| 1 | |
|---|
| 2 | !------------------------ |
|---|
| 3 | |
|---|
| 4 | ! I Initialisation |
|---|
| 5 | ! I_a READ run.def |
|---|
| 6 | ! I_b READ of start_evol.nc and starfi_evol.nc |
|---|
| 7 | ! I_c Subslope parametrisation |
|---|
| 8 | ! I_d READ GCM data and convert to the physical grid |
|---|
| 9 | ! I_e Initialisation of the PEM variable and soil |
|---|
| 10 | ! I_f Compute tendencies & Save initial situation |
|---|
| 11 | ! I_g Save initial PCM situation |
|---|
| 12 | ! I_h Read the PEMstart |
|---|
| 13 | ! I_i Compute orbit criterion |
|---|
| 14 | |
|---|
| 15 | ! II Run |
|---|
| 16 | ! II_a update pressure, ice and tracers |
|---|
| 17 | ! II_b Evolution of the ice |
|---|
| 18 | ! II_c CO2 glaciers flows |
|---|
| 19 | ! II_d Update surface and soil temperatures |
|---|
| 20 | ! II_e Update the tendencies |
|---|
| 21 | ! II_f Checking the stopping criterion |
|---|
| 22 | |
|---|
| 23 | ! III Output |
|---|
| 24 | ! III_a Update surface value for the PCM start files |
|---|
| 25 | ! III_b Write start and starfi.nc |
|---|
| 26 | ! III_c Write start_pem |
|---|
| 27 | |
|---|
| 28 | !------------------------ |
|---|
| 29 | |
|---|
| 30 | PROGRAM pem |
|---|
| 31 | |
|---|
| 32 | !module needed for INITIALISATION |
|---|
| 33 | use phyetat0_mod, only: phyetat0 |
|---|
| 34 | use comsoil_h, only: tsoil, nsoilmx, ini_comsoil_h,inertiedat, mlayer,volcapa |
|---|
| 35 | use surfdat_h, only: tsurf, co2ice, emis,& |
|---|
| 36 | & qsurf,watercap, ini_surfdat_h, & |
|---|
| 37 | albedodat, zmea, zstd, zsig, zgam, zthe, & |
|---|
| 38 | hmons, summit, base,albedo_h2o_frost, & |
|---|
| 39 | frost_albedo_threshold,emissiv |
|---|
| 40 | use dimradmars_mod, only: totcloudfrac, albedo |
|---|
| 41 | use turb_mod, only: q2, wstar |
|---|
| 42 | use dust_param_mod, only: tauscaling |
|---|
| 43 | use netcdf, only: nf90_open,NF90_NOWRITE,nf90_noerr,nf90_strerror, & |
|---|
| 44 | nf90_get_var, nf90_inq_varid, nf90_inq_dimid, & |
|---|
| 45 | nf90_inquire_dimension,nf90_close |
|---|
| 46 | use phyredem, only: physdem0, physdem1 |
|---|
| 47 | use tracer_mod, only: noms,igcm_h2o_ice ! tracer names |
|---|
| 48 | |
|---|
| 49 | ! For phyredem : |
|---|
| 50 | USE control_mod, ONLY: iphysiq, day_step,nsplit_phys |
|---|
| 51 | use time_phylmdz_mod, only: daysec |
|---|
| 52 | use mod_phys_lmdz_para, only: is_parallel, is_sequential, & |
|---|
| 53 | is_mpi_root, is_omp_root, & |
|---|
| 54 | is_master |
|---|
| 55 | use time_phylmdz_mod, only: dtphys |
|---|
| 56 | USE mod_const_mpi, ONLY: COMM_LMDZ |
|---|
| 57 | USE comconst_mod, ONLY: rad,g,r,cpp |
|---|
| 58 | USE logic_mod, ONLY: iflag_phys |
|---|
| 59 | USE iniphysiq_mod, ONLY: iniphysiq |
|---|
| 60 | USE infotrac |
|---|
| 61 | USE comcstfi_h, only: pi |
|---|
| 62 | |
|---|
| 63 | USE comslope_mod, ONLY: nslope,def_slope,def_slope_mean, & |
|---|
| 64 | subslope_dist,co2ice_slope, & |
|---|
| 65 | tsurf_slope,tsoil_slope,fluxgrd_slope,& |
|---|
| 66 | fluxrad_sky_slope,sky_slope,callsubslope,& |
|---|
| 67 | co2iceflow, beta_slope, capcal_slope,& |
|---|
| 68 | albedo_slope,emiss_slope,qsurf_slope,& |
|---|
| 69 | iflat |
|---|
| 70 | |
|---|
| 71 | USE geometry_mod, only: latitude_deg |
|---|
| 72 | |
|---|
| 73 | use pemredem, only: pemdem1 |
|---|
| 74 | |
|---|
| 75 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!! SOIL |
|---|
| 76 | USE soil_evolution_mod, ONLY: soil_pem, soil_pem_CN |
|---|
| 77 | use comsoil_h_PEM, only: ini_comsoil_h_PEM,end_comsoil_h_PEM,nsoilmx_PEM, & |
|---|
| 78 | TI_PEM,inertiedat_PEM,alph_PEM, beta_PEM, & ! soil thermal inertia |
|---|
| 79 | tsoil_PEM, mlayer_PEM,layer_PEM, & !number of subsurface layers, soil mid layer depths |
|---|
| 80 | fluxgeo, co2_adsorbded_phys ! geothermal flux, mass of co2 in the regolith |
|---|
| 81 | use adsorption_mod, only : regolith_co2adsorption |
|---|
| 82 | |
|---|
| 83 | !!! For orbit parameters |
|---|
| 84 | USE temps_mod_evol, ONLY: dt_pem, evol_orbit_pem, Max_iter_pem |
|---|
| 85 | use planete_h, only: aphelie, periheli, year_day, peri_day, & |
|---|
| 86 | obliquit |
|---|
| 87 | use orbit_param_criterion_mod, only : orbit_param_criterion |
|---|
| 88 | use recomp_orb_param_mod, only: recomp_orb_param |
|---|
| 89 | |
|---|
| 90 | |
|---|
| 91 | IMPLICIT NONE |
|---|
| 92 | |
|---|
| 93 | include "dimensions.h" |
|---|
| 94 | include "paramet.h" |
|---|
| 95 | |
|---|
| 96 | INTEGER ngridmx |
|---|
| 97 | PARAMETER( ngridmx = 2+(jjm-1)*iim - 1/jjm ) |
|---|
| 98 | |
|---|
| 99 | include "comdissnew.h" |
|---|
| 100 | include "comgeom.h" |
|---|
| 101 | include "iniprint.h" |
|---|
| 102 | ! Same variable's name as in the GCM |
|---|
| 103 | |
|---|
| 104 | INTEGER :: ngrid !Number of physical grid points |
|---|
| 105 | INTEGER :: nlayer !Number of vertical layer |
|---|
| 106 | INTEGER :: nq !Number of tracer |
|---|
| 107 | INTEGER :: day_ini !First day of the simulation |
|---|
| 108 | REAL :: pday !Physical day |
|---|
| 109 | REAL :: time_phys !Same as GCM |
|---|
| 110 | REAL :: ptimestep !Same as GCM |
|---|
| 111 | REAL :: ztime_fin !Same as GCM |
|---|
| 112 | |
|---|
| 113 | ! Variable for reading start.nc |
|---|
| 114 | character (len = *), parameter :: FILE_NAME_start = "start_evol.nc" !Name of the file used for initialsing the PEM |
|---|
| 115 | ! variables dynamiques |
|---|
| 116 | REAL vcov(ip1jm,llm),ucov(ip1jmp1,llm) ! vents covariants |
|---|
| 117 | REAL teta(ip1jmp1,llm) ! temperature potentielle |
|---|
| 118 | REAL, ALLOCATABLE, DIMENSION(:,:,:):: q! champs advectes |
|---|
| 119 | REAL ps(ip1jmp1) ! pression au sol |
|---|
| 120 | REAL, dimension(:),allocatable :: ps_phys !(ngrid) ! pression au sol |
|---|
| 121 | REAL, dimension(:,:),allocatable :: ps_phys_timeseries !(ngrid x timelen) ! pression au sol instantannées |
|---|
| 122 | REAL, dimension(:,:),allocatable :: ps_phys_timeseries_yr1 !(ngrid x timelen) ! pression au sol instantannées for the first year of the gcm |
|---|
| 123 | |
|---|
| 124 | REAL masse(ip1jmp1,llm) ! masse d'air |
|---|
| 125 | REAL phis(ip1jmp1) ! geopotentiel au sol |
|---|
| 126 | REAL time_0 |
|---|
| 127 | |
|---|
| 128 | ! Variable for reading starfi.nc |
|---|
| 129 | |
|---|
| 130 | character (len = *), parameter :: FILE_NAME = "startfi_evol.nc" !Name of the file used for initialsing the PEM |
|---|
| 131 | integer :: ncid, varid,status !Variable for handling opening of files |
|---|
| 132 | integer :: phydimid, subdimid, nlayerdimid, nqdimid !Variable ID for Netcdf files |
|---|
| 133 | integer :: lonvarid, latvarid, areavarid,sdvarid !Variable ID for Netcdf files |
|---|
| 134 | integer :: apvarid,bpvarid !Variable ID for Netcdf files |
|---|
| 135 | |
|---|
| 136 | ! Variable for reading starfi.nc and writting restartfi.nc |
|---|
| 137 | |
|---|
| 138 | REAL, dimension(:),allocatable :: longitude !Longitude read in FILE_NAME and written in restartfi |
|---|
| 139 | REAL, dimension(:),allocatable :: latitude !Latitude read in FILE_NAME and written in restartfi |
|---|
| 140 | REAL, dimension(:),allocatable :: ap !Coefficient ap read in FILE_NAME_start and written in restart |
|---|
| 141 | REAL, dimension(:),allocatable :: bp !Coefficient bp read in FILE_NAME_start and written in restart |
|---|
| 142 | REAL, dimension(:),allocatable :: cell_area !Cell_area read in FILE_NAME and written in restartfi |
|---|
| 143 | REAL :: Total_surface !Total surface of the planet |
|---|
| 144 | |
|---|
| 145 | ! Variable for h2o_ice evolution |
|---|
| 146 | |
|---|
| 147 | REAL , dimension(:,:), allocatable :: tendencies_h2o_ice ! LON x LAT field : Tendency of evolution of perenial ice over a year |
|---|
| 148 | REAL, dimension(:),allocatable :: tendencies_h2o_ice_phys ! physical point field : Tendency of evolution of perenial ice over a year |
|---|
| 149 | |
|---|
| 150 | REAL , dimension(:,:), allocatable :: tendencies_co2_ice ! LON x LAT field : Tendency of evolution of perenial co2 ice over a year |
|---|
| 151 | REAL, dimension(:),allocatable :: tendencies_co2_ice_phys ! physical point field : Tendency of evolution of perenial co2 ice over a year |
|---|
| 152 | |
|---|
| 153 | REAL :: ini_surf ! Initial surface of sublimating water ice |
|---|
| 154 | REAL :: ini_surf_h2o ! Initial surface of sublimating water ice |
|---|
| 155 | REAL, dimension(:),allocatable :: initial_h2o_ice ! physical point field : Logical array indicating sublimating point |
|---|
| 156 | |
|---|
| 157 | REAL :: ini_surf_co2 ! Initial surface of sublimating co2 ice |
|---|
| 158 | REAL, dimension(:),allocatable :: initial_co2_ice ! physical point field : Logical array indicating sublimating point of co2 ice |
|---|
| 159 | |
|---|
| 160 | REAL , dimension(:,:), allocatable :: min_h2o_ice_s_1 ! LON x LAT field : minimum of water ice at each point for the first year |
|---|
| 161 | REAL , dimension(:,:), allocatable :: min_h2o_ice_s_2 ! LON x LAT field : minimum of water ice at each point for the second year |
|---|
| 162 | |
|---|
| 163 | REAL , dimension(:,:), allocatable :: min_co2_ice_s_1 ! LON x LAT field : minimum of water ice at each point for the first year |
|---|
| 164 | REAL , dimension(:,:), allocatable :: min_co2_ice_s_2 ! LON x LAT field : minimum of water ice at each point for the second year |
|---|
| 165 | |
|---|
| 166 | REAL :: global_ave_press_GCM |
|---|
| 167 | REAL :: global_ave_press_old ! physical point field : Global average pressure of initial/previous time step |
|---|
| 168 | REAL :: global_ave_press_new ! physical point field : Global average pressure of current time step |
|---|
| 169 | |
|---|
| 170 | REAL , dimension(:,:), allocatable :: zplev_new |
|---|
| 171 | REAL , dimension(:,:), allocatable :: zplev_gcm |
|---|
| 172 | REAL , dimension(:,:,:), allocatable :: zplev_new_timeseries ! same but with the time series |
|---|
| 173 | REAL , dimension(:,:,:), allocatable :: zplev_old_timeseries ! same but with the time series |
|---|
| 174 | |
|---|
| 175 | LOGICAL :: STOPPING_water ! Logical : is the criterion (% of change in the surface of sublimating water ice) reached? |
|---|
| 176 | LOGICAL :: STOPPING_1_water ! Logical : is there still water ice to sublimate? |
|---|
| 177 | LOGICAL :: STOPPING_co2 ! Logical : is the criterion (% of change in the surface of sublimating water ice) reached? |
|---|
| 178 | LOGICAL :: STOPPING_1_co2 ! Logical : is there still water ice to sublimate? |
|---|
| 179 | |
|---|
| 180 | REAL, dimension(:,:,:),allocatable :: q_co2_GCM ! Initial amount of co2 in the first layer |
|---|
| 181 | |
|---|
| 182 | real,save :: m_co2, m_noco2, A , B, mmean |
|---|
| 183 | real ,allocatable :: vmr_co2_gcm_phys(:,:) !(ngrid) ! co2 volume mixing ratio |
|---|
| 184 | real ,allocatable :: vmr_co2_pem_phys(:,:) !(ngrid) ! co2 volume mixing ratio |
|---|
| 185 | real ,allocatable :: q_h2o_GCM_phys(:,:) |
|---|
| 186 | real ,allocatable :: q_co2_GCM_phys(:,:) |
|---|
| 187 | real ,allocatable :: q_co2_PEM_phys(:,:) |
|---|
| 188 | REAL, ALLOCATABLE :: ps_GCM(:,:,:) |
|---|
| 189 | REAL, ALLOCATABLE :: ps_GCM_yr1(:,:,:) |
|---|
| 190 | REAL, ALLOCATABLE :: vmr_co2_gcm(:,:,:) |
|---|
| 191 | REAL, ALLOCATABLE :: q_h2o_GCM(:,:,:) |
|---|
| 192 | REAL ,allocatable :: q_h2o_PEM_phys(:,:) |
|---|
| 193 | integer :: timelen |
|---|
| 194 | REAL :: ave |
|---|
| 195 | |
|---|
| 196 | REAL, ALLOCATABLE :: p(:,:) !(ngrid,llmp1) |
|---|
| 197 | REAL :: extra_mass ! Extra mass of a tracer if it is greater than 1 |
|---|
| 198 | |
|---|
| 199 | !!!!!!!!!!!!!!!!!!!!!!!! SLOPE |
|---|
| 200 | character*2 :: str2 |
|---|
| 201 | REAL ,allocatable :: watercap_slope(:,:) !(ngrid,nslope) |
|---|
| 202 | REAL , dimension(:,:,:), allocatable :: min_co2_ice_slope_1 ! LON x LAT field : minimum of water ice at each point for the first year |
|---|
| 203 | REAL , dimension(:,:,:), allocatable :: min_co2_ice_slope_2 ! LON x LAT field : minimum of water ice at each point for the second year |
|---|
| 204 | REAL , dimension(:,:,:), allocatable :: min_h2o_ice_slope_1 ! LON x LAT field : minimum of water ice at each point for the first year |
|---|
| 205 | REAL , dimension(:,:,:), allocatable :: min_h2o_ice_slope_2 ! LON x LAT field : minimum of water ice at each point for the second year |
|---|
| 206 | |
|---|
| 207 | |
|---|
| 208 | REAL , dimension(:,:,:,:), allocatable :: co2_ice_GCM_slope ! LON x LATX NSLOPE x Times field : co2 ice given by the GCM |
|---|
| 209 | REAL , dimension(:,:,:), allocatable :: co2_ice_GCM_phys_slope ! LON x LATX NSLOPE x Times field : co2 ice given by the GCM |
|---|
| 210 | |
|---|
| 211 | |
|---|
| 212 | REAL, dimension(:,:),allocatable :: initial_co2_ice_sublim_slope ! physical point field : Logical array indicating sublimating point of co2 ice |
|---|
| 213 | REAL, dimension(:,:),allocatable :: initial_h2o_ice_slope ! physical point field : Logical array indicating sublimating point of h2o ice |
|---|
| 214 | REAL, dimension(:,:),allocatable :: initial_co2_ice_slope ! physical point field : Logical array indicating sublimating point of co2 ice |
|---|
| 215 | |
|---|
| 216 | REAL , dimension(:,:,:), allocatable :: tendencies_co2_ice_slope ! LON x LAT field : Tendency of evolution of perenial co2 ice over a year |
|---|
| 217 | REAL , dimension(:,:,:), allocatable :: tendencies_h2o_ice_slope ! LON x LAT field : Tendency of evolution of perenial co2 ice over a year |
|---|
| 218 | REAL, dimension(:,:),allocatable :: tendencies_co2_ice_phys_slope ! physical point field : Tendency of evolution of perenial co2 ice over a year |
|---|
| 219 | REAL, dimension(:,:),allocatable :: tendencies_co2_ice_phys_slope_ini ! physical point field x nslope: Tendency of evolution of perenial co2 ice over a year in the GCM |
|---|
| 220 | REAL, dimension(:,:),allocatable :: tendencies_h2o_ice_phys_slope ! physical point field : Tendency of evolution of perenial co2 ice over a year |
|---|
| 221 | |
|---|
| 222 | REAL,SAVE,ALLOCATABLE,DIMENSION(:) :: co2_hmax ! Maximum height for CO2 deposit on slopes (m) |
|---|
| 223 | |
|---|
| 224 | REAL, PARAMETER :: rho_co2 = 1600 ! CO2 ice density (kg/m^3) |
|---|
| 225 | INTEGER :: iaval ! Index of the neighboord slope () |
|---|
| 226 | REAL , dimension(:,:), allocatable :: flag_co2flow(:,:) !(ngrid,nslope) ! To flag where there is a glacier flow |
|---|
| 227 | REAL , dimension(:), allocatable :: flag_co2flow_mesh(:) !(ngrid) ! To flag where there is a glacier flow |
|---|
| 228 | |
|---|
| 229 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!! SURFACE/SOIL |
|---|
| 230 | |
|---|
| 231 | REAL, ALLOCATABLE :: tsurf_ave(:,:,:) ! LON x LAT x SLOPE field : Averaged Surface Temperature [K] |
|---|
| 232 | REAL, ALLOCATABLE :: tsurf_ave_phys(:,:) ! IG x LAT x SLOPE field : Averaged Surface Temperature [K] |
|---|
| 233 | REAL, ALLOCATABLE :: tsoil_ave(:,:,:,:) ! LON x LAT x SLOPE field : Averaged Soil Temperature [K] |
|---|
| 234 | REAL, ALLOCATABLE :: tsoil_ave_yr1(:,:,:,:) ! LON x LAT x SLOPE field : Averaged Soil Temperature [K] |
|---|
| 235 | REAL, ALLOCATABLE :: tsoil_ave_phys_yr1(:,:,:) !IG x SLOPE field : Averaged Soil Temperature [K] |
|---|
| 236 | |
|---|
| 237 | REAL, ALLOCATABLE :: TI_GCM(:,:,:,:) ! LON x LAT x SLOPE field : Averaged Thermal Inertia [SI] |
|---|
| 238 | REAL, ALLOCATABLE :: tsurf_GCM_timeseries(:,:,:,:) !LONX LAT x SLOPE XTULES field : NOn averaged Surf Temperature [K] |
|---|
| 239 | REAL, ALLOCATABLE :: tsurf_phys_GCM_timeseries(:,:,:) !IG x SLOPE XTULES field : NOn averaged Surf Temperature [K] |
|---|
| 240 | |
|---|
| 241 | REAL, ALLOCATABLE :: tsoil_phys_PEM_timeseries(:,:,:,:) !IG x SLOPE XTULES field : NOn averaged Soil Temperature [K] |
|---|
| 242 | REAL, ALLOCATABLE :: tsoil_GCM_timeseries(:,:,:,:,:) !IG x SLOPE XTULES field : NOn averaged Soil Temperature [K] |
|---|
| 243 | |
|---|
| 244 | REAL, ALLOCATABLE :: tsurf_ave_yr1(:,:,:) ! LON x LAT x SLOPE field : Averaged Surface Temperature of the first year of the gcm [K] |
|---|
| 245 | REAL, ALLOCATABLE :: tsurf_ave_phys_yr1(:,:) ! IG x LAT x SLOPE field : Averaged Surface Temperature of first call of the gcm [K] |
|---|
| 246 | |
|---|
| 247 | REAL, PARAMETER :: year_step = 1 |
|---|
| 248 | INTEGER :: year_iter !Counter for the number of PEM iteration |
|---|
| 249 | INTEGER :: year_iter_max |
|---|
| 250 | REAL :: timestep |
|---|
| 251 | |
|---|
| 252 | REAL, ALLOCATABLE :: inertiesoil(:,:) ! Thermal inertia of the mesh for restart |
|---|
| 253 | |
|---|
| 254 | REAL, ALLOCATABLE :: TI_GCM_phys(:,:,:) ! Averaged GCM Thermal Inertia [SI] |
|---|
| 255 | REAL, ALLOCATABLE :: TI_GCM_start(:,:,:) ! Averaged GCM Thermal Inertia [SI] |
|---|
| 256 | |
|---|
| 257 | REAL,ALLOCATABLE :: ice_depth(:,:) |
|---|
| 258 | REAL,ALLOCATABLE :: TI_locslope(:,:) |
|---|
| 259 | REAL,ALLOCATABLE :: Tsoil_locslope(:,:) |
|---|
| 260 | REAL,ALLOCATABLE :: Tsurf_locslope(:) |
|---|
| 261 | REAL,ALLOCATABLE :: alph_locslope(:,:) |
|---|
| 262 | REAL,ALLOCATABLE :: beta_locslope(:,:) |
|---|
| 263 | |
|---|
| 264 | REAL,ALLOCATABLE :: Tsurfave_before_saved(:,:) |
|---|
| 265 | REAL, ALLOCATABLE :: delta_co2_adsorbded(:) |
|---|
| 266 | REAL :: totmass_adsorbded |
|---|
| 267 | |
|---|
| 268 | !!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 269 | |
|---|
| 270 | ! Loop variable |
|---|
| 271 | LOGICAL :: bool_sublim |
|---|
| 272 | INTEGER :: i,j,ig0,l,ig,nnq,t,islope,ig_loop,islope_loop,iloop |
|---|
| 273 | REAL :: beta = 3182.48 |
|---|
| 274 | REAL :: alpha = 23.3494 |
|---|
| 275 | |
|---|
| 276 | ! Parallel variables |
|---|
| 277 | is_sequential=.true. |
|---|
| 278 | is_parallel=.false. |
|---|
| 279 | is_mpi_root=.true. |
|---|
| 280 | is_omp_root=.true. |
|---|
| 281 | is_master=.true. |
|---|
| 282 | |
|---|
| 283 | day_ini=0 !test |
|---|
| 284 | time_phys=0. !test |
|---|
| 285 | |
|---|
| 286 | ! Some constants |
|---|
| 287 | |
|---|
| 288 | ngrid=ngridmx |
|---|
| 289 | nlayer=llm |
|---|
| 290 | |
|---|
| 291 | m_co2 = 44.01E-3 ! CO2 molecular mass (kg/mol) |
|---|
| 292 | m_noco2 = 33.37E-3 ! Non condensible mol mass (kg/mol) |
|---|
| 293 | A =(1/m_co2 - 1/m_noco2) |
|---|
| 294 | B=1/m_noco2 |
|---|
| 295 | |
|---|
| 296 | year_day=669 |
|---|
| 297 | daysec=88775. |
|---|
| 298 | dtphys=0 |
|---|
| 299 | timestep=year_day*daysec/year_step |
|---|
| 300 | |
|---|
| 301 | !------------------------ |
|---|
| 302 | |
|---|
| 303 | ! I Initialisation |
|---|
| 304 | ! I_a READ run.def |
|---|
| 305 | |
|---|
| 306 | !------------------------ |
|---|
| 307 | |
|---|
| 308 | !----------------------------READ run.def --------------------- |
|---|
| 309 | CALL conf_gcm( 99, .TRUE. ) |
|---|
| 310 | |
|---|
| 311 | call infotrac_init |
|---|
| 312 | nq=nqtot |
|---|
| 313 | |
|---|
| 314 | !------------------------ |
|---|
| 315 | |
|---|
| 316 | ! I Initialisation |
|---|
| 317 | ! I_a READ run.def |
|---|
| 318 | ! I_b READ of start_evol.nc and starfi_evol.nc |
|---|
| 319 | |
|---|
| 320 | !------------------------ |
|---|
| 321 | |
|---|
| 322 | !----------------------------Initialisation : READ some constant of startfi_evol.nc --------------------- |
|---|
| 323 | |
|---|
| 324 | ! In the gcm, these values are given to the physic by the dynamic. |
|---|
| 325 | ! Here we simply read them in the startfi_evol.nc file |
|---|
| 326 | status =nf90_open(FILE_NAME, NF90_NOWRITE, ncid) |
|---|
| 327 | |
|---|
| 328 | allocate(longitude(ngrid)) |
|---|
| 329 | allocate(latitude(ngrid)) |
|---|
| 330 | allocate(cell_area(ngrid)) |
|---|
| 331 | |
|---|
| 332 | status = nf90_inq_varid(ncid, "longitude", lonvarid) |
|---|
| 333 | status = nf90_get_var(ncid, lonvarid, longitude) |
|---|
| 334 | |
|---|
| 335 | status = nf90_inq_varid(ncid, "latitude", latvarid) |
|---|
| 336 | status = nf90_get_var(ncid, latvarid, latitude) |
|---|
| 337 | |
|---|
| 338 | status = nf90_inq_varid(ncid, "area", areavarid) |
|---|
| 339 | status = nf90_get_var(ncid, areavarid, cell_area) |
|---|
| 340 | |
|---|
| 341 | call ini_comsoil_h(ngrid) |
|---|
| 342 | |
|---|
| 343 | status = nf90_inq_varid(ncid, "soildepth", sdvarid) |
|---|
| 344 | status = nf90_get_var(ncid, sdvarid, mlayer) |
|---|
| 345 | |
|---|
| 346 | status =nf90_close(ncid) |
|---|
| 347 | |
|---|
| 348 | !----------------------------READ start.nc --------------------- |
|---|
| 349 | |
|---|
| 350 | allocate(q(ip1jmp1,llm,nqtot)) |
|---|
| 351 | CALL dynetat0(FILE_NAME_start,vcov,ucov, & |
|---|
| 352 | teta,q,masse,ps,phis, time_0) |
|---|
| 353 | |
|---|
| 354 | CALL iniconst !new |
|---|
| 355 | CALL inigeom |
|---|
| 356 | allocate(ap(nlayer+1)) |
|---|
| 357 | allocate(bp(nlayer+1)) |
|---|
| 358 | status =nf90_open(FILE_NAME_start, NF90_NOWRITE, ncid) |
|---|
| 359 | status = nf90_inq_varid(ncid, "ap", apvarid) |
|---|
| 360 | status = nf90_get_var(ncid, apvarid, ap) |
|---|
| 361 | status = nf90_inq_varid(ncid, "bp", bpvarid) |
|---|
| 362 | status = nf90_get_var(ncid, bpvarid, bp) |
|---|
| 363 | status =nf90_close(ncid) |
|---|
| 364 | |
|---|
| 365 | CALL iniphysiq(iim,jjm,llm, & |
|---|
| 366 | (jjm-1)*iim+2,comm_lmdz, & |
|---|
| 367 | daysec,day_ini,dtphys/nsplit_phys, & |
|---|
| 368 | rlatu,rlatv,rlonu,rlonv,aire,cu,cv,rad,g,r,cpp, & |
|---|
| 369 | iflag_phys) |
|---|
| 370 | |
|---|
| 371 | DO nnq=1,nqtot |
|---|
| 372 | if(noms(nnq).eq."h2o_ice") igcm_h2o_ice = nnq |
|---|
| 373 | ENDDO |
|---|
| 374 | |
|---|
| 375 | !----------------------------READ startfi.nc --------------------- |
|---|
| 376 | |
|---|
| 377 | ! First we read the initial state (starfi.nc) |
|---|
| 378 | |
|---|
| 379 | allocate(watercap_slope(ngrid,nslope)) |
|---|
| 380 | allocate(TI_GCM_start(ngrid,nsoilmx,nslope)) |
|---|
| 381 | allocate(inertiesoil(ngrid,nsoilmx)) |
|---|
| 382 | |
|---|
| 383 | CALL phyetat0 (FILE_NAME,0,0, & |
|---|
| 384 | nsoilmx,ngrid,nlayer,nq, & |
|---|
| 385 | day_ini,time_phys, & |
|---|
| 386 | tsurf,tsoil,albedo,emis, & |
|---|
| 387 | q2,qsurf,co2ice,tauscaling,totcloudfrac,wstar, & |
|---|
| 388 | watercap,inertiesoil,nslope,tsurf_slope, & |
|---|
| 389 | tsoil_slope,co2ice_slope,def_slope,def_slope_mean, & |
|---|
| 390 | subslope_dist,albedo_slope,emiss_slope, TI_GCM_start, & |
|---|
| 391 | qsurf_slope,watercap_slope) |
|---|
| 392 | |
|---|
| 393 | if(soil_pem) then |
|---|
| 394 | deallocate(TI_GCM_start) !not used then |
|---|
| 395 | endif |
|---|
| 396 | |
|---|
| 397 | ! Remove unphysical values of surface tracer |
|---|
| 398 | DO i=1,ngrid |
|---|
| 399 | DO nnq=1,nqtot |
|---|
| 400 | DO islope=1,nslope |
|---|
| 401 | if(qsurf_slope(i,nnq,islope).LT.0) then |
|---|
| 402 | qsurf_slope(i,nnq,islope)=0. |
|---|
| 403 | endif |
|---|
| 404 | enddo |
|---|
| 405 | enddo |
|---|
| 406 | enddo |
|---|
| 407 | |
|---|
| 408 | !------------------------ |
|---|
| 409 | |
|---|
| 410 | ! I Initialisation |
|---|
| 411 | ! I_a READ run.def |
|---|
| 412 | ! I_b READ of start_evol.nc and starfi_evol.nc |
|---|
| 413 | ! I_c Subslope parametrisation |
|---|
| 414 | |
|---|
| 415 | !------------------------ |
|---|
| 416 | |
|---|
| 417 | !----------------------------Subslope parametrisation definition --------------------- |
|---|
| 418 | |
|---|
| 419 | ! Define some slope statistics |
|---|
| 420 | iflat=1 |
|---|
| 421 | DO islope=2,nslope |
|---|
| 422 | IF(abs(def_slope_mean(islope)).lt. & |
|---|
| 423 | abs(def_slope_mean(iflat))) THEN |
|---|
| 424 | iflat = islope |
|---|
| 425 | ENDIF |
|---|
| 426 | ENDDO |
|---|
| 427 | |
|---|
| 428 | PRINT*,'Flat slope for islope = ',iflat |
|---|
| 429 | PRINT*,'corresponding criterium = ',def_slope_mean(iflat) |
|---|
| 430 | |
|---|
| 431 | ! CO2 max thickness (for glaciers flows) |
|---|
| 432 | allocate(co2_hmax(nslope)) |
|---|
| 433 | if(nslope.eq.7) then ! ugly way to implement that ... |
|---|
| 434 | ! CF documentation that explain how the values are computed |
|---|
| 435 | co2_hmax(1) = 1.5 |
|---|
| 436 | co2_hmax(7) = co2_hmax(1) |
|---|
| 437 | co2_hmax(2) = 2.4 |
|---|
| 438 | co2_hmax(6) = co2_hmax(2) |
|---|
| 439 | co2_hmax(3) = 5.6 |
|---|
| 440 | co2_hmax(5) = co2_hmax(3) |
|---|
| 441 | co2_hmax(4) = 1000000. |
|---|
| 442 | endif |
|---|
| 443 | |
|---|
| 444 | allocate(flag_co2flow(ngrid,nslope)) |
|---|
| 445 | allocate(flag_co2flow_mesh(ngrid)) |
|---|
| 446 | |
|---|
| 447 | flag_co2flow(:,:) = 0. |
|---|
| 448 | flag_co2flow_mesh(:) = 0. |
|---|
| 449 | |
|---|
| 450 | !---------------------------- READ GCM data --------------------- |
|---|
| 451 | |
|---|
| 452 | ! I Initialisation |
|---|
| 453 | ! I_a READ run.def |
|---|
| 454 | ! I_b READ of start_evol.nc and starfi_evol.nc |
|---|
| 455 | ! I_c Subslope parametrisation |
|---|
| 456 | ! I_d READ GCM data and convert to the physical grid |
|---|
| 457 | |
|---|
| 458 | !------------------------ |
|---|
| 459 | |
|---|
| 460 | ! First we read the evolution of water and co2 ice (and the mass mixing ratio) over the first year of the GCM run, saving only the minimum value |
|---|
| 461 | |
|---|
| 462 | call nb_time_step_GCM("data_GCM_Y1.nc",timelen) |
|---|
| 463 | |
|---|
| 464 | allocate(min_h2o_ice_s_1(iim+1,jjm+1)) |
|---|
| 465 | allocate(min_co2_ice_s_1(iim+1,jjm+1)) |
|---|
| 466 | allocate(vmr_co2_gcm(iim+1,jjm+1,timelen)) |
|---|
| 467 | allocate(q_h2o_GCM(iim+1,jjm+1,timelen)) |
|---|
| 468 | allocate(q_co2_GCM(iim+1,jjm+1,timelen)) |
|---|
| 469 | allocate(ps_GCM(iim+1,jjm+1,timelen)) |
|---|
| 470 | allocate(ps_GCM_yr1(iim+1,jjm+1,timelen)) |
|---|
| 471 | allocate(min_co2_ice_slope_1(iim+1,jjm+1,nslope)) |
|---|
| 472 | allocate(min_h2o_ice_slope_1(iim+1,jjm+1,nslope)) |
|---|
| 473 | allocate(tsurf_ave(iim+1,jjm+1,nslope)) |
|---|
| 474 | allocate(tsurf_ave_yr1(iim+1,jjm+1,nslope)) |
|---|
| 475 | allocate(tsurf_ave_phys(ngrid,nslope)) |
|---|
| 476 | allocate(tsurf_ave_phys_yr1(ngrid,nslope)) |
|---|
| 477 | allocate(tsurf_GCM_timeseries(iim+1,jjm+1,nslope,timelen)) |
|---|
| 478 | allocate(tsurf_phys_GCM_timeseries(ngrid,nslope,timelen)) |
|---|
| 479 | allocate(co2_ice_GCM_phys_slope(ngrid,nslope,timelen)) |
|---|
| 480 | allocate(co2_ice_GCM_slope(iim+1,jjm+1,nslope,timelen)) |
|---|
| 481 | allocate(Tsurfave_before_saved(ngrid,nslope)) |
|---|
| 482 | allocate(tsoil_ave(iim+1,jjm+1,nsoilmx,nslope)) |
|---|
| 483 | allocate(tsoil_ave_yr1(iim+1,jjm+1,nsoilmx,nslope)) |
|---|
| 484 | allocate(tsoil_ave_phys_yr1(ngrid,nsoilmx_PEM,nslope)) |
|---|
| 485 | allocate(TI_GCM(iim+1,jjm+1,nsoilmx,nslope)) |
|---|
| 486 | allocate(tsoil_GCM_timeseries(iim+1,jjm+1,nsoilmx,nslope,timelen)) |
|---|
| 487 | allocate(tsoil_phys_PEM_timeseries(ngrid,nsoilmx_PEM,nslope,timelen)) |
|---|
| 488 | allocate(delta_co2_adsorbded(ngrid)) |
|---|
| 489 | |
|---|
| 490 | print *, "Downloading data Y1..." |
|---|
| 491 | |
|---|
| 492 | call read_data_GCM("data_GCM_Y1.nc", min_h2o_ice_s_1,min_co2_ice_s_1,iim,jjm,nlayer,vmr_co2_gcm,ps_GCM_yr1,timelen,min_co2_ice_slope_1,min_h2o_ice_slope_1,& |
|---|
| 493 | nslope,tsurf_ave_yr1,tsoil_ave_yr1, tsurf_GCM_timeseries,tsoil_GCM_timeseries,TI_GCM,q_co2_GCM,q_h2o_GCM,co2_ice_GCM_slope) |
|---|
| 494 | |
|---|
| 495 | ! Then we read the evolution of water and co2 ice (and the mass mixing ratio) over the second year of the GCM run, saving only the minimum value |
|---|
| 496 | |
|---|
| 497 | print *, "Downloading data Y1 done" |
|---|
| 498 | |
|---|
| 499 | allocate(min_h2o_ice_s_2(iim+1,jjm+1)) |
|---|
| 500 | allocate(min_co2_ice_s_2(iim+1,jjm+1)) |
|---|
| 501 | allocate(min_co2_ice_slope_2(iim+1,jjm+1,nslope)) |
|---|
| 502 | allocate(min_h2o_ice_slope_2(iim+1,jjm+1,nslope)) |
|---|
| 503 | |
|---|
| 504 | print *, "Downloading data Y2" |
|---|
| 505 | |
|---|
| 506 | call read_data_GCM("data_GCM_Y2.nc", min_h2o_ice_s_2,min_co2_ice_s_2,iim,jjm,nlayer,vmr_co2_gcm,ps_GCM,timelen,min_co2_ice_slope_2,min_h2o_ice_slope_2, & |
|---|
| 507 | nslope,tsurf_ave,tsoil_ave, tsurf_GCM_timeseries,tsoil_GCM_timeseries,TI_GCM,q_co2_GCM,q_h2o_GCM,co2_ice_GCM_slope) |
|---|
| 508 | |
|---|
| 509 | print *, "Downloading data Y2 done" |
|---|
| 510 | |
|---|
| 511 | ! The variables in the dynamic grid are transfered to the physical grid |
|---|
| 512 | |
|---|
| 513 | allocate(vmr_co2_gcm_phys(ngrid,timelen)) |
|---|
| 514 | allocate(vmr_co2_pem_phys(ngrid,timelen)) |
|---|
| 515 | allocate(q_h2o_GCM_phys(ngrid,timelen)) |
|---|
| 516 | allocate(q_h2o_PEM_phys(ngrid,timelen)) |
|---|
| 517 | allocate(q_co2_GCM_phys(ngrid,timelen)) |
|---|
| 518 | allocate(q_co2_PEM_phys(ngrid,timelen)) |
|---|
| 519 | allocate(ps_phys(ngrid)) |
|---|
| 520 | allocate(ps_phys_timeseries(ngrid,timelen)) |
|---|
| 521 | allocate(ps_phys_timeseries_yr1(ngrid,timelen)) |
|---|
| 522 | |
|---|
| 523 | CALL gr_dyn_fi(timelen,iip1,jjp1,ngridmx,vmr_co2_gcm,vmr_co2_gcm_phys) |
|---|
| 524 | CALL gr_dyn_fi(timelen,iip1,jjp1,ngridmx,q_h2o_GCM,q_h2o_GCM_phys) |
|---|
| 525 | CALL gr_dyn_fi(timelen,iip1,jjp1,ngridmx,q_co2_GCM,q_co2_GCM_phys) |
|---|
| 526 | call gr_dyn_fi(1,iip1,jjp1,ngridmx,ps,ps_phys) |
|---|
| 527 | call gr_dyn_fi(timelen,iip1,jjp1,ngridmx,ps_GCM,ps_phys_timeseries) |
|---|
| 528 | call gr_dyn_fi(timelen,iip1,jjp1,ngridmx,ps_GCM_yr1,ps_phys_timeseries_yr1) |
|---|
| 529 | CALL gr_dyn_fi(nslope,iip1,jjp1,ngridmx,tsurf_ave,tsurf_ave_phys) |
|---|
| 530 | CALL gr_dyn_fi(nslope,iip1,jjp1,ngridmx,tsurf_ave_yr1,tsurf_ave_phys_yr1) |
|---|
| 531 | |
|---|
| 532 | deallocate(vmr_co2_gcm) |
|---|
| 533 | deallocate(q_h2o_GCM) |
|---|
| 534 | deallocate(q_co2_GCM) |
|---|
| 535 | deallocate(ps_GCM) |
|---|
| 536 | deallocate(ps_GCM_yr1) |
|---|
| 537 | deallocate(tsurf_ave) |
|---|
| 538 | deallocate(tsurf_ave_yr1) |
|---|
| 539 | |
|---|
| 540 | q_co2_PEM_phys(:,:)= q_co2_GCM_phys(:,:) |
|---|
| 541 | q_h2o_PEM_phys(:,:)= q_h2o_GCM_phys(:,:) |
|---|
| 542 | |
|---|
| 543 | !------------------------ |
|---|
| 544 | |
|---|
| 545 | ! I Initialisation |
|---|
| 546 | ! I_a READ run.def |
|---|
| 547 | ! I_b READ of start_evol.nc and starfi_evol.nc |
|---|
| 548 | ! I_c Subslope parametrisation |
|---|
| 549 | ! I_d READ GCM data and convert to the physical grid |
|---|
| 550 | ! I_e Initialisation of the PEM variable and soil |
|---|
| 551 | |
|---|
| 552 | !------------------------ |
|---|
| 553 | |
|---|
| 554 | !---------------------------- Initialisation of the PEM soil and values --------------------- |
|---|
| 555 | |
|---|
| 556 | call end_comsoil_h_PEM |
|---|
| 557 | call ini_comsoil_h_PEM(ngrid,nslope) |
|---|
| 558 | |
|---|
| 559 | allocate(ice_depth(ngrid,nslope)) |
|---|
| 560 | allocate(TI_GCM_phys(ngrid,nsoilmx,nslope)) |
|---|
| 561 | |
|---|
| 562 | DO islope = 1,nslope |
|---|
| 563 | if(soil_pem) then |
|---|
| 564 | CALL gr_dyn_fi(nsoilmx,iip1,jjp1,ngridmx,TI_GCM(:,:,:,islope),TI_GCM_phys(:,:,islope)) |
|---|
| 565 | endif !soil_pem |
|---|
| 566 | DO t=1,timelen |
|---|
| 567 | CALL gr_dyn_fi(1,iip1,jjp1,ngridmx,tsurf_GCM_timeseries(:,:,islope,t),tsurf_phys_GCM_timeseries(:,islope,t)) |
|---|
| 568 | CALL gr_dyn_fi(1,iip1,jjp1,ngridmx,co2_ice_GCM_slope(:,:,islope,t),co2_ice_GCM_phys_slope(:,islope,t)) |
|---|
| 569 | enddo |
|---|
| 570 | ENDDO |
|---|
| 571 | |
|---|
| 572 | deallocate(co2_ice_GCM_slope) |
|---|
| 573 | deallocate(TI_GCM) |
|---|
| 574 | |
|---|
| 575 | if(soil_pem) then |
|---|
| 576 | |
|---|
| 577 | deallocate(tsurf_GCM_timeseries) |
|---|
| 578 | call soil_settings_PEM(ngrid,nslope,nsoilmx_PEM,nsoilmx,TI_GCM_phys,TI_PEM) |
|---|
| 579 | |
|---|
| 580 | DO islope = 1,nslope |
|---|
| 581 | DO l=1,nsoilmx |
|---|
| 582 | CALL gr_dyn_fi(1,iip1,jjp1,ngridmx,tsoil_ave_yr1(:,:,l,islope),tsoil_ave_phys_yr1(:,l,islope)) |
|---|
| 583 | CALL gr_dyn_fi(1,iip1,jjp1,ngridmx,tsoil_ave(:,:,l,islope),tsoil_PEM(:,l,islope)) |
|---|
| 584 | DO t=1,timelen |
|---|
| 585 | CALL gr_dyn_fi(1,iip1,jjp1,ngridmx,tsoil_GCM_timeseries(:,:,l,islope,t),tsoil_phys_PEM_timeseries(:,l,islope,t)) |
|---|
| 586 | ENDDO |
|---|
| 587 | ENDDO |
|---|
| 588 | DO l=nsoilmx+1,nsoilmx_PEM |
|---|
| 589 | CALL gr_dyn_fi(1,iip1,jjp1,ngridmx,tsoil_ave_yr1(:,:,nsoilmx,islope),tsoil_ave_phys_yr1(:,l,islope)) |
|---|
| 590 | CALL gr_dyn_fi(1,iip1,jjp1,ngridmx,tsoil_ave(:,:,nsoilmx,islope),tsoil_PEM(:,l,islope)) |
|---|
| 591 | ENDDO |
|---|
| 592 | ENDDO |
|---|
| 593 | |
|---|
| 594 | deallocate(tsoil_ave_yr1) |
|---|
| 595 | deallocate(tsoil_ave) |
|---|
| 596 | deallocate(tsoil_GCM_timeseries) |
|---|
| 597 | endif !soil_pem |
|---|
| 598 | |
|---|
| 599 | !------------------------ |
|---|
| 600 | |
|---|
| 601 | ! I Initialisation |
|---|
| 602 | ! I_a READ run.def |
|---|
| 603 | ! I_b READ of start_evol.nc and starfi_evol.nc |
|---|
| 604 | ! I_c Subslope parametrisation |
|---|
| 605 | ! I_d READ GCM data and convert to the physical grid |
|---|
| 606 | ! I_e Initialisation of the PEM variable and soil |
|---|
| 607 | ! I_f Compute tendencies & Save initial situation |
|---|
| 608 | |
|---|
| 609 | !----- Compute tendencies from the PCM run |
|---|
| 610 | |
|---|
| 611 | allocate(tendencies_h2o_ice(iim+1,jjm+1)) |
|---|
| 612 | allocate(tendencies_h2o_ice_phys(ngrid)) |
|---|
| 613 | allocate(tendencies_co2_ice(iim+1,jjm+1)) |
|---|
| 614 | allocate(tendencies_co2_ice_phys(ngrid)) |
|---|
| 615 | allocate(tendencies_co2_ice_slope(iim+1,jjm+1,nslope)) |
|---|
| 616 | allocate(tendencies_co2_ice_phys_slope(ngrid,nslope)) |
|---|
| 617 | allocate(tendencies_co2_ice_phys_slope_ini(ngrid,nslope)) |
|---|
| 618 | allocate(tendencies_h2o_ice_slope(iim+1,jjm+1,nslope)) |
|---|
| 619 | allocate(tendencies_h2o_ice_phys_slope(ngrid,nslope)) |
|---|
| 620 | |
|---|
| 621 | ! Compute the tendencies of the evolution of ice over the years |
|---|
| 622 | |
|---|
| 623 | call compute_tendencies(tendencies_h2o_ice,min_h2o_ice_s_1,& |
|---|
| 624 | min_h2o_ice_s_2,iim,jjm,ngrid,tendencies_h2o_ice_phys) |
|---|
| 625 | |
|---|
| 626 | call compute_tendencies(tendencies_co2_ice,min_co2_ice_s_1,& |
|---|
| 627 | min_co2_ice_s_2,iim,jjm,ngrid,tendencies_co2_ice_phys) |
|---|
| 628 | |
|---|
| 629 | call compute_tendencies_slope(tendencies_co2_ice_slope,min_co2_ice_slope_1,& |
|---|
| 630 | min_co2_ice_slope_2,iim,jjm,ngrid,tendencies_co2_ice_phys_slope,nslope) |
|---|
| 631 | |
|---|
| 632 | tendencies_co2_ice_phys_slope_ini(:,:)=tendencies_co2_ice_phys_slope(:,:) |
|---|
| 633 | |
|---|
| 634 | call compute_tendencies_slope(tendencies_h2o_ice_slope,min_h2o_ice_slope_1,& |
|---|
| 635 | min_h2o_ice_slope_2,iim,jjm,ngrid,tendencies_h2o_ice_phys_slope,nslope) |
|---|
| 636 | |
|---|
| 637 | !------------------------ |
|---|
| 638 | |
|---|
| 639 | ! I Initialisation |
|---|
| 640 | ! I_a READ run.def |
|---|
| 641 | ! I_b READ of start_evol.nc and starfi_evol.nc |
|---|
| 642 | ! I_c Subslope parametrisation |
|---|
| 643 | ! I_d READ GCM data and convert to the physical grid |
|---|
| 644 | ! I_e Initialisation of the PEM variable and soil |
|---|
| 645 | ! I_f Compute tendencies & Save initial situation |
|---|
| 646 | ! I_g Save initial PCM situation |
|---|
| 647 | |
|---|
| 648 | !---------------------------- Save initial PCM situation --------------------- |
|---|
| 649 | |
|---|
| 650 | allocate(initial_h2o_ice(ngrid)) |
|---|
| 651 | allocate(initial_co2_ice(ngrid)) |
|---|
| 652 | allocate(initial_co2_ice_sublim_slope(ngrid,nslope)) |
|---|
| 653 | allocate(initial_co2_ice_slope(ngrid,nslope)) |
|---|
| 654 | allocate(initial_h2o_ice_slope(ngrid,nslope)) |
|---|
| 655 | |
|---|
| 656 | ! We save the places where water ice is sublimating |
|---|
| 657 | ! We compute the surface of water ice sublimating |
|---|
| 658 | ini_surf=0. |
|---|
| 659 | ini_surf_co2=0. |
|---|
| 660 | ini_surf_h2o=0. |
|---|
| 661 | Total_surface=0. |
|---|
| 662 | do i=1,ngrid |
|---|
| 663 | Total_surface=Total_surface+cell_area(i) |
|---|
| 664 | if (tendencies_h2o_ice_phys(i).LT.0) then |
|---|
| 665 | initial_h2o_ice(i)=1. |
|---|
| 666 | ini_surf=ini_surf+cell_area(i) |
|---|
| 667 | else |
|---|
| 668 | initial_h2o_ice(i)=0. |
|---|
| 669 | endif |
|---|
| 670 | do islope=1,nslope |
|---|
| 671 | if (tendencies_co2_ice_phys_slope(i,islope).LT.0) then |
|---|
| 672 | initial_co2_ice_sublim_slope(i,islope)=1. |
|---|
| 673 | ini_surf_co2=ini_surf_co2+cell_area(i)*subslope_dist(i,islope) |
|---|
| 674 | else |
|---|
| 675 | initial_co2_ice_sublim_slope(i,islope)=0. |
|---|
| 676 | endif |
|---|
| 677 | if (co2ice_slope(i,islope).GT.0) then |
|---|
| 678 | initial_co2_ice_slope(i,islope)=1. |
|---|
| 679 | else |
|---|
| 680 | initial_co2_ice_slope(i,islope)=0. |
|---|
| 681 | endif |
|---|
| 682 | if (tendencies_h2o_ice_phys_slope(i,islope).LT.0) then |
|---|
| 683 | initial_h2o_ice_slope(i,islope)=1. |
|---|
| 684 | ini_surf_h2o=ini_surf_h2o+cell_area(i)*subslope_dist(i,islope) |
|---|
| 685 | else |
|---|
| 686 | initial_h2o_ice_slope(i,islope)=0. |
|---|
| 687 | endif |
|---|
| 688 | enddo |
|---|
| 689 | enddo |
|---|
| 690 | |
|---|
| 691 | print *, "Total initial surface of co2ice sublimating (slope)=", ini_surf_co2 |
|---|
| 692 | print *, "Total initial surface of h2o ice sublimating=", ini_surf |
|---|
| 693 | print *, "Total initial surface of h2o ice sublimating (slope)=", ini_surf_h2o |
|---|
| 694 | print *, "Total surface of the planet=", Total_surface |
|---|
| 695 | |
|---|
| 696 | allocate(zplev_gcm(ngrid,nlayer+1)) |
|---|
| 697 | |
|---|
| 698 | DO l=1,nlayer+1 |
|---|
| 699 | DO ig=1,ngrid |
|---|
| 700 | zplev_gcm(ig,l) = ap(l) + bp(l)*ps_phys(ig) |
|---|
| 701 | ENDDO |
|---|
| 702 | ENDDO |
|---|
| 703 | |
|---|
| 704 | global_ave_press_old=0. |
|---|
| 705 | do i=1,ngrid |
|---|
| 706 | global_ave_press_old=global_ave_press_old+cell_area(i)*ps_phys(i)/Total_surface |
|---|
| 707 | enddo |
|---|
| 708 | |
|---|
| 709 | global_ave_press_GCM=global_ave_press_old |
|---|
| 710 | global_ave_press_new=global_ave_press_old |
|---|
| 711 | print *, "Initial global average pressure=", global_ave_press_GCM |
|---|
| 712 | |
|---|
| 713 | !------------------------ |
|---|
| 714 | |
|---|
| 715 | ! I Initialisation |
|---|
| 716 | ! I_a READ run.def |
|---|
| 717 | ! I_b READ of start_evol.nc and starfi_evol.nc |
|---|
| 718 | ! I_c Subslope parametrisation |
|---|
| 719 | ! I_d READ GCM data and convert to the physical grid |
|---|
| 720 | ! I_e Initialisation of the PEM variable and soil |
|---|
| 721 | ! I_f Compute tendencies & Save initial situation |
|---|
| 722 | ! I_g Save initial PCM situation |
|---|
| 723 | ! I_h Read the PEMstart |
|---|
| 724 | |
|---|
| 725 | !---------------------------- Read the PEMstart --------------------- |
|---|
| 726 | |
|---|
| 727 | call pemetat0(.false.,"startfi_PEM.nc",ngrid,nsoilmx,nsoilmx_PEM,nslope,timelen,timestep,TI_PEM,tsoil_ave_phys_yr1,tsoil_PEM,ice_depth, & |
|---|
| 728 | tsurf_ave_phys_yr1, tsurf_ave_phys, q_co2_PEM_phys, q_h2o_PEM_phys,ps_phys_timeseries,tsurf_phys_GCM_timeseries,tsoil_phys_PEM_timeseries,& |
|---|
| 729 | tendencies_h2o_ice_phys_slope,tendencies_co2_ice_phys_slope,co2ice_slope,qsurf_slope(:,igcm_h2o_ice,:), co2_adsorbded_phys,delta_co2_adsorbded) |
|---|
| 730 | |
|---|
| 731 | |
|---|
| 732 | if(soil_pem) then |
|---|
| 733 | totmass_adsorbded = 0. |
|---|
| 734 | |
|---|
| 735 | do ig = 1,ngrid |
|---|
| 736 | do islope =1, nslope |
|---|
| 737 | do l = 1,nsoilmx_PEM - 1 |
|---|
| 738 | totmass_adsorbded = totmass_adsorbded + co2_adsorbded_phys(ig,l,islope)*(layer_PEM(l+1) - layer_PEM(l))* & |
|---|
| 739 | subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.) * & |
|---|
| 740 | cell_area(ig) |
|---|
| 741 | enddo |
|---|
| 742 | enddo |
|---|
| 743 | enddo |
|---|
| 744 | |
|---|
| 745 | write(*,*) "Tot mass in the regolith=", totmass_adsorbded |
|---|
| 746 | deallocate(tsoil_ave_phys_yr1) |
|---|
| 747 | endif !soil_pem |
|---|
| 748 | deallocate(tsurf_ave_phys_yr1) |
|---|
| 749 | deallocate(ps_phys_timeseries_yr1) |
|---|
| 750 | |
|---|
| 751 | !------------------------ |
|---|
| 752 | |
|---|
| 753 | ! I Initialisation |
|---|
| 754 | ! I_a READ run.def |
|---|
| 755 | ! I_b READ of start_evol.nc and starfi_evol.nc |
|---|
| 756 | ! I_c Subslope parametrisation |
|---|
| 757 | ! I_d READ GCM data and convert to the physical grid |
|---|
| 758 | ! I_e Initialisation of the PEM variable and soil |
|---|
| 759 | ! I_f Compute tendencies & Save initial situation |
|---|
| 760 | ! I_g Save initial PCM situation |
|---|
| 761 | ! I_h Read the PEMstar |
|---|
| 762 | ! I_i Compute orbit criterion |
|---|
| 763 | |
|---|
| 764 | CALL iniorbit(aphelie,periheli,year_day,peri_day,obliquit) |
|---|
| 765 | |
|---|
| 766 | if(evol_orbit_pem) then |
|---|
| 767 | call orbit_param_criterion(year_iter_max) |
|---|
| 768 | else |
|---|
| 769 | year_iter_max=Max_iter_pem |
|---|
| 770 | endif |
|---|
| 771 | |
|---|
| 772 | !--------------------------- END INITIALISATION --------------------- |
|---|
| 773 | |
|---|
| 774 | !---------------------------- RUN --------------------- |
|---|
| 775 | |
|---|
| 776 | !------------------------ |
|---|
| 777 | |
|---|
| 778 | ! II Run |
|---|
| 779 | ! II_a update pressure,ice and tracers |
|---|
| 780 | |
|---|
| 781 | !------------------------ |
|---|
| 782 | year_iter=0 |
|---|
| 783 | print *, "Max_iter_pem", Max_iter_pem |
|---|
| 784 | do while (year_iter.LT.year_iter_max) |
|---|
| 785 | |
|---|
| 786 | ! II.a.1. Compute updated global pressure |
|---|
| 787 | print *, "Recomputing the new pressure..." |
|---|
| 788 | do i=1,ngrid |
|---|
| 789 | do islope=1,nslope |
|---|
| 790 | global_ave_press_new=global_ave_press_new-g*cell_area(i)*tendencies_co2_ice_phys_slope(i,islope)*subslope_dist(i,islope)/cos(pi*def_slope_mean(islope)/180.)/Total_surface |
|---|
| 791 | enddo |
|---|
| 792 | if(soil_pem) then |
|---|
| 793 | global_ave_press_new = global_ave_press_new -g*cell_area(i)*delta_co2_adsorbded(i)/Total_surface |
|---|
| 794 | endif |
|---|
| 795 | enddo |
|---|
| 796 | |
|---|
| 797 | ! II.a.2. Old pressure levels for the timeseries, this value is deleted when unused and recreated each time (big memory consuption) |
|---|
| 798 | allocate(zplev_old_timeseries(ngrid,nlayer+1,timelen)) |
|---|
| 799 | print *, "Recomputing the old pressure levels timeserie adapted to the old pressure..." |
|---|
| 800 | DO l=1,nlayer+1 |
|---|
| 801 | DO ig=1,ngrid |
|---|
| 802 | zplev_old_timeseries(ig,l,:) = ap(l) + bp(l)*ps_phys_timeseries(ig,:) |
|---|
| 803 | ENDDO |
|---|
| 804 | ENDDO |
|---|
| 805 | |
|---|
| 806 | ! II.a.3. Surface pressure timeseries |
|---|
| 807 | print *, "Recomputing the surface pressure timeserie adapted to the new pressure..." |
|---|
| 808 | do i = 1,ngrid |
|---|
| 809 | ps_phys_timeseries(i,:) = ps_phys_timeseries(i,:)*global_ave_press_new/global_ave_press_old |
|---|
| 810 | enddo |
|---|
| 811 | |
|---|
| 812 | ! II.a.4. New pressure levels timeseries |
|---|
| 813 | allocate(zplev_new_timeseries(ngrid,nlayer+1,timelen)) |
|---|
| 814 | print *, "Recomputing the new pressure levels timeserie adapted to the new pressure..." |
|---|
| 815 | do l=1,nlayer+1 |
|---|
| 816 | do ig=1,ngrid |
|---|
| 817 | zplev_new_timeseries(ig,l,:) = ap(l) + bp(l)*ps_phys_timeseries(ig,:) |
|---|
| 818 | enddo |
|---|
| 819 | enddo |
|---|
| 820 | |
|---|
| 821 | ! II.a.5. Tracers timeseries |
|---|
| 822 | print *, "Recomputing of tracer VMR timeseries for the new pressure..." |
|---|
| 823 | |
|---|
| 824 | l=1 |
|---|
| 825 | DO ig=1,ngrid |
|---|
| 826 | DO t = 1, timelen |
|---|
| 827 | q_h2o_PEM_phys(ig,t)=q_h2o_PEM_phys(ig,t)*(zplev_old_timeseries(ig,l,t)-zplev_old_timeseries(ig,l+1,t))/(zplev_new_timeseries(ig,l,t)-zplev_new_timeseries(ig,l+1,t)) |
|---|
| 828 | if(q_h2o_PEM_phys(ig,t).LT.0) then |
|---|
| 829 | q_h2o_PEM_phys(ig,t)=1E-30 |
|---|
| 830 | endif |
|---|
| 831 | if(q_h2o_PEM_phys(ig,t).GT.1) then |
|---|
| 832 | q_h2o_PEM_phys(ig,t)=1. |
|---|
| 833 | endif |
|---|
| 834 | enddo |
|---|
| 835 | enddo |
|---|
| 836 | |
|---|
| 837 | DO ig=1,ngrid |
|---|
| 838 | DO t = 1, timelen |
|---|
| 839 | q_co2_PEM_phys(ig,t)=q_co2_PEM_phys(ig,t)*(zplev_old_timeseries(ig,l,t)-zplev_old_timeseries(ig,l+1,t))/(zplev_new_timeseries(ig,l,t)-zplev_new_timeseries(ig,l+1,t)) & |
|---|
| 840 | + ( (zplev_new_timeseries(ig,l,t)-zplev_new_timeseries(ig,l+1,t)) - & |
|---|
| 841 | (zplev_old_timeseries(ig,l,t)-zplev_old_timeseries(ig,l+1,t)) ) / & |
|---|
| 842 | (zplev_new_timeseries(ig,l,t)-zplev_new_timeseries(ig,l+1,t)) |
|---|
| 843 | if (q_co2_PEM_phys(ig,t).LT.0) then |
|---|
| 844 | q_co2_PEM_phys(ig,t)=1E-30 |
|---|
| 845 | elseif (q_co2_PEM_phys(ig,t).GT.1) then |
|---|
| 846 | q_co2_PEM_phys(ig,t)=1. |
|---|
| 847 | endif |
|---|
| 848 | mmean=1/(A*q_co2_PEM_phys(ig,t) +B) |
|---|
| 849 | vmr_co2_pem_phys(ig,t) = q_co2_PEM_phys(ig,t)*mmean/m_co2 |
|---|
| 850 | ENDDO |
|---|
| 851 | ENDDO |
|---|
| 852 | |
|---|
| 853 | deallocate(zplev_new_timeseries) |
|---|
| 854 | deallocate(zplev_old_timeseries) |
|---|
| 855 | |
|---|
| 856 | ! II Run |
|---|
| 857 | ! II_a update pressure, ice and tracers |
|---|
| 858 | ! II_b Evolution of the ice |
|---|
| 859 | |
|---|
| 860 | ! II.b. Evolution of the ice |
|---|
| 861 | print *, "Evolution of h2o ice" |
|---|
| 862 | call evol_h2o_ice_s_slope(qsurf_slope(:,igcm_h2o_ice,:),tendencies_h2o_ice_phys_slope,iim,jjm,ngrid,cell_area,STOPPING_1_water,nslope) |
|---|
| 863 | |
|---|
| 864 | print *, "Evolution of co2 ice" |
|---|
| 865 | call evol_co2_ice_s_slope(co2ice_slope,tendencies_co2_ice_phys_slope,iim,jjm,ngrid,cell_area,STOPPING_1_co2,nslope) |
|---|
| 866 | |
|---|
| 867 | !------------------------ |
|---|
| 868 | |
|---|
| 869 | ! II Run |
|---|
| 870 | ! II_a update pressure, ice and tracers |
|---|
| 871 | ! II_b Evolution of the ice |
|---|
| 872 | ! II_c CO2 glaciers flows |
|---|
| 873 | |
|---|
| 874 | !------------------------ |
|---|
| 875 | |
|---|
| 876 | print *, "Co2 glacier flow" |
|---|
| 877 | DO ig = 1,ngrid |
|---|
| 878 | DO islope = 1,nslope |
|---|
| 879 | IF(islope.ne.iflat) THEN ! ice can be infinite on flat ground |
|---|
| 880 | ! First: check that CO2 ice must flow (excess of ice on the slope), ice can accumulate on flat ground |
|---|
| 881 | IF(co2ice_slope(ig,islope).ge.rho_co2*co2_hmax(islope) * & |
|---|
| 882 | cos(pi*def_slope_mean(islope)/180.)) THEN |
|---|
| 883 | ! Second: determine the flatest slopes possible: |
|---|
| 884 | IF(islope.gt.iflat) THEN |
|---|
| 885 | iaval=islope-1 |
|---|
| 886 | ELSE |
|---|
| 887 | iaval=islope+1 |
|---|
| 888 | ENDIF |
|---|
| 889 | do while ((iaval.ne.iflat).and. & |
|---|
| 890 | (subslope_dist(ig,iaval).eq.0)) |
|---|
| 891 | IF(iaval.gt.iflat) THEN |
|---|
| 892 | iaval=iaval-1 |
|---|
| 893 | ELSE |
|---|
| 894 | iaval=iaval+1 |
|---|
| 895 | ENDIF |
|---|
| 896 | enddo |
|---|
| 897 | co2ice_slope(ig,iaval) = co2ice_slope(ig,iaval) + & |
|---|
| 898 | (co2ice_slope(ig,islope) - rho_co2* co2_hmax(islope) * & |
|---|
| 899 | cos(pi*def_slope_mean(islope)/180.)) * & |
|---|
| 900 | subslope_dist(ig,islope)/subslope_dist(ig,iaval) * & |
|---|
| 901 | cos(pi*def_slope_mean(iaval)/180.) / & |
|---|
| 902 | cos(pi*def_slope_mean(islope)/180.) |
|---|
| 903 | |
|---|
| 904 | co2ice_slope(ig,islope)=rho_co2*co2_hmax(islope) * & |
|---|
| 905 | cos(pi*def_slope_mean(islope)/180.) |
|---|
| 906 | |
|---|
| 907 | flag_co2flow(ig,islope) = 1. |
|---|
| 908 | flag_co2flow_mesh(ig) = 1. |
|---|
| 909 | ENDIF ! co2ice > hmax |
|---|
| 910 | ENDIF ! iflattsoil_lope |
|---|
| 911 | ENDDO !islope |
|---|
| 912 | ENDDO !ig |
|---|
| 913 | |
|---|
| 914 | !------------------------ |
|---|
| 915 | |
|---|
| 916 | ! II Run |
|---|
| 917 | ! II_a update pressure, ice and tracers |
|---|
| 918 | ! II_b Evolution of the ice |
|---|
| 919 | ! II_c CO2 glaciers flows |
|---|
| 920 | ! II_d Update surface and soil temperatures |
|---|
| 921 | |
|---|
| 922 | !------------------------ |
|---|
| 923 | |
|---|
| 924 | ! II_d.1 Update Tsurf |
|---|
| 925 | |
|---|
| 926 | print *, "Updating the new Tsurf" |
|---|
| 927 | bool_sublim=0 |
|---|
| 928 | Tsurfave_before_saved(:,:) = tsurf_ave_phys(:,:) |
|---|
| 929 | DO ig = 1,ngrid |
|---|
| 930 | DO islope = 1,nslope |
|---|
| 931 | if(initial_co2_ice_slope(ig,islope).gt.0.5 .and. co2ice_slope(ig,islope).LT. 1E-5) THEN !co2ice disappeared, look for closest point without co2ice |
|---|
| 932 | if(latitude_deg(ig).gt.0) then |
|---|
| 933 | do ig_loop=ig,ngrid |
|---|
| 934 | DO islope_loop=islope,iflat,-1 |
|---|
| 935 | if(initial_co2_ice_slope(ig_loop,islope_loop).lt.0.5 .and. co2ice_slope(ig_loop,islope_loop).LT. 1E-5) then |
|---|
| 936 | tsurf_ave_phys(ig,islope)=tsurf_ave_phys(ig_loop,islope_loop) |
|---|
| 937 | bool_sublim=1 |
|---|
| 938 | exit |
|---|
| 939 | endif |
|---|
| 940 | enddo |
|---|
| 941 | if (bool_sublim.eq.1) then |
|---|
| 942 | exit |
|---|
| 943 | endif |
|---|
| 944 | enddo |
|---|
| 945 | else |
|---|
| 946 | do ig_loop=ig,1,-1 |
|---|
| 947 | DO islope_loop=islope,iflat |
|---|
| 948 | if(initial_co2_ice_slope(ig_loop,islope_loop).lt.0.5 .and. co2ice_slope(ig_loop,islope_loop).LT. 1E-5) then |
|---|
| 949 | tsurf_ave_phys(ig,islope)=tsurf_ave_phys(ig_loop,islope_loop) |
|---|
| 950 | bool_sublim=1 |
|---|
| 951 | exit |
|---|
| 952 | endif |
|---|
| 953 | enddo |
|---|
| 954 | if (bool_sublim.eq.1) then |
|---|
| 955 | exit |
|---|
| 956 | endif |
|---|
| 957 | enddo |
|---|
| 958 | endif |
|---|
| 959 | initial_co2_ice_slope(ig,islope)=0 |
|---|
| 960 | if ((co2ice_slope(ig,islope).lt.1e-5).and. (qsurf_slope(ig,igcm_h2o_ice,islope).gt.frost_albedo_threshold)) then |
|---|
| 961 | albedo_slope(ig,1,islope) = albedo_h2o_frost |
|---|
| 962 | albedo_slope(ig,2,islope) = albedo_h2o_frost |
|---|
| 963 | else |
|---|
| 964 | albedo_slope(ig,1,islope) = albedodat(ig) |
|---|
| 965 | albedo_slope(ig,2,islope) = albedodat(ig) |
|---|
| 966 | emiss_slope(ig,islope) = emissiv |
|---|
| 967 | endif |
|---|
| 968 | elseif( co2ice_slope(ig,islope).GT. 1E-5) THEN !Put tsurf as tcond co2 |
|---|
| 969 | ave=0. |
|---|
| 970 | do t=1,timelen |
|---|
| 971 | if(co2_ice_GCM_phys_slope(ig,islope,t).gt.1e-5) then |
|---|
| 972 | ave = ave + beta/(alpha-log(vmr_co2_pem_phys(ig,t)*ps_phys_timeseries(ig,t)/100.)) |
|---|
| 973 | else |
|---|
| 974 | ave = ave + tsurf_phys_GCM_timeseries(ig,islope,t) |
|---|
| 975 | endif |
|---|
| 976 | enddo |
|---|
| 977 | tsurf_ave_phys(ig,islope)=ave/timelen |
|---|
| 978 | endif |
|---|
| 979 | enddo |
|---|
| 980 | enddo |
|---|
| 981 | |
|---|
| 982 | do t = 1,timelen |
|---|
| 983 | tsurf_phys_GCM_timeseries(:,:,t) = tsurf_phys_GCM_timeseries(:,:,t) +( tsurf_ave_phys(:,:) -Tsurfave_before_saved(:,:)) |
|---|
| 984 | enddo |
|---|
| 985 | ! for the start |
|---|
| 986 | do ig = 1,ngrid |
|---|
| 987 | do islope = 1,nslope |
|---|
| 988 | tsurf_slope(ig,islope) = tsurf_slope(ig,islope) - (Tsurfave_before_saved(ig,islope)-tsurf_ave_phys(ig,islope)) |
|---|
| 989 | enddo |
|---|
| 990 | enddo |
|---|
| 991 | |
|---|
| 992 | if(soil_pem) then |
|---|
| 993 | |
|---|
| 994 | ! II_d.2 Update soil temperature |
|---|
| 995 | |
|---|
| 996 | allocate(TI_locslope(ngrid,nsoilmx_PEM)) |
|---|
| 997 | allocate(Tsoil_locslope(ngrid,nsoilmx_PEM)) |
|---|
| 998 | allocate(Tsurf_locslope(ngrid)) |
|---|
| 999 | allocate(alph_locslope(ngrid,nsoilmx_PEM-1)) |
|---|
| 1000 | allocate(beta_locslope(ngrid,nsoilmx_PEM-1)) |
|---|
| 1001 | |
|---|
| 1002 | print *,"Updating soil temperature" |
|---|
| 1003 | |
|---|
| 1004 | ! Soil averaged |
|---|
| 1005 | do islope = 1,nslope |
|---|
| 1006 | TI_locslope(:,:) = TI_PEM(:,:,islope) |
|---|
| 1007 | Tsoil_locslope(:,:) = tsoil_PEM(:,:,islope) |
|---|
| 1008 | Tsurf_locslope(:) = tsurf_ave_phys(:,islope) |
|---|
| 1009 | alph_locslope(:,:) = alph_PEM(:,:,islope) |
|---|
| 1010 | beta_locslope(:,:) = beta_PEM(:,:,islope) |
|---|
| 1011 | call soil_pem_routine(ngrid,nsoilmx_PEM,.true.,TI_locslope,timestep,Tsurf_locslope,Tsoil_locslope,alph_locslope,beta_locslope) |
|---|
| 1012 | call soil_pem_routine(ngrid,nsoilmx_PEM,.false.,TI_locslope,timestep,Tsurf_locslope,Tsoil_locslope,alph_locslope,beta_locslope) |
|---|
| 1013 | do t = 1,timelen |
|---|
| 1014 | tsoil_phys_PEM_timeseries(:,:,islope,t) = tsoil_phys_PEM_timeseries(:,:,islope,t) + (Tsoil_locslope(:,:)- tsoil_PEM(:,:,islope)) |
|---|
| 1015 | enddo |
|---|
| 1016 | TI_PEM(:,:,islope) = TI_locslope(:,:) |
|---|
| 1017 | tsoil_PEM(:,:,islope) = Tsoil_locslope(:,:) |
|---|
| 1018 | tsurf_ave_phys(:,islope) = Tsurf_locslope(:) |
|---|
| 1019 | alph_PEM(:,:,islope) = alph_locslope(:,:) |
|---|
| 1020 | beta_PEM(:,:,islope) = beta_locslope(:,:) |
|---|
| 1021 | enddo |
|---|
| 1022 | |
|---|
| 1023 | print *, "Update of soil temperature done" |
|---|
| 1024 | |
|---|
| 1025 | ! Check Nan in the time series |
|---|
| 1026 | do ig = 1,ngrid |
|---|
| 1027 | do islope = 1,nslope |
|---|
| 1028 | do iloop = 1,nsoilmx_PEM |
|---|
| 1029 | if(isnan(tsoil_PEM(ig,iloop,islope))) then |
|---|
| 1030 | write(*,*) "Problem : There is nan tsoil", ig, iloop, islope, tsoil_PEM(ig,iloop,islope) |
|---|
| 1031 | stop |
|---|
| 1032 | endif |
|---|
| 1033 | enddo |
|---|
| 1034 | enddo |
|---|
| 1035 | enddo |
|---|
| 1036 | |
|---|
| 1037 | write(*,*) "Compute ice table" |
|---|
| 1038 | |
|---|
| 1039 | ! II_d.3 Update the ice table |
|---|
| 1040 | call computeice_table(timelen,ngrid,nslope,nsoilmx,nsoilmx_PEM, tsoil_phys_PEM_timeseries,tsurf_phys_GCM_timeseries,q_co2_PEM_phys,q_h2o_PEM_phys, & |
|---|
| 1041 | ps_phys_timeseries, ice_depth) |
|---|
| 1042 | |
|---|
| 1043 | print *, "Update soil propreties" |
|---|
| 1044 | ! II_d.4 Update the soil thermal properties |
|---|
| 1045 | call update_soil(ngrid,nslope,nsoilmx_PEM,tendencies_h2o_ice_phys_slope,tendencies_co2_ice_phys_slope,co2ice_slope,qsurf_slope(:,igcm_h2o_ice,:),global_ave_press_new, & |
|---|
| 1046 | ice_depth,TI_PEM) |
|---|
| 1047 | |
|---|
| 1048 | ! II_d.5 Update the mass of the regolith adsorbded |
|---|
| 1049 | call regolith_co2adsorption(ngrid,nslope,nsoilmx_PEM,timelen,ps_phys_timeseries,tsoil_PEM,TI_PEM,tendencies_h2o_ice_phys_slope,tendencies_co2_ice_phys_slope, & |
|---|
| 1050 | co2ice_slope,qsurf_slope(:,igcm_h2o_ice,:), q_co2_PEM_phys,q_h2o_PEM_phys,co2_adsorbded_phys,delta_co2_adsorbded) |
|---|
| 1051 | |
|---|
| 1052 | endif !soil_pem |
|---|
| 1053 | |
|---|
| 1054 | !------------------------ |
|---|
| 1055 | |
|---|
| 1056 | ! II Run |
|---|
| 1057 | ! II_a update pressure, ice and tracers |
|---|
| 1058 | ! II_b Evolution of the ice |
|---|
| 1059 | ! II_c CO2 glaciers flows |
|---|
| 1060 | ! II_d Update surface and soil temperatures |
|---|
| 1061 | ! II_e Update the tendencies |
|---|
| 1062 | |
|---|
| 1063 | !------------------------ |
|---|
| 1064 | |
|---|
| 1065 | print *, "Adaptation of the new co2 tendencies to the current pressure" |
|---|
| 1066 | call recomp_tend_co2_slope(tendencies_co2_ice_phys_slope,tendencies_co2_ice_phys_slope_ini,vmr_co2_gcm_phys,vmr_co2_pem_phys,ps_phys_timeseries,& |
|---|
| 1067 | global_ave_press_GCM,global_ave_press_new,timelen,ngrid,nslope) |
|---|
| 1068 | |
|---|
| 1069 | !------------------------ |
|---|
| 1070 | |
|---|
| 1071 | ! II Run |
|---|
| 1072 | ! II_a update pressure, ice and tracers |
|---|
| 1073 | ! II_b Evolution of the ice |
|---|
| 1074 | ! II_c CO2 glaciers flows |
|---|
| 1075 | ! II_d Update surface and soil temperatures |
|---|
| 1076 | ! II_e Update the tendencies |
|---|
| 1077 | ! II_f Checking the stopping criterion |
|---|
| 1078 | |
|---|
| 1079 | !------------------------ |
|---|
| 1080 | call criterion_ice_stop_water_slope(cell_area,ini_surf_h2o,qsurf_slope(:,igcm_h2o_ice,:),STOPPING_water,ngrid,initial_h2o_ice_slope) |
|---|
| 1081 | |
|---|
| 1082 | call criterion_ice_stop_slope(cell_area,ini_surf_co2,co2ice_slope,STOPPING_co2,ngrid,initial_co2_ice_sublim_slope,global_ave_press_GCM,global_ave_press_new,nslope) |
|---|
| 1083 | |
|---|
| 1084 | year_iter=year_iter+dt_pem |
|---|
| 1085 | |
|---|
| 1086 | print *, "Checking all the stopping criterion." |
|---|
| 1087 | if (STOPPING_water) then |
|---|
| 1088 | print *, "STOPPING because surface of water ice sublimating is too low, see message above", STOPPING_water |
|---|
| 1089 | endif |
|---|
| 1090 | if (STOPPING_1_water) then |
|---|
| 1091 | print *, "STOPPING because tendencies on water ice=0, see message above", STOPPING_1_water |
|---|
| 1092 | endif |
|---|
| 1093 | if (STOPPING_co2) then |
|---|
| 1094 | print *, "STOPPING because surface of co2 ice sublimating is too low or global pressure changed too much, see message above", STOPPING_co2 |
|---|
| 1095 | endif |
|---|
| 1096 | if (STOPPING_1_co2) then |
|---|
| 1097 | print *, "STOPPING because tendencies on co2 ice=0, see message above", STOPPING_1_co2 |
|---|
| 1098 | endif |
|---|
| 1099 | |
|---|
| 1100 | if (STOPPING_water .or. STOPPING_1_water .or. STOPPING_co2 .or. STOPPING_1_co2) then |
|---|
| 1101 | exit |
|---|
| 1102 | else |
|---|
| 1103 | print *, "We continue!" |
|---|
| 1104 | print *, "Number of iteration of the PEM : year_iter=", year_iter |
|---|
| 1105 | endif |
|---|
| 1106 | |
|---|
| 1107 | global_ave_press_old=global_ave_press_new |
|---|
| 1108 | |
|---|
| 1109 | enddo ! big time iteration loop of the pem |
|---|
| 1110 | |
|---|
| 1111 | |
|---|
| 1112 | !---------------------------- END RUN PEM --------------------- |
|---|
| 1113 | |
|---|
| 1114 | !---------------------------- OUTPUT --------------------- |
|---|
| 1115 | |
|---|
| 1116 | !------------------------ |
|---|
| 1117 | |
|---|
| 1118 | ! III Output |
|---|
| 1119 | ! III_a Update surface value for the PCM start files |
|---|
| 1120 | |
|---|
| 1121 | !------------------------ |
|---|
| 1122 | |
|---|
| 1123 | ! III_a.1 Ice update (for startfi) |
|---|
| 1124 | ! Co2 ice |
|---|
| 1125 | DO ig = 1,ngrid |
|---|
| 1126 | co2ice(ig) = 0. |
|---|
| 1127 | DO islope = 1,nslope |
|---|
| 1128 | co2ice(ig) = co2ice(ig) + co2ice_slope(ig,islope) & |
|---|
| 1129 | * subslope_dist(ig,islope) / & |
|---|
| 1130 | cos(pi*def_slope_mean(islope)/180.) |
|---|
| 1131 | ENDDO |
|---|
| 1132 | ENDDO ! of DO ig=1,ngrid |
|---|
| 1133 | ! H2o ice |
|---|
| 1134 | DO ig = 1,ngrid |
|---|
| 1135 | qsurf(ig,igcm_h2o_ice) = 0. |
|---|
| 1136 | DO islope = 1,nslope |
|---|
| 1137 | qsurf(ig,igcm_h2o_ice) = qsurf(ig,igcm_h2o_ice) + qsurf_slope(ig,igcm_h2o_ice,islope) & |
|---|
| 1138 | * subslope_dist(ig,islope) / & |
|---|
| 1139 | cos(pi*def_slope_mean(islope)/180.) |
|---|
| 1140 | ENDDO |
|---|
| 1141 | ENDDO ! of DO ig=1,ngrid |
|---|
| 1142 | |
|---|
| 1143 | ! III_a.2 Tsurf and Tsoil update (for startfi) |
|---|
| 1144 | |
|---|
| 1145 | if(soil_pem) then |
|---|
| 1146 | call interpolate_TIPEM_TIGCM(ngrid,nslope,nsoilmx_PEM,nsoilmx,TI_PEM,TI_GCM_phys) |
|---|
| 1147 | tsoil_slope(:,:,:) = tsoil_phys_PEM_timeseries(:,:,:,timelen) |
|---|
| 1148 | else |
|---|
| 1149 | TI_GCM_phys(:,:,:)=TI_GCM_start(:,:,:) |
|---|
| 1150 | endif !soil_pem |
|---|
| 1151 | |
|---|
| 1152 | DO ig = 1,ngrid |
|---|
| 1153 | tsurf(ig) = 0. |
|---|
| 1154 | DO islope = 1,nslope |
|---|
| 1155 | tsurf(ig) = tsurf(ig) + tsurf_slope(ig,islope) & |
|---|
| 1156 | * subslope_dist(ig,islope) |
|---|
| 1157 | ENDDO |
|---|
| 1158 | ENDDO ! of DO ig=1,ngrid |
|---|
| 1159 | |
|---|
| 1160 | DO ig = 1,ngrid |
|---|
| 1161 | DO iloop = 1,nsoilmx |
|---|
| 1162 | tsoil(ig,iloop) = 0. |
|---|
| 1163 | inertiesoil(ig,iloop) = 0. |
|---|
| 1164 | DO islope = 1,nslope |
|---|
| 1165 | tsoil(ig,iloop) = tsoil(ig,iloop) + tsoil_slope(ig,iloop,islope) & |
|---|
| 1166 | * subslope_dist(ig,islope) |
|---|
| 1167 | inertiesoil(ig,iloop) = inertiesoil(ig,iloop) + TI_GCM_phys(ig,iloop,islope) & |
|---|
| 1168 | * subslope_dist(ig,islope) |
|---|
| 1169 | ENDDO |
|---|
| 1170 | ENDDO |
|---|
| 1171 | ENDDO ! of DO ig=1,ngrid |
|---|
| 1172 | |
|---|
| 1173 | ! III_a.3 Surface optical properties (for startfi) |
|---|
| 1174 | |
|---|
| 1175 | DO ig = 1,ngrid |
|---|
| 1176 | DO l = 1,2 |
|---|
| 1177 | albedo(ig,l) =0. |
|---|
| 1178 | DO islope = 1,nslope |
|---|
| 1179 | albedo(ig,l)= albedo(ig,l)+albedo_slope(ig,l,islope) & |
|---|
| 1180 | *subslope_dist(ig,islope) |
|---|
| 1181 | ENDDO |
|---|
| 1182 | ENDDO |
|---|
| 1183 | ENDDO |
|---|
| 1184 | |
|---|
| 1185 | DO ig = 1,ngrid |
|---|
| 1186 | emis(ig) =0. |
|---|
| 1187 | DO islope = 1,nslope |
|---|
| 1188 | emis(ig)= emis(ig)+emiss_slope(ig,islope) & |
|---|
| 1189 | *subslope_dist(ig,islope) |
|---|
| 1190 | ENDDO |
|---|
| 1191 | ENDDO |
|---|
| 1192 | |
|---|
| 1193 | ! III_a.4 Pressure (for start) |
|---|
| 1194 | do i=1,ip1jmp1 |
|---|
| 1195 | ps(i)=ps(i)*global_ave_press_new/global_ave_press_GCM |
|---|
| 1196 | enddo |
|---|
| 1197 | |
|---|
| 1198 | do i = 1,ngrid |
|---|
| 1199 | ps_phys(i)=ps_phys(i)*global_ave_press_new/global_ave_press_GCM |
|---|
| 1200 | enddo |
|---|
| 1201 | |
|---|
| 1202 | ! III_a.5 Tracer (for start) |
|---|
| 1203 | allocate(zplev_new(ngrid,nlayer+1)) |
|---|
| 1204 | |
|---|
| 1205 | do l=1,nlayer+1 |
|---|
| 1206 | do ig=1,ngrid |
|---|
| 1207 | zplev_new(ig,l) = ap(l) + bp(l)*ps_phys(ig) |
|---|
| 1208 | enddo |
|---|
| 1209 | enddo |
|---|
| 1210 | |
|---|
| 1211 | DO nnq=1,nqtot |
|---|
| 1212 | if (noms(nnq).NE."co2") then |
|---|
| 1213 | DO l=1,llm-1 |
|---|
| 1214 | DO ig=1,ngrid |
|---|
| 1215 | q(ig,l,nnq)=q(ig,l,nnq)*(zplev_gcm(ig,l)-zplev_gcm(ig,l+1))/(zplev_new(ig,l)-zplev_new(ig,l+1)) |
|---|
| 1216 | ENDDO |
|---|
| 1217 | q(:,llm,nnq)=q(:,llm-1,nnq) |
|---|
| 1218 | ENDDO |
|---|
| 1219 | else |
|---|
| 1220 | DO l=1,llm-1 |
|---|
| 1221 | DO ig=1,ngrid |
|---|
| 1222 | q(ig,l,nnq)=q(ig,l,nnq)*(zplev_gcm(ig,l)-zplev_gcm(ig,l+1))/(zplev_new(ig,l)-zplev_new(ig,l+1)) & |
|---|
| 1223 | + ( (zplev_new(ig,l)-zplev_new(ig,l+1)) - & |
|---|
| 1224 | (zplev_gcm(ig,l)-zplev_gcm(ig,l+1)) ) / & |
|---|
| 1225 | (zplev_new(ig,l)-zplev_new(ig,l+1)) |
|---|
| 1226 | ENDDO |
|---|
| 1227 | q(:,llm,nnq)=q(:,llm-1,nnq) |
|---|
| 1228 | ENDDO |
|---|
| 1229 | endif |
|---|
| 1230 | ENDDO |
|---|
| 1231 | |
|---|
| 1232 | ! Conserving the tracers's mass for GCM start files |
|---|
| 1233 | DO nnq=1,nqtot |
|---|
| 1234 | DO ig=1,ngrid |
|---|
| 1235 | DO l=1,llm-1 |
|---|
| 1236 | if(q(ig,l,nnq).GT.1 .and. (noms(nnq).NE."dust_number" .or. noms(nnq).NE."ccn_number") ) then |
|---|
| 1237 | extra_mass=(q(ig,l,nnq)-1)*(zplev_new(ig,l)-zplev_new(ig,l+1)) |
|---|
| 1238 | q(ig,l,nnq)=1. |
|---|
| 1239 | q(ig,l+1,nnq)=q(ig,l+1,nnq)+extra_mass*(zplev_new(ig,l+1)-zplev_new(ig,l+2)) |
|---|
| 1240 | endif |
|---|
| 1241 | if(q(ig,l,nnq).LT.0) then |
|---|
| 1242 | q(ig,l,nnq)=1E-30 |
|---|
| 1243 | endif |
|---|
| 1244 | ENDDO |
|---|
| 1245 | enddo |
|---|
| 1246 | enddo |
|---|
| 1247 | |
|---|
| 1248 | !------------------------ |
|---|
| 1249 | if(evol_orbit_pem) then |
|---|
| 1250 | call recomp_orb_param(year_iter) |
|---|
| 1251 | endif |
|---|
| 1252 | |
|---|
| 1253 | ! III Output |
|---|
| 1254 | ! III_a Update surface value for the PCM start files |
|---|
| 1255 | ! III_b Write start and starfi.nc |
|---|
| 1256 | |
|---|
| 1257 | !------------------------ |
|---|
| 1258 | |
|---|
| 1259 | ! III_b.1 WRITE restart.nc |
|---|
| 1260 | |
|---|
| 1261 | ptimestep=iphysiq*daysec/REAL(day_step)/nsplit_phys |
|---|
| 1262 | pday=day_ini |
|---|
| 1263 | ztime_fin=0. |
|---|
| 1264 | |
|---|
| 1265 | allocate(p(ip1jmp1,nlayer+1)) |
|---|
| 1266 | CALL pression (ip1jmp1,ap,bp,ps,p) |
|---|
| 1267 | CALL massdair(p,masse) |
|---|
| 1268 | |
|---|
| 1269 | CALL dynredem0("restart_evol.nc", day_ini, phis) |
|---|
| 1270 | |
|---|
| 1271 | CALL dynredem1("restart_evol.nc", & |
|---|
| 1272 | time_0,vcov,ucov,teta,q,masse,ps) |
|---|
| 1273 | print *, "restart_evol.nc has been written" |
|---|
| 1274 | |
|---|
| 1275 | ! III_b.2 WRITE restartfi.nc |
|---|
| 1276 | |
|---|
| 1277 | call physdem0("restartfi_evol.nc",longitude,latitude, & |
|---|
| 1278 | nsoilmx,ngrid,nlayer,nq, & |
|---|
| 1279 | ptimestep,pday,0.,cell_area, & |
|---|
| 1280 | albedodat,inertiedat,zmea,zstd,zsig,zgam,zthe, & |
|---|
| 1281 | hmons,summit,base,nslope,def_slope, & |
|---|
| 1282 | subslope_dist) |
|---|
| 1283 | |
|---|
| 1284 | call physdem1("restartfi_evol.nc",nsoilmx,ngrid,nlayer,nq, & |
|---|
| 1285 | ptimestep,ztime_fin, & |
|---|
| 1286 | tsurf,tsoil,co2ice,albedo,emis, & |
|---|
| 1287 | q2,qsurf,tauscaling,totcloudfrac,wstar, & |
|---|
| 1288 | watercap,inertiesoil,nslope,co2ice_slope, & |
|---|
| 1289 | tsurf_slope,tsoil_slope, albedo_slope, & |
|---|
| 1290 | emiss_slope,qsurf_slope,watercap_slope, TI_GCM_phys) |
|---|
| 1291 | |
|---|
| 1292 | print *, "restartfi_evol.nc has been written" |
|---|
| 1293 | !------------------------ |
|---|
| 1294 | |
|---|
| 1295 | ! III Output |
|---|
| 1296 | ! III_a Update surface value for the PCM start files |
|---|
| 1297 | ! III_b Write start and starfi.nc |
|---|
| 1298 | ! III_c Write start_pem |
|---|
| 1299 | |
|---|
| 1300 | !------------------------ |
|---|
| 1301 | |
|---|
| 1302 | call pemdem1("restartfi_PEM.nc",year_iter,nsoilmx_PEM,ngrid,nslope , & |
|---|
| 1303 | tsoil_PEM, TI_PEM, ice_depth,co2_adsorbded_phys) |
|---|
| 1304 | |
|---|
| 1305 | print *, "restartfi_PEM.nc has been written" |
|---|
| 1306 | print *, "The PEM had run for ", year_iter, " years." |
|---|
| 1307 | print *, "LL & RV : So far so good" |
|---|
| 1308 | |
|---|
| 1309 | END PROGRAM pem |
|---|