sublim=0 |
---|
979 | Tsurfave_before_saved(:,:) = tsurf_ave_phys(:,:) |
---|
980 | DO ig = 1,ngrid |
---|
981 | DO islope = 1,nslope |
---|
982 | if(initial_co2_ice_slope(ig,islope).gt.0.5 .and. co2ice_slope(ig,islope).LT. 1E-10) THEN !co2ice disappeared, look for closest point without co2ice |
---|
983 | if(latitude_deg(ig).gt.0) then |
---|
984 | do ig_loop=ig,ngrid |
---|
985 | DO islope_loop=islope,iflat,-1 |
---|
986 | if(initial_co2_ice_slope(ig_loop,islope_loop).lt.0.5 .and. co2ice_slope(ig_loop,islope_loop).LT. 1E-10) then |
---|
987 | tsurf_ave_phys(ig,islope)=tsurf_ave_phys(ig_loop,islope_loop) |
---|
988 | bool_sublim=1 |
---|
989 | exit |
---|
990 | endif |
---|
991 | enddo |
---|
992 | if (bool_sublim.eq.1) then |
---|
993 | exit |
---|
994 | endif |
---|
995 | enddo |
---|
996 | else |
---|
997 | do ig_loop=ig,1,-1 |
---|
998 | DO islope_loop=islope,iflat |
---|
999 | if(initial_co2_ice_slope(ig_loop,islope_loop).lt.0.5 .and. co2ice_slope(ig_loop,islope_loop).LT. 1E-10) then |
---|
1000 | tsurf_ave_phys(ig,islope)=tsurf_ave_phys(ig_loop,islope_loop) |
---|
1001 | bool_sublim=1 |
---|
1002 | exit |
---|
1003 | endif |
---|
1004 | enddo |
---|
1005 | if (bool_sublim.eq.1) then |
---|
1006 | exit |
---|
1007 | endif |
---|
1008 | enddo |
---|
1009 | endif |
---|
1010 | initial_co2_ice_slope(ig,islope)=0 |
---|
1011 | if ((co2ice_slope(ig,islope).lt.1e-10).and. (qsurf_slope(ig,igcm_h2o_ice,islope).gt.frost_albedo_threshold)) then |
---|
1012 | albedo_slope(ig,1,islope) = albedo_h2o_frost |
---|
1013 | albedo_slope(ig,2,islope) = albedo_h2o_frost |
---|
1014 | else |
---|
1015 | albedo_slope(ig,1,islope) = albedodat(ig) |
---|
1016 | albedo_slope(ig,2,islope) = albedodat(ig) |
---|
1017 | emiss_slope(ig,islope) = emissiv |
---|
1018 | endif |
---|
1019 | elseif( (co2ice_slope(ig,islope).GT. 1E-3).and.(tendencies_co2_ice_phys_slope(ig,islope).gt.1e-10) )THEN !Put tsurf as tcond co2 |
---|
1020 | ave=0. |
---|
1021 | do t=1,timelen |
---|
1022 | if(co2_ice_GCM_phys_slope(ig,islope,t).gt.1e-3) then |
---|
1023 | ave = ave + beta_clap_co2/(alpha_clap_co2-log(vmr_co2_pem_phys(ig,t)*ps_phys_timeseries(ig,t)/100.)) |
---|
1024 | else |
---|
1025 | ave = ave + tsurf_phys_GCM_timeseries(ig,islope,t) |
---|
1026 | endif |
---|
1027 | enddo |
---|
1028 | tsurf_ave_phys(ig,islope)=ave/timelen |
---|
1029 | endif |
---|
1030 | enddo |
---|
1031 | enddo |
---|
1032 | |
---|
1033 | do t = 1,timelen |
---|
1034 | tsurf_phys_GCM_timeseries(:,:,t) = tsurf_phys_GCM_timeseries(:,:,t) +( tsurf_ave_phys(:,:) -Tsurfave_before_saved(:,:)) |
---|
1035 | enddo |
---|
1036 | ! for the start |
---|
1037 | do ig = 1,ngrid |
---|
1038 | do islope = 1,nslope |
---|
1039 | tsurf_slope(ig,islope) = tsurf_slope(ig,islope) - (Tsurfave_before_saved(ig,islope)-tsurf_ave_phys(ig,islope)) |
---|
1040 | enddo |
---|
1041 | enddo |
---|
1042 | |
---|
1043 | |
---|
1044 | if(soil_pem) then |
---|
1045 | |
---|
1046 | ! II_d.2 Update soil temperature |
---|
1047 | |
---|
1048 | allocate(TI_locslope(ngrid,nsoilmx_PEM)) |
---|
1049 | allocate(Tsoil_locslope(ngrid,nsoilmx_PEM)) |
---|
1050 | allocate(Tsurf_locslope(ngrid)) |
---|
1051 | allocate(alph_locslope(ngrid,nsoilmx_PEM-1)) |
---|
1052 | allocate(beta_locslope(ngrid,nsoilmx_PEM-1)) |
---|
1053 | |
---|
1054 | print *,"Updating soil temperature" |
---|
1055 | |
---|
1056 | ! Soil averaged |
---|
1057 | do islope = 1,nslope |
---|
1058 | TI_locslope(:,:) = TI_PEM(:,:,islope) |
---|
1059 | alph_locslope(:,:) = alph_PEM(:,:,islope) |
---|
1060 | beta_locslope(:,:) = beta_PEM(:,:,islope) |
---|
1061 | do t = 1,timelen |
---|
1062 | Tsoil_locslope(:,:) = tsoil_phys_PEM_timeseries(:,:,islope,t) |
---|
1063 | Tsurf_locslope(:) = tsurf_phys_GCM_timeseries(:,islope,t) |
---|
1064 | |
---|
1065 | call soil_pem_routine(ngrid,nsoilmx_PEM,.true.,TI_locslope,timestep/timelen,Tsurf_locslope,Tsoil_locslope,alph_locslope,beta_locslope) |
---|
1066 | call soil_pem_routine(ngrid,nsoilmx_PEM,.false.,TI_locslope,timestep/timelen,Tsurf_locslope,Tsoil_locslope,alph_locslope,beta_locslope) |
---|
1067 | |
---|
1068 | |
---|
1069 | tsoil_phys_PEM_timeseries(:,:,islope,t) = Tsoil_locslope(:,:) |
---|
1070 | do ig = 1,ngrid |
---|
1071 | do isoil = 1,nsoilmx_PEM |
---|
1072 | watersoil_density_phys_PEM_timeseries(ig,l,islope,t) = exp(alpha_clap_h2o/Tsoil_locslope(ig,isoil) + beta_clap_h2o)/Tsoil_locslope(ig,isoil) |
---|
1073 | if(isnan(Tsoil_locslope(ig,isoil))) then |
---|
1074 | write(*,*)'Tsoil=',ig,isoil,Tsoil_locslope(ig,isoil) |
---|
1075 | stop |
---|
1076 | endif |
---|
1077 | enddo |
---|
1078 | enddo |
---|
1079 | enddo |
---|
1080 | alph_PEM(:,:,islope) = alph_locslope(:,:) |
---|
1081 | beta_PEM(:,:,islope) = beta_locslope(:,:) |
---|
1082 | enddo |
---|
1083 | |
---|
1084 | |
---|
1085 | tsoil_PEM(:,:,:) = SUM(tsoil_phys_PEM_timeseries(:,:,:,:),4)/timelen |
---|
1086 | watersoil_density_phys_PEM_ave(:,:,:)= SUM(watersoil_density_phys_PEM_timeseries(:,:,:,:),4)/timelen |
---|
1087 | print *, "Update of soil temperature done" |
---|
1088 | |
---|
1089 | deallocate(TI_locslope) |
---|
1090 | deallocate(Tsoil_locslope) |
---|
1091 | deallocate(Tsurf_locslope) |
---|
1092 | deallocate(alph_locslope) |
---|
1093 | deallocate(beta_locslope) |
---|
1094 | |
---|
1095 | write(*,*) "Compute ice table" |
---|
1096 | |
---|
1097 | ! II_d.3 Update the ice table |
---|
1098 | call computeice_table(ngrid,nslope,nsoilmx_PEM,watersurf_density_phys_ave,watersoil_density_phys_PEM_ave,ice_depth) |
---|
1099 | |
---|
1100 | print *, "Update soil propreties" |
---|
1101 | ! II_d.4 Update the soil thermal properties |
---|
1102 | call update_soil(ngrid,nslope,nsoilmx_PEM,tendencies_h2o_ice_phys_slope,tendencies_co2_ice_phys_slope,co2ice_slope,qsurf_slope(:,igcm_h2o_ice,:),global_ave_press_new, & |
---|
1103 | ice_depth,TI_PEM) |
---|
1104 | |
---|
1105 | ! II_d.5 Update the mass of the regolith adsorbded |
---|
1106 | |
---|
1107 | call regolith_adsorption(ngrid,nslope,nsoilmx_PEM,timelen,tendencies_h2o_ice_phys_slope,tendencies_co2_ice_phys_slope,qsurf_slope(:,igcm_h2o_ice,:),co2ice_slope, & |
---|
1108 | tsoil_PEM,TI_PEM,ps_phys_timeseries,q_co2_PEM_phys,q_h2o_PEM_phys, & |
---|
1109 | h2o_adsorbded_phys,delta_h2o_adsorbded,co2_adsorbded_phys,delta_co2_adsorbded) |
---|
1110 | |
---|
1111 | endif !soil_pem |
---|
1112 | |
---|
1113 | !------------------------ |
---|
1114 | |
---|
1115 | ! II Run |
---|
1116 | ! II_a update pressure, ice and tracers |
---|
1117 | ! II_b Evolution of the ice |
---|
1118 | ! II_c CO2 glaciers flows |
---|
1119 | ! II_d Update surface and soil temperatures |
---|
1120 | ! II_e Update the tendencies |
---|
1121 | |
---|
1122 | !------------------------ |
---|
1123 | |
---|
1124 | print *, "Adaptation of the new co2 tendencies to the current pressure" |
---|
1125 | call recomp_tend_co2_slope(tendencies_co2_ice_phys_slope,tendencies_co2_ice_phys_slope_ini,vmr_co2_gcm_phys,vmr_co2_pem_phys,ps_phys_timeseries,& |
---|
1126 | global_ave_press_GCM,global_ave_press_new,timelen,ngrid,nslope) |
---|
1127 | |
---|
1128 | !------------------------ |
---|
1129 | |
---|
1130 | ! II Run |
---|
1131 | ! II_a update pressure, ice and tracers |
---|
1132 | ! II_b Evolution of the ice |
---|
1133 | ! II_c CO2 glaciers flows |
---|
1134 | ! II_d Update surface and soil temperatures |
---|
1135 | ! II_e Update the tendencies |
---|
1136 | ! II_f Checking the stopping criterion |
---|
1137 | |
---|
1138 | !------------------------ |
---|
1139 | call criterion_ice_stop_water_slope(cell_area,ini_surf_h2o,qsurf_slope(:,igcm_h2o_ice,:),STOPPING_water,ngrid,initial_h2o_ice_slope) |
---|
1140 | |
---|
1141 | call criterion_ice_stop_slope(cell_area,ini_surf_co2,co2ice_slope,STOPPING_co2,ngrid,initial_co2_ice_sublim_slope,global_ave_press_GCM,global_ave_press_new,nslope) |
---|
1142 | |
---|
1143 | year_iter=year_iter+dt_pem |
---|
1144 | |
---|
1145 | print *, "Checking all the stopping criterion." |
---|
1146 | if (STOPPING_water) then |
---|
1147 | print *, "STOPPING because surface of water ice sublimating is too low, see message above", STOPPING_water |
---|
1148 | endif |
---|
1149 | if (year_iter.ge.year_iter_max) then |
---|
1150 | print *, "STOPPING because maximum number of iterations reached" |
---|
1151 | endif |
---|
1152 | if (STOPPING_1_water) then |
---|
1153 | print *, "STOPPING because tendencies on water ice=0, see message above", STOPPING_1_water |
---|
1154 | endif |
---|
1155 | if (STOPPING_co2) then |
---|
1156 | print *, "STOPPING because surface of co2 ice sublimating is too low or global pressure changed too much, see message above", STOPPING_co2 |
---|
1157 | endif |
---|
1158 | if (STOPPING_1_co2) then |
---|
1159 | print *, "STOPPING because tendencies on co2 ice=0, see message above", STOPPING_1_co2 |
---|
1160 | endif |
---|
1161 | |
---|
1162 | |
---|
1163 | |
---|
1164 | if (STOPPING_water .or. STOPPING_1_water .or. STOPPING_co2 .or. STOPPING_1_co2) then |
---|
1165 | exit |
---|
1166 | else |
---|
1167 | print *, "We continue!" |
---|
1168 | print *, "Number of iteration of the PEM : year_iter=", year_iter |
---|
1169 | endif |
---|
1170 | |
---|
1171 | global_ave_press_old=global_ave_press_new |
---|
1172 | |
---|
1173 | enddo ! big time iteration loop of the pem |
---|
1174 | |
---|
1175 | |
---|
1176 | !---------------------------- END RUN PEM --------------------- |
---|
1177 | |
---|
1178 | !---------------------------- OUTPUT --------------------- |
---|
1179 | |
---|
1180 | !------------------------ |
---|
1181 | |
---|
1182 | ! III Output |
---|
1183 | ! III_a Update surface value for the PCM start files |
---|
1184 | |
---|
1185 | !------------------------ |
---|
1186 | |
---|
1187 | ! III_a.1 Ice update (for startfi) |
---|
1188 | ! Co2 ice |
---|
1189 | DO ig = 1,ngrid |
---|
1190 | co2ice(ig) = 0. |
---|
1191 | DO islope = 1,nslope |
---|
1192 | co2ice(ig) = co2ice(ig) + co2ice_slope(ig,islope) & |
---|
1193 | * subslope_dist(ig,islope) / & |
---|
1194 | cos(pi*def_slope_mean(islope)/180.) |
---|
1195 | ENDDO |
---|
1196 | #ifdef CPP_STD |
---|
1197 | qsurf(ig,igcm_co2_ice)=co2ice(ig) |
---|
1198 | #endif |
---|
1199 | ENDDO ! of DO ig=1,ngrid |
---|
1200 | ! H2o ice |
---|
1201 | DO ig = 1,ngrid |
---|
1202 | qsurf(ig,igcm_h2o_ice) = 0. |
---|
1203 | DO islope = 1,nslope |
---|
1204 | qsurf(ig,igcm_h2o_ice) = qsurf(ig,igcm_h2o_ice) + qsurf_slope(ig,igcm_h2o_ice,islope) & |
---|
1205 | * subslope_dist(ig,islope) / & |
---|
1206 | cos(pi*def_slope_mean(islope)/180.) |
---|
1207 | ENDDO |
---|
1208 | ENDDO ! of DO ig=1,ngrid |
---|
1209 | |
---|
1210 | ! III_a.2 Tsoil update (for startfi) |
---|
1211 | |
---|
1212 | if(soil_pem) then |
---|
1213 | call interpolate_TIPEM_TIGCM(ngrid,nslope,nsoilmx_PEM,nsoilmx,TI_PEM,TI_GCM_phys) |
---|
1214 | tsoil_slope(:,:,:) = tsoil_phys_PEM_timeseries(:,:,:,timelen) |
---|
1215 | else |
---|
1216 | TI_GCM_phys(:,:,:)=TI_GCM_start(:,:,:) |
---|
1217 | endif !soil_pem |
---|
1218 | |
---|
1219 | |
---|
1220 | #ifndef CPP_STD |
---|
1221 | DO ig = 1,ngrid |
---|
1222 | DO iloop = 1,nsoilmx |
---|
1223 | tsoil(ig,iloop) = 0. |
---|
1224 | inertiesoil(ig,iloop) = 0. |
---|
1225 | DO islope = 1,nslope |
---|
1226 | tsoil(ig,iloop) = tsoil(ig,iloop) + tsoil_slope(ig,iloop,islope) & |
---|
1227 | * subslope_dist(ig,islope) |
---|
1228 | inertiesoil(ig,iloop) = inertiesoil(ig,iloop) + TI_GCM_phys(ig,iloop,islope) & |
---|
1229 | * subslope_dist(ig,islope) |
---|
1230 | ENDDO |
---|
1231 | ENDDO |
---|
1232 | ENDDO ! of DO ig=1,ngrid |
---|
1233 | |
---|
1234 | ! III_a.3 Surface optical properties (for startfi) |
---|
1235 | |
---|
1236 | DO ig = 1,ngrid |
---|
1237 | DO l = 1,2 |
---|
1238 | albedo(ig,l) =0. |
---|
1239 | DO islope = 1,nslope |
---|
1240 | albedo(ig,l)= albedo(ig,l)+albedo_slope(ig,l,islope) & |
---|
1241 | *subslope_dist(ig,islope) |
---|
1242 | ENDDO |
---|
1243 | ENDDO |
---|
1244 | ENDDO |
---|
1245 | |
---|
1246 | DO ig = 1,ngrid |
---|
1247 | emis(ig) =0. |
---|
1248 | DO islope = 1,nslope |
---|
1249 | emis(ig)= emis(ig)+emiss_slope(ig,islope) & |
---|
1250 | *subslope_dist(ig,islope) |
---|
1251 | ENDDO |
---|
1252 | ENDDO |
---|
1253 | |
---|
1254 | |
---|
1255 | DO ig = 1,ngrid |
---|
1256 | tsurf(ig) = 0. |
---|
1257 | DO islope = 1,nslope |
---|
1258 | tsurf(ig) = tsurf(ig) + (emiss_slope(ig,islope)*tsurf_slope(ig,islope))**4 & |
---|
1259 | * subslope_dist(ig,islope) |
---|
1260 | ENDDO |
---|
1261 | tsurf(ig) = tsurf(ig)**(0.25)/emis(ig) |
---|
1262 | ENDDO ! of DO ig=1,ngrid |
---|
1263 | |
---|
1264 | #endif |
---|
1265 | |
---|
1266 | ! III_a.4 Pressure (for start) |
---|
1267 | do i=1,ip1jmp1 |
---|
1268 | ps(i)=ps(i)*global_ave_press_new/global_ave_press_GCM |
---|
1269 | enddo |
---|
1270 | |
---|
1271 | do i = 1,ngrid |
---|
1272 | ps_phys(i)=ps_phys(i)*global_ave_press_new/global_ave_press_GCM |
---|
1273 | enddo |
---|
1274 | |
---|
1275 | ! III_a.5 Tracer (for start) |
---|
1276 | allocate(zplev_new(ngrid,nlayer+1)) |
---|
1277 | |
---|
1278 | do l=1,nlayer+1 |
---|
1279 | do ig=1,ngrid |
---|
1280 | zplev_new(ig,l) = ap(l) + bp(l)*ps_phys(ig) |
---|
1281 | enddo |
---|
1282 | enddo |
---|
1283 | |
---|
1284 | DO nnq=1,nqtot |
---|
1285 | if (noms(nnq).NE."co2") then |
---|
1286 | DO l=1,llm-1 |
---|
1287 | DO ig=1,ngrid |
---|
1288 | q(ig,l,nnq)=q(ig,l,nnq)*(zplev_gcm(ig,l)-zplev_gcm(ig,l+1))/(zplev_new(ig,l)-zplev_new(ig,l+1)) |
---|
1289 | ENDDO |
---|
1290 | q(:,llm,nnq)=q(:,llm-1,nnq) |
---|
1291 | ENDDO |
---|
1292 | else |
---|
1293 | DO l=1,llm-1 |
---|
1294 | DO ig=1,ngrid |
---|
1295 | q(ig,l,nnq)=q(ig,l,nnq)*(zplev_gcm(ig,l)-zplev_gcm(ig,l+1))/(zplev_new(ig,l)-zplev_new(ig,l+1)) & |
---|
1296 | + ( (zplev_new(ig,l)-zplev_new(ig,l+1)) - & |
---|
1297 | (zplev_gcm(ig,l)-zplev_gcm(ig,l+1)) ) / & |
---|
1298 | (zplev_new(ig,l)-zplev_new(ig,l+1)) |
---|
1299 | ENDDO |
---|
1300 | q(:,llm,nnq)=q(:,llm-1,nnq) |
---|
1301 | ENDDO |
---|
1302 | endif |
---|
1303 | ENDDO |
---|
1304 | |
---|
1305 | ! Conserving the tracers's mass for GCM start files |
---|
1306 | DO nnq=1,nqtot |
---|
1307 | DO ig=1,ngrid |
---|
1308 | DO l=1,llm-1 |
---|
1309 | if(q(ig,l,nnq).GT.1 .and. (noms(nnq).NE."dust_number") .and. (noms(nnq).NE."ccn_number") ) then |
---|
1310 | extra_mass=(q(ig,l,nnq)-1)*(zplev_new(ig,l)-zplev_new(ig,l+1)) |
---|
1311 | q(ig,l,nnq)=1. |
---|
1312 | q(ig,l+1,nnq)=q(ig,l+1,nnq)+extra_mass*(zplev_new(ig,l+1)-zplev_new(ig,l+2)) |
---|
1313 | write(*,*) 'extra ',noms(nnq),extra_mass, noms(nnq).NE."dust_number",noms(nnq).NE."ccn_number" |
---|
1314 | endif |
---|
1315 | if(q(ig,l,nnq).LT.0) then |
---|
1316 | q(ig,l,nnq)=1E-30 |
---|
1317 | endif |
---|
1318 | ENDDO |
---|
1319 | enddo |
---|
1320 | enddo |
---|
1321 | |
---|
1322 | !------------------------ |
---|
1323 | if(evol_orbit_pem) then |
---|
1324 | call recomp_orb_param(year_iter) |
---|
1325 | endif |
---|
1326 | |
---|
1327 | ! III Output |
---|
1328 | ! III_a Update surface value for the PCM start files |
---|
1329 | ! III_b Write start and starfi.nc |
---|
1330 | |
---|
1331 | !------------------------ |
---|
1332 | |
---|
1333 | ! III_b.1 WRITE restart.nc |
---|
1334 | |
---|
1335 | ptimestep=iphysiq*daysec/REAL(day_step)/nsplit_phys |
---|
1336 | pday=day_ini |
---|
1337 | ztime_fin=0. |
---|
1338 | |
---|
1339 | allocate(p(ip1jmp1,nlayer+1)) |
---|
1340 | CALL pression (ip1jmp1,ap,bp,ps,p) |
---|
1341 | CALL massdair(p,masse) |
---|
1342 | |
---|
1343 | CALL dynredem0("restart_evol.nc", day_ini, phis) |
---|
1344 | |
---|
1345 | CALL dynredem1("restart_evol.nc", & |
---|
1346 | time_0,vcov,ucov,teta,q,masse,ps) |
---|
1347 | print *, "restart_evol.nc has been written" |
---|
1348 | |
---|
1349 | ! III_b.2 WRITE restartfi.nc |
---|
1350 | #ifndef CPP_STD |
---|
1351 | call physdem0("restartfi_evol.nc",longitude,latitude, & |
---|
1352 | nsoilmx,ngrid,nlayer,nq, & |
---|
1353 | ptimestep,pday,0.,cell_area, & |
---|
1354 | albedodat,inertiedat,zmea,zstd,zsig,zgam,zthe, & |
---|
1355 | hmons,summit,base,nslope,def_slope, & |
---|
1356 | subslope_dist) |
---|
1357 | |
---|
1358 | call physdem1("restartfi_evol.nc",nsoilmx,ngrid,nlayer,nq, & |
---|
1359 | ptimestep,ztime_fin, & |
---|
1360 | tsurf,tsoil,co2ice,albedo,emis, & |
---|
1361 | q2,qsurf,tauscaling,totcloudfrac,wstar, & |
---|
1362 | watercap,inertiesoil,nslope,co2ice_slope, & |
---|
1363 | tsurf_slope,tsoil_slope, albedo_slope, & |
---|
1364 | emiss_slope,qsurf_slope,watercap_slope, TI_GCM_phys) |
---|
1365 | #else |
---|
1366 | call physdem0("restartfi_evol.nc",longitude,latitude,nsoilmx,ngrid,nlayer,nq, & |
---|
1367 | ptimestep,pday,time_phys,cell_area, & |
---|
1368 | albedo_bareground,inertiedat,zmea,zstd,zsig,zgam,zthe) |
---|
1369 | |
---|
1370 | call physdem1("restartfi_evol.nc",nsoilmx,ngrid,nlayer,nq, & |
---|
1371 | ptimestep,ztime_fin, & |
---|
1372 | tsurf,tsoil,emis,q2,qsurf, & |
---|
1373 | cloudfrac,totcloudfrac,hice, & |
---|
1374 | rnat,pctsrf_sic,tslab,tsea_ice,sea_ice) |
---|
1375 | #endif |
---|
1376 | |
---|
1377 | print *, "restartfi_evol.nc has been written" |
---|
1378 | !------------------------ |
---|
1379 | |
---|
1380 | ! III Output |
---|
1381 | ! III_a Update surface value for the PCM start files |
---|
1382 | ! III_b Write start and starfi.nc |
---|
1383 | ! III_c Write start_pem |
---|
1384 | |
---|
1385 | !------------------------ |
---|
1386 | |
---|
1387 | call pemdem1("restartfi_PEM.nc",year_iter,nsoilmx_PEM,ngrid,nslope , & |
---|
1388 | tsoil_PEM, TI_PEM, ice_depth,co2_adsorbded_phys,h2o_adsorbded_phys) |
---|
1389 | |
---|
1390 | print *, "restartfi_PEM.nc has been written" |
---|
1391 | print *, "The PEM had run for ", year_iter, " years." |
---|
1392 | print *, "LL & RV : So far so good" |
---|
1393 | |
---|
1394 | END PROGRAM pem |
---|