source: trunk/LMDZ.COMMON/libf/evolution/pem.F90 @ 3616

Last change on this file since 3616 was 3616, checked in by jbclement, 10 days ago

PEM:

  • Improvement of the loops to update surface temperature in case of CO2 ice is disappearing.
  • Improvement of messages printed on the terminal.

JBC

File size: 67.7 KB
Line 
1!------------------------
2! I   Initialization
3!    I_a Read the "run.def"
4!    I_b Read the "start.nc" and "startfi.nc"
5!    I_c Subslope parametrisation
6!    I_d Read the PCM data and convert them to the physical grid
7!    I_e Initialization of the PEM variable and soil
8!    I_f Compute tendencies
9!    I_g Compute global surface pressure
10!    I_h Read the "startpem.nc"
11!    I_i Compute orbit criterion
12
13! II  Run
14!    II_a Update pressure, ice and tracers
15!    II_b Evolution of ice
16!    II_c Flow of glaciers
17!    II_d Update surface and soil temperatures
18!    II_e Outputs
19!    II_f Update the tendencies
20!    II_g Checking the stopping criterion
21
22! III Output
23!    III_a Update surface value for the PCM start files
24!    III_b Write the "restart.nc" and "restartfi.nc"
25!    III_c Write the "restartpem.nc"
26!------------------------
27
28PROGRAM pem
29
30use phyetat0_mod,               only: phyetat0
31use phyredem,                   only: physdem0, physdem1
32use netcdf,                     only: nf90_open, NF90_NOWRITE, nf90_get_var, nf90_inq_varid, nf90_close
33use turb_mod,                   only: q2, wstar
34use comslope_mod,               only: nslope, def_slope, def_slope_mean, subslope_dist, iflat, ini_comslope_h
35use logic_mod,                  only: iflag_phys
36use mod_const_mpi,              only: COMM_LMDZ
37use infotrac
38use geometry_mod,               only: latitude_deg
39use conf_pem_mod,               only: conf_pem
40use pemredem,                   only: pemdem0, pemdem1
41use glaciers_mod,               only: flow_co2glaciers, flow_h2oglaciers, co2ice_flow, h2oice_flow, inf_h2oice_threshold, &
42                                      metam_h2oice_threshold, metam_co2ice_threshold, metam_h2oice, metam_co2ice, computeTcondCO2
43use stopping_crit_mod,          only: stopping_crit_h2o_ice, stopping_crit_co2
44use constants_marspem_mod,      only: alpha_clap_co2, beta_clap_co2, alpha_clap_h2o, beta_clap_h2o, m_co2, m_noco2
45use evol_ice_mod,               only: evol_co2_ice, evol_h2o_ice
46use comsoil_h_PEM,              only: soil_pem, ini_comsoil_h_PEM, end_comsoil_h_PEM, nsoilmx_PEM, &
47                                      TI_PEM,               & ! Soil thermal inertia
48                                      tsoil_PEM, layer_PEM, & ! Soil temp, number of subsurface layers, soil mid layer depths
49                                      fluxgeo                 ! Geothermal flux for the PEM and PCM
50use adsorption_mod,             only: regolith_adsorption, adsorption_pem,        & ! Bool to check if adsorption, main subroutine
51                                      ini_adsorption_h_PEM, end_adsorption_h_PEM, & ! Allocate arrays
52                                      co2_adsorbed_phys, h2o_adsorbed_phys          ! Mass of co2 and h2O adsorbed
53use time_evol_mod,              only: dt, evol_orbit_pem, Max_iter_pem, convert_years, year_bp_ini
54use orbit_param_criterion_mod,  only: orbit_param_criterion
55use recomp_orb_param_mod,       only: recomp_orb_param
56use ice_table_mod,              only: icetable_depth, icetable_thickness, end_ice_table, ice_porefilling, &
57                                      ini_ice_table, icetable_equilibrium, icetable_dynamic, computeice_table_equilibrium, compute_massh2o_exchange_ssi
58use soil_thermalproperties_mod, only: update_soil_thermalproperties
59use time_phylmdz_mod,           only: daysec, dtphys
60use abort_pem_mod,              only: abort_pem
61use soil_settings_PEM_mod,      only: soil_settings_PEM
62use compute_tend_mod,           only: compute_tend
63use info_PEM_mod,               only: info_PEM
64use get_timelen_PCM_mod,        only: get_timelen_PCM
65use pemetat0_mod,               only: pemetat0
66use read_data_PCM_mod,          only: read_data_PCM
67use recomp_tend_mod,            only: recomp_tend_co2, recomp_tend_h2o
68use compute_soiltemp_mod,       only: compute_tsoil_pem, shift_tsoil2surf
69use writediagpem_mod,           only: writediagpem, writediagsoilpem
70use co2condens_mod,             only: CO2cond_ps
71use layering_mod,               only: d_dust, ptrarray, stratum, layering, ini_layering, del_layering, make_layering, get_nb_str_max, nb_str_max, layering_algo
72use dyn_ss_ice_m_mod,           only: dyn_ss_ice_m
73use version_info_mod,           only: print_version_info
74
75#ifndef CPP_STD
76    use comsoil_h,          only: tsoil, nsoilmx, ini_comsoil_h, inertiedat, mlayer, inertiesoil, flux_geo, nqsoil, qsoil
77    use surfdat_h,          only: tsurf, qsurf, emis, emissiv, emisice, ini_surfdat_h,   &
78                                  albedodat, albedice, albedo_h2o_frost, albedo_h2o_cap, &
79                                  zmea, zstd, zsig, zgam, zthe, frost_albedo_threshold,  &
80                                  watercap, watercaptag, perennial_co2ice, albedo_perennialco2
81    use dimradmars_mod,     only: totcloudfrac, albedo
82    use dust_param_mod,     only: tauscaling
83    use tracer_mod,         only: noms, igcm_h2o_ice, igcm_co2, mmol, igcm_h2o_vap ! Tracer names and molar masses
84    use mod_phys_lmdz_para, only: is_parallel, is_sequential, is_mpi_root, is_omp_root, is_master
85    use planete_h,          only: aphelie, periheli, year_day, peri_day, obliquit, iniorbit
86    use comcstfi_h,         only: mugaz, r
87    use surfini_mod,        only: surfini
88    use comconst_mod,       only: pi, rad, g, cpp, kappa
89#else
90    use tracer_h,           only: noms, igcm_h2o_ice, igcm_co2 ! Tracer names
91    use phys_state_var_mod, only: cloudfrac, totcloudfrac, albedo_snow_SPECTV,HICE,RNAT,   &
92                                  PCTSRF_SIC, TSLAB, TSEA_ICE, SEA_ICE, ALBEDO_BAREGROUND, &
93                                  ALBEDO_CO2_ICE_SPECTV, phys_state_var_init
94    use aerosol_mod,        only: iniaerosol
95    use planete_mod,        only: apoastr, periastr, year_day, peri_day, obliquit
96    use comcstfi_mod,       only: pi, rad, g, mugaz, r
97#endif
98
99#ifndef CPP_1D
100    use iniphysiq_mod,            only: iniphysiq
101    use control_mod,              only: iphysiq, day_step, nsplit_phys
102#else
103    use time_phylmdz_mod,         only: iphysiq, steps_per_sol
104    use regular_lonlat_mod,       only: init_regular_lonlat
105    use physics_distribution_mod, only: init_physics_distribution
106    use mod_grid_phy_lmdz,        only: regular_lonlat
107    use init_testphys1d_mod,      only: init_testphys1d
108    use comvert_mod,              only: ap, bp
109    use writerestart1D_mod,       only: writerestart1D
110#endif
111
112implicit none
113
114include "dimensions.h"
115include "paramet.h"
116include "comgeom.h"
117include "iniprint.h"
118include "callkeys.h"
119
120integer ngridmx
121parameter(ngridmx = 2 + (jjm - 1)*iim - 1/jjm)
122
123! Same variable names as in the PCM
124integer, parameter :: nlayer = llm ! Number of vertical layer
125integer            :: ngrid        ! Number of physical grid points
126integer            :: nq           ! Number of tracer
127integer            :: day_ini      ! First day of the simulation
128real               :: pday         ! Physical day
129real               :: time_phys    ! Same as in PCM
130real               :: ptimestep    ! Same as in PCM
131real               :: ztime_fin    ! Same as in PCM
132
133! Variables to read "start.nc"
134character(*), parameter :: start_name = "start.nc" ! Name of the file used to initialize the PEM
135
136! Dynamic variables
137real, dimension(ip1jm,llm)          :: vcov          ! vents covariants
138real, dimension(ip1jmp1,llm)        :: ucov          ! vents covariants
139real, dimension(ip1jmp1,llm)        :: teta          ! Potential temperature
140real, dimension(:,:,:), allocatable :: q             ! champs advectes
141real, dimension(:),     allocatable :: pdyn          ! pressure for the dynamic grid
142real, dimension(:),     allocatable :: ps_start      ! surface pressure in the start file
143real, dimension(:),     allocatable :: ps_start0     ! surface pressure in the start file at the beginning
144real, dimension(:),     allocatable :: ps_avg        ! (ngrid) Averaged surface pressure
145real, dimension(:),     allocatable :: ps_dev        ! (ngrid x timelen) Surface pressure deviation
146real, dimension(:,:),   allocatable :: ps_timeseries ! (ngrid x timelen) Instantaneous surface pressure
147real, dimension(ip1jmp1,llm)        :: masse         ! Air mass
148real, dimension(ip1jmp1)            :: phis          ! geopotentiel au sol
149real                                :: time_0
150
151! Variables to read starfi.nc
152character(*), parameter :: startfi_name = "startfi.nc" ! Name of the file used to initialize the PEM
153character(2)            :: str2
154integer                 :: ncid, status                           ! Variable for handling opening of files
155integer                 :: lonvarid, latvarid, areavarid, sdvarid ! Variable ID for Netcdf files
156integer                 :: apvarid, bpvarid                       ! Variable ID for Netcdf files
157
158! Variables to read starfi.nc and write restartfi.nc
159real, dimension(:), allocatable :: longitude     ! Longitude read in startfi_name and written in restartfi
160real, dimension(:), allocatable :: latitude      ! Latitude read in startfi_name and written in restartfi
161real, dimension(:), allocatable :: cell_area     ! Cell_area read in startfi_name and written in restartfi
162real                            :: total_surface ! Total surface of the planet
163
164! Variables for h2o_ice evolution
165real, dimension(:,:),    allocatable  :: h2o_ice              ! h2o ice in the PEM
166real, dimension(:,:),    allocatable  :: d_h2oice             ! physical point x slope field: Tendency of evolution of perennial h2o ice
167real, dimension(:,:,:),  allocatable  :: min_h2o_ice          ! Minima of h2o ice at each point for the PCM years [kg/m^2]
168real                                  :: h2oice_ini_surf      ! Initial surface of sublimating h2o ice
169logical, dimension(:,:), allocatable  :: is_h2oice_sublim_ini ! Logical array to know if h2o ice is sublimating
170real                                  :: ps_avg_global_ini    ! constant: Global average pressure at initialization [Pa]
171real                                  :: ps_avg_global_old    ! constant: Global average pressure of previous time step
172real                                  :: ps_avg_global_new    ! constant: Global average pressure of current time step
173real,   dimension(:,:),   allocatable :: zplev_new            ! Grid points x Atmospheric field: mass of the atmospheric layers in the pem at current time step [kg/m^2]
174real,   dimension(:,:),   allocatable :: zplev_start0         ! Grid points x Atmospheric field: mass of the atmospheric layers in the start [kg/m^2]
175real,   dimension(:,:,:), allocatable :: zplev_timeseries_new ! Grid points x Atmospheric x Time: same as zplev_new, but in times series [kg/m ^2]
176real,   dimension(:,:,:), allocatable :: zplev_timeseries_old ! same but with the time series, for previous time step
177integer                               :: stopPEM              ! which criterion is reached? 0 = no stopping; 1 = h2o ice surf; 2 = no h2o ice; 3 = co2 ice surf; 4 = ps; 5 = orb param; 6 = end of simu
178real                                  :: A, B, mmean          ! Molar mass: intermediate A, B for computations of the  mean molar mass of the layer [mol/kg]
179real,   dimension(:,:),   allocatable :: q_h2o_PEM_phys       ! Grid points x Times: h2o mass mixing ratio computed in the PEM, first value comes from PCM [kg/kg]
180integer                               :: timelen              ! # time samples
181real                                  :: extra_mass           ! Intermediate variables Extra mass of a tracer if it is greater than 1
182
183! Variables for co2_ice evolution
184real,    dimension(:,:), allocatable :: co2_ice                ! co2 ice in the PEM
185real,    dimension(:,:), allocatable :: d_co2ice               ! physical point x slope field: Tendency of evolution of perennial co2 ice over a year
186real,    dimension(:,:), allocatable :: d_co2ice_ini           ! physical point x slope field: Tendency of evolution of perennial co2 ice over a year in the PCM
187logical, dimension(:,:), allocatable :: is_co2ice_ini          ! Was there co2 ice initially in the PEM?
188real,  dimension(:,:,:), allocatable :: min_co2_ice            ! Minimum of co2 ice at each point for the first year [kg/m^2]
189real                                 :: co2ice_sublim_surf_ini ! Initial surface of sublimating co2 ice
190logical, dimension(:,:), allocatable :: is_co2ice_sublim_ini   ! Logical array to know if co2 ice is sublimating
191real,    dimension(:,:), allocatable :: vmr_co2_PCM            ! Grid points x Times co2 volume mixing ratio retrieve from the PCM [m^3/m^3]
192real,    dimension(:,:), allocatable :: vmr_co2_PEM_phys       ! Grid points x Times co2 volume mixing ratio used in the PEM
193real,    dimension(:,:), allocatable :: q_co2_PEM_phys         ! Grid points x Times co2 mass mixing ratio in the first layer computed in the PEM, first value comes from PCM [kg/kg]
194
195! Variables for stratification (layering) evolution
196type(layering), dimension(:,:), allocatable :: stratif                     ! Layering (linked list of "stratum") for each grid point and slope
197type(ptrarray), dimension(:,:), allocatable :: current1, current2          ! Current active stratum in the layering
198logical,        dimension(:,:), allocatable :: new_str, new_lag1, new_lag2 ! Flags for the layering algorithm
199
200! Variables for slopes
201integer(kind = 1), dimension(:,:), allocatable :: flag_co2flow ! (ngrid,nslope): Flag where there is a CO2 glacier flow
202integer(kind = 1), dimension(:,:), allocatable :: flag_h2oflow ! (ngrid,nslope): Flag where there is a H2O glacier flow
203
204! Variables for surface and soil
205real, dimension(:,:),     allocatable :: tsurf_avg                        ! Grid points x Slope field: Averaged surface temperature [K]
206real, dimension(:,:),     allocatable :: tsurf_dev                        ! Grid points x Slope field: Surface temperature deviation [K]
207real, dimension(:,:),     allocatable :: tsurf_avg_yr1                    ! Grid points x Slope field: Averaged surface temperature of first call of the PCM [K]
208real, dimension(:,:,:),   allocatable :: tsoil_avg                        ! Grid points x Soil x Slope field: Averaged Soil Temperature [K]
209real, dimension(:,:),     allocatable :: tsoil_avg_old                    ! Grid points x Soil field: Averaged Soil Temperature at the previous time step [K]
210real, dimension(:,:,:),   allocatable :: tsoil_dev                        ! Grid points x Soil x Slope field: Soil temperature deviation [K]
211real, dimension(:,:,:,:), allocatable :: tsoil_timeseries                 ! Grid points x Soil x Slope x Times field: Soil temperature timeseries [K]
212real, dimension(:,:,:,:), allocatable :: tsoil_PEM_timeseries             ! Grid points x Soil x Slope x Times field: Soil temperature timeseries for PEM [K]
213real, dimension(:,:,:,:), allocatable :: tsoil_PEM_timeseries_old         ! Grid points x Soil x Slope x Times field: Soil temperature timeseries for PEM at the previous time step [K]
214real, dimension(:,:,:,:), allocatable :: watersoil_density_timeseries     ! Grid points x Soil x Slope x Times Water soil density timeseries [kg /m^3]
215real, dimension(:,:),     allocatable :: watersurf_density_avg            ! Grid points x Slope: Averaged  water surface density [kg/m^3]
216real, dimension(:,:,:,:), allocatable :: watersoil_density_PEM_timeseries ! Grid points x Soil x Slope x Times: Water soil density timeseries for PEM [kg/m^3]
217real, dimension(:,:,:),   allocatable :: watersoil_density_PEM_avg        ! Grid points x Soil x Slopes: Averaged water soil density [kg/m^3]
218real, dimension(:),       allocatable :: delta_co2_adsorbed               ! Physics: quantity of CO2 that is exchanged because of adsorption / desorption [kg/m^2]
219real, dimension(:),       allocatable :: delta_h2o_adsorbed               ! Physics: quantity of H2O that is exchanged because of adsorption / desorption [kg/m^2]
220real                                  :: totmassco2_adsorbed              ! Total mass of CO2 that is exchanged because of adsorption / desoprtion over the planets [kg]
221real                                  :: totmassh2o_adsorbed              ! Total mass of H2O that is exchanged because of adsorption / desoprtion over the planets [kg]
222logical, dimension(:,:),  allocatable :: co2ice_disappeared               ! logical to check if a co2 ice reservoir already disappeared at a previous timestep
223real, dimension(:,:),     allocatable :: icetable_thickness_old           ! ngrid x nslope: Thickness of the ice table at the previous iteration [m]
224real, dimension(:,:,:),   allocatable :: ice_porefilling_old              ! ngrid x nslope: Ice pore filling at the previous iteration [m]
225real, dimension(:),       allocatable :: delta_h2o_icetablesublim         ! ngrid x Total mass of the H2O that has sublimated / condenses from the ice table [kg]
226real, dimension(:),       allocatable :: porefill                         ! Pore filling (output) to compute the dynamic ice table
227real                                  :: ssi_depth                        ! Ice table depth (output) to compute the dynamic ice table
228real, dimension(:,:),     allocatable :: zshift_surf                      ! Elevation shift for the surface [m]
229real, dimension(:,:),     allocatable :: zlag                             ! Newly built lag thickness [m]
230real, dimension(:,:),     allocatable :: icetable_depth_old               ! Old depth of the ice table
231
232! Some variables for the PEM run
233real, parameter       :: year_step = 1   ! Timestep for the pem
234real                  :: i_myear_leg     ! Number of iteration
235real                  :: n_myear_leg     ! Maximum number of iterations before stopping
236real                  :: i_myear         ! Global number of Martian years of the chained simulations
237real                  :: n_myear         ! Maximum number of Martian years of the chained simulations
238real                  :: timestep        ! Timestep [s]
239character(100)        :: arg             ! To read command-line arguments program was invoked
240logical               :: timewall        ! Flag to use the time limit stopping criterion in case of a PEM job
241integer(kind = 8)     :: cr              ! Number of clock ticks per second (count rate)
242integer(kind = 8)     :: c1, c2          ! Counts of processor clock
243character(100)        :: chtimelimit     ! Time limit for the PEM job outputted by the SLURM command
244real                  :: timelimit       ! Time limit for the PEM job in seconds
245real, parameter       :: antetime = 1200 ! Anticipation time to prevent reaching the time limit: 1200 s = 20 min by default
246integer               :: cstat, days, hours, minutes, seconds
247character(1)          :: sep
248character(8)          :: date
249character(10)         :: time
250character(5)          :: zone
251integer, dimension(8) :: values
252character(128)        :: dir = ' '
253character(32)         :: logname = ' '
254character(32)         :: hostname = ' '
255
256#ifdef CPP_STD
257    real                                :: frost_albedo_threshold = 0.05 ! Frost albedo threeshold to convert fresh frost to old ice
258    real                                :: albedo_h2o_frost              ! Albedo of h2o frost
259    real, dimension(:),     allocatable :: tsurf_read_generic            ! Temporary variable to do the subslope transfert dimension when reading form generic
260    real, dimension(:,:),   allocatable :: qsurf_read_generic            ! Temporary variable to do the subslope transfert dimension when reading form generic
261    real, dimension(:,:),   allocatable :: tsoil_read_generic            ! Temporary variable to do the subslope transfert dimension when reading form generic
262    real, dimension(:),     allocatable :: emis_read_generic             ! Temporary variable to do the subslope transfert dimension when reading form generic
263    real, dimension(:,:),   allocatable :: albedo_read_generic           ! Temporary variable to do the subslope transfert dimension when reading form generic
264    real, dimension(:,:),   allocatable :: tsurf                         ! Subslope variable, only needed in the GENERIC case
265    real, dimension(:,:,:), allocatable :: qsurf                         ! Subslope variable, only needed in the GENERIC case
266    real, dimension(:,:,:), allocatable :: tsoil                         ! Subslope variable, only needed in the GENERIC case
267    real, dimension(:,:),   allocatable :: emis                          ! Subslope variable, only needed in the GENERIC case
268    real, dimension(:,:),   allocatable :: watercap                      ! Subslope variable, only needed in the GENERIC case =0 no watercap in generic model
269    logical, dimension(:),  allocatable :: watercaptag                   ! Subslope variable, only needed in the GENERIC case =false no watercaptag in generic model
270    real, dimension(:,:,:), allocatable :: albedo                        ! Subslope variable, only needed in the GENERIC case
271    real, dimension(:,:,:), allocatable :: inertiesoil                   ! Subslope variable, only needed in the GENERIC case
272#endif
273
274#ifdef CPP_1D
275    integer            :: nsplit_phys
276    integer, parameter :: jjm_value = jjm - 1
277    integer            :: day_step
278
279    ! Dummy variables to use the subroutine 'init_testphys1d'
280    logical                             :: therestart1D, therestartfi
281    integer                             :: ndt, day0
282    real                                :: ptif, pks, day, gru, grv, atm_wat_profile, atm_wat_tau
283    real, dimension(:),     allocatable :: zqsat
284    real, dimension(:,:,:), allocatable :: dq, dqdyn
285    real, dimension(nlayer)             :: play, w
286    real, dimension(nlayer + 1)         :: plev
287#else
288    integer, parameter                :: jjm_value = jjm
289    real, dimension(:),   allocatable :: ap ! Coefficient ap read in start_name and written in restart
290    real, dimension(:),   allocatable :: bp ! Coefficient bp read in start_name and written in restart
291    real, dimension(:,:), allocatable :: p  ! Grid points x Atmosphere: pressure to recompute and write in restart (ngrid,llmp1)
292#endif
293
294! Loop variables
295integer :: i, l, ig, nnq, t, islope, ig_loop, islope_loop, isoil, icap
296logical :: num_str
297
298write(*,*) '  *    .          .   +     .    *        .. +      .    .       .      '
299write(*,*) '           +         _______  ________  ____    ____      *           + '
300write(*,*) ' +   .        *     |_   __ \|_   __  ||_   \  /   _|          .       *'
301write(*,*) '          .     .     | |__) | | |_ \_|  |   \/   |  *        *      .  '
302write(*,*) '       .              |  ___/  |  _| _   | |\  /| |      .        .     '
303write(*,*) '.  *          *      _| |_    _| |__/ | _| |_\/_| |_                  * '
304write(*,*) '                    |_____|  |________||_____||_____|   +     .         '
305write(*,*) '  .      *          .   *      ..   +       *          .        +      .'
306
307! Elapsed time with system clock
308call system_clock(count_rate = cr)
309call system_clock(c1)
310timewall = .true.
311timelimit = 86400 ! 86400 seconds = 24 h by default
312if (command_argument_count() > 0) then ! Get the number of command-line arguments
313    call get_command_argument(1,arg) ! Read the argument given to the program
314    num_str = .true.
315    do i = 1,len_trim(arg)
316        if (arg(i:i) < '0' .or. arg(i:i) > '9') then
317            num_str = .false.
318            exit
319        endif
320    enddo
321   
322    if (num_str) then ! This is a numeric sting so we considerer this is the job id
323           ! Execute the system command
324            call execute_command_line('squeue -j '//trim(adjustl(arg))//' -h --Format TimeLimit > tmp_cmdout.txt',cmdstat = cstat)
325            if (cstat /= 0) then
326                call execute_command_line('qstat -f '//trim(adjustl(arg))//' | grep "Walltime" | awk ''{print $3}'' > tmp_cmdout.txt',cmdstat = cstat)
327                if (cstat > 0) then
328                    error stop 'pem: command execution failed!'
329                else if (cstat < 0) then
330                    error stop 'pem: command execution not supported (neither SLURM nor PBS/TORQUE is installed)!'
331                endif
332            endif
333            ! Read the output
334            open(1,file = 'tmp_cmdout.txt',status = 'old')
335            read(1,'(a)') chtimelimit
336            close(1)
337            chtimelimit = trim(adjustl(chtimelimit))
338            call execute_command_line('rm tmp_cmdout.txt',cmdstat = cstat)
339            if (cstat > 0) then
340                error stop 'pem: command execution failed!'
341            else if (cstat < 0) then
342                error stop 'pem: command execution not supported!'
343            endif
344            if (index(chtimelimit,'-') > 0) then ! 'chtimelimit' format is "D-HH:MM:SS"
345                read(chtimelimit,'(i1,a1,i2,a1,i2,a1,i2)') days, sep, hours, sep, minutes, sep, seconds
346                timelimit = days*86400 + hours*3600 + minutes*60 + seconds
347            else if (index(chtimelimit,':') > 0 .and. len_trim(chtimelimit) > 5) then ! 'chtimelimit' format is "HH:MM:SS"
348                read(chtimelimit,'(i2,a1,i2,a1,i2)') hours, sep, minutes, sep, seconds
349                timelimit = hours*3600 + minutes*60 + seconds
350            else ! 'chtimelimit' format is "MM:SS"
351                read(chtimelimit,'(i2,a1,i2)') minutes, sep, seconds
352                timelimit = minutes*60 + seconds
353            endif
354    else ! Arg is not a numeric string
355        select case (trim(adjustl(arg)))
356            case('version')
357                call print_version_info()
358                stop
359            case default
360                error stop "The argument given to the program is unknown!"
361        end select
362    endif
363else
364    timewall = .false.
365endif
366
367! Some user info
368call date_and_time(date,time,zone,values)
369call getcwd(dir)      ! Current directory
370call getlog(logname)  ! User name
371call hostnm(hostname) ! Machine/station name
372write(*,*)
373write(*,*) '######### PEM information #########'
374write(*,*) '+ User     : '//trim(logname)
375write(*,*) '+ Machine  : '//trim(hostname)
376write(*,*) '+ Directory: '//trim(dir)
377write(*,'(a,i2,a,i2,a,i4)') ' + Date     : ',values(3),'/',values(2),'/',values(1)
378write(*,'(a,i2,a,i2,a,i2,a)') ' + Time     : ',values(5),':',values(6),':',values(7)
379
380! Parallel variables
381#ifndef CPP_STD
382    is_sequential = .true.
383    is_parallel = .false.
384    is_mpi_root = .true.
385    is_omp_root = .true.
386    is_master = .true.
387#endif
388
389! Some constants
390day_ini = 0
391time_phys = 0.
392ngrid = ngridmx
393A = (1./m_co2 - 1./m_noco2)
394B = 1./m_noco2
395year_day = 669
396daysec = 88775.
397timestep = year_day*daysec*year_step
398
399!----------------------------- INITIALIZATION --------------------------
400!------------------------
401! I   Initialization
402!    I_a Read the "run.def"
403!------------------------
404write(*,*)
405write(*,*) '######### PEM initialization #########'
406write(*,*) '> Reading "run.def" (PEM)'
407#ifndef CPP_1D
408    dtphys = daysec/48. ! Dummy value (overwritten in phyetat0)
409    call conf_gcm(99,.true.)
410    call infotrac_init
411    nq = nqtot
412    allocate(q(ip1jmp1,llm,nqtot))
413    allocate(longitude(ngrid),latitude(ngrid),cell_area(ngrid))
414#else
415    allocate(q(1,llm,nqtot),pdyn(1))
416    allocate(longitude(1),latitude(1),cell_area(1))
417
418    therestart1D = .false. ! Default value
419    inquire(file = 'start1D.txt',exist = therestart1D)
420    if (.not. therestart1D) then
421        write(*,*) 'There is no "start1D.txt" file!'
422        error stop 'Initialization cannot be done for the 1D PEM.'
423    endif
424    therestartfi = .false. ! Default value
425    inquire(file = 'startfi.nc',exist = therestartfi)
426    if (.not. therestartfi) then
427        write(*,*) 'There is no "startfi.nc" file!'
428        error stop 'Initialization cannot be done for the 1D PEM.'
429    endif
430
431    write(*,*) '> Reading "start1D.txt" and "startfi.nc"'
432    call init_testphys1d('start1D.txt','startfi.nc',therestart1D,therestartfi,ngrid,nlayer,610.,nq,q,         &
433                         time_0,pdyn(1),ucov,vcov,teta,ndt,ptif,pks,dtphys,zqsat,dq,dqdyn,day0,day,gru,grv,w, &
434                         play,plev,latitude,longitude,cell_area,atm_wat_profile,atm_wat_tau)
435    nsplit_phys = 1
436    day_step = steps_per_sol
437#endif
438
439call conf_pem(i_myear,n_myear)
440
441!------------------------
442! I   Initialization
443!    I_b Read of the "start.nc" and "starfi.nc"
444!------------------------
445! I_b.1 Read "start.nc"
446write(*,*) '> Reading "start.nc"'
447allocate(ps_start0(ngrid))
448#ifndef CPP_1D
449    allocate(pdyn(ip1jmp1))
450    call dynetat0(start_name,vcov,ucov,teta,q,masse,pdyn,phis,time_0)
451
452    call gr_dyn_fi(1,iip1,jjp1,ngridmx,pdyn,ps_start0)
453
454    call iniconst ! Initialization of dynamical constants (comconst_mod)
455    call inigeom ! Initialization of geometry
456
457    allocate(ap(nlayer + 1))
458    allocate(bp(nlayer + 1))
459    status = nf90_open(start_name,NF90_NOWRITE,ncid)
460    status = nf90_inq_varid(ncid,"ap",apvarid)
461    status = nf90_get_var(ncid,apvarid,ap)
462    status = nf90_inq_varid(ncid,"bp",bpvarid)
463    status = nf90_get_var(ncid,bpvarid,bp)
464    status = nf90_close(ncid)
465
466    ! Initialization of physics constants and variables (comcstfi_h)
467    call iniphysiq(iim,jjm,llm,(jjm - 1)*iim + 2,comm_lmdz,daysec,day_ini,dtphys/nsplit_phys,rlatu,rlatv,rlonu,rlonv,aire,cu,cv,rad,g,r,cpp,iflag_phys)
468#else
469    ps_start0 = pdyn
470#endif
471deallocate(pdyn)
472
473! In the PCM, these values are given to the physic by the dynamic.
474! Here we simply read them in the "startfi.nc" file
475status = nf90_open(startfi_name,NF90_NOWRITE,ncid)
476status = nf90_inq_varid(ncid,"longitude",lonvarid)
477status = nf90_get_var(ncid,lonvarid,longitude)
478status = nf90_inq_varid(ncid,"latitude",latvarid)
479status = nf90_get_var(ncid,latvarid,latitude)
480status = nf90_inq_varid(ncid,"area",areavarid)
481status = nf90_get_var(ncid,areavarid,cell_area)
482status = nf90_inq_varid(ncid,"soildepth",sdvarid)
483status = nf90_get_var(ncid,sdvarid,mlayer)
484status = nf90_close(ncid)
485
486! I_b.2 Read the "startfi.nc"
487! First we read the initial state (starfi.nc)
488#ifndef CPP_STD
489    write(*,*) '> Reading "startfi.nc"'
490    call phyetat0(startfi_name,0,0,nsoilmx,ngrid,nlayer,nq,nqsoil,day_ini,time_phys,tsurf, &
491                  tsoil,albedo,emis,q2,qsurf,qsoil,tauscaling,totcloudfrac,wstar,          &
492                  watercap,perennial_co2ice,def_slope,def_slope_mean,subslope_dist)
493
494    ! Remove unphysical values of surface tracer
495    where (qsurf < 0.) qsurf = 0.
496
497    call surfini(ngrid,nslope,qsurf)
498#else
499    call phys_state_var_init(nq)
500    if (.not. allocated(noms)) allocate(noms(nq)) ! (because noms is an argument of physdem1 whether or not tracer is on)
501    call initracer(ngrid,nq)
502    call iniaerosol()
503    allocate(tsurf_read_generic(ngrid))
504    allocate(qsurf_read_generic(ngrid,nq))
505    allocate(tsoil_read_generic(ngrid,nsoilmx))
506    allocate(qsoil_read_generic(ngrid,nsoilmx,nqsoil,nslope))
507    allocate(emis_read_generic(ngrid))
508    allocate(albedo_read_generic(ngrid,2))
509    allocate(qsurf(ngrid,nq,1))
510    allocate(tsurf(ngrid,1))
511    allocate(tsoil(ngrid,nsoilmx,1))
512    allocate(emis(ngrid,1))
513    allocate(watercap(ngrid,1))
514    allocate(watercaptag(ngrid))
515    allocate(albedo(ngrid,2,1))
516    allocate(inertiesoil(ngrid,nsoilmx,1))
517    call phyetat0(.true.,ngrid,nlayer,startfi_name,0,0,nsoilmx,nq,nqsoil,day_ini,time_phys, &
518                  tsurf_read_generic,tsoil_read_generic,emis_read_generic,q2,               &
519                  qsurf_read_generic,qsoil_read_generic,cloudfrac,totcloudfrac,hice,        &
520                  rnat,pctsrf_sic,tslab,tsea_ice,sea_ice)
521    call surfini(ngrid,nq,qsurf_read_generic,albedo_read_generic,albedo_bareground,albedo_snow_SPECTV,albedo_co2_ice_SPECTV)
522
523    nslope = 1
524    call ini_comslope_h(ngrid,1)
525
526    qsurf(:,:,1) = qsurf_read_generic
527    tsurf(:,1) = tsurf_read_generic
528    tsoil(:,:,1) = tsoil_read_generic
529    emis(:,1) = emis_read_generic
530    watercap(:,1) = 0.
531    watercaptag(:) = .false.
532    albedo(:,1,1) = albedo_read_generic(:,1)
533    albedo(:,2,1) = albedo_read_generic(:,2)
534    inertiesoil(:,:,1) = inertiedat
535
536    if (nslope == 1) then
537        def_slope(1) = 0
538        def_slope(2) = 0
539        def_slope_mean = 0
540        subslope_dist(:,1) = 1.
541    endif
542
543    ! Remove unphysical values of surface tracer
544    qsurf(:,:,1) = qsurf_read_generic
545    where (qsurf < 0.) qsurf = 0.
546
547    deallocate(tsurf_read_generic,qsurf_read_generic,qsoil_read_generic,emis_read_generic)
548#endif
549
550do nnq = 1,nqtot  ! Why not using ini_tracer?
551    if (noms(nnq) == "h2o_ice") igcm_h2o_ice = nnq
552    if (noms(nnq) == "h2o_vap") then
553        igcm_h2o_vap = nnq
554        mmol(igcm_h2o_vap) = 18.
555    endif
556    if (noms(nnq) == "co2") igcm_co2 = nnq
557enddo
558
559!------------------------
560! I   Initialization
561!    I_c Subslope parametrisation
562!------------------------
563! Define some slope statistics
564iflat = 1
565do islope = 2,nslope
566    if (abs(def_slope_mean(islope)) < abs(def_slope_mean(iflat))) iflat = islope
567enddo
568write(*,*) 'Flat slope for islope = ',iflat
569write(*,*) 'Corresponding criterium = ',def_slope_mean(iflat)
570
571!------------------------
572! I   Initialization
573!    I_d Read the PCM data and convert them to the physical grid
574!------------------------
575! First we read the evolution of water and co2 ice (and the mass mixing ratio) over the first year of the PCM run, saving only the minimum value
576call get_timelen_PCM("data_PCM_Y1.nc",timelen)
577
578allocate(vmr_co2_PCM(ngrid,timelen),q_co2_PEM_phys(ngrid,timelen),q_h2o_PEM_phys(ngrid,timelen))
579allocate(ps_timeseries(ngrid,timelen),ps_avg(ngrid))
580allocate(min_co2_ice(ngrid,nslope,2),min_h2o_ice(ngrid,nslope,2))
581allocate(tsurf_avg_yr1(ngrid,nslope),tsurf_avg(ngrid,nslope))
582allocate(tsoil_avg(ngrid,nsoilmx,nslope),tsoil_timeseries(ngrid,nsoilmx,nslope,timelen))
583allocate(watersurf_density_avg(ngrid,nslope),watersoil_density_timeseries(ngrid,nsoilmx,nslope,timelen))
584
585call read_data_PCM("data_PCM_Y1.nc","data_PCM_Y2.nc",timelen,iim,jjm_value,ngrid,nslope,vmr_co2_PCM,ps_timeseries,ps_avg,tsurf_avg_yr1,tsurf_avg, &
586                   tsoil_avg,tsoil_timeseries,min_co2_ice,min_h2o_ice,q_co2_PEM_phys,q_h2o_PEM_phys,watersurf_density_avg,watersoil_density_timeseries)
587
588! Compute the deviation from the average
589allocate(ps_dev(ngrid),tsurf_dev(ngrid,nslope),tsoil_dev(ngrid,nsoilmx,nslope))
590ps_dev = ps_start0 - ps_avg
591tsurf_dev = tsurf - tsurf_avg
592tsoil_dev = tsoil - tsoil_avg(:,1:nsoilmx,:)
593
594!------------------------
595! I   Initialization
596!    I_e Initialization of the PEM variables and soil
597!------------------------
598call end_comsoil_h_PEM
599call ini_comsoil_h_PEM(ngrid,nslope)
600call end_adsorption_h_PEM
601call ini_adsorption_h_PEM(ngrid,nslope,nsoilmx_PEM)
602call end_ice_table
603call ini_ice_table(ngrid,nslope,nsoilmx_PEM)
604
605allocate(tsoil_PEM_timeseries(ngrid,nsoilmx_PEM,nslope,timelen),watersoil_density_PEM_avg(ngrid,nsoilmx_PEM,nslope),watersoil_density_PEM_timeseries(ngrid,nsoilmx_PEM,nslope,timelen))
606if (soil_pem) then
607    call soil_settings_PEM(ngrid,nslope,nsoilmx_PEM,nsoilmx,inertiesoil,TI_PEM)
608    tsoil_PEM(:,1:nsoilmx,:) = tsoil_avg
609    watersoil_density_PEM_timeseries(:,1:nsoilmx,:,:) = watersoil_density_timeseries
610    tsoil_PEM_timeseries(:,1:nsoilmx,:,:) = tsoil_timeseries
611    do l = nsoilmx + 1,nsoilmx_PEM
612        tsoil_PEM(:,l,:) = tsoil_avg(:,nsoilmx,:)
613        watersoil_density_PEM_timeseries(:,l,:,:) = watersoil_density_timeseries(:,nsoilmx,:,:)
614        tsoil_PEM_timeseries(:,l,:,:) = tsoil_timeseries(:,nsoilmx,:,:)
615    enddo
616    watersoil_density_PEM_avg = sum(watersoil_density_PEM_timeseries,4)/timelen
617endif !soil_pem
618deallocate(tsoil_avg,watersoil_density_timeseries,tsoil_timeseries)
619
620!------------------------
621! I   Initialization
622!    I_f Compute tendencies
623!------------------------
624allocate(d_co2ice(ngrid,nslope),d_h2oice(ngrid,nslope),d_co2ice_ini(ngrid,nslope))
625call compute_tend(ngrid,nslope,min_co2_ice,d_co2ice)
626call compute_tend(ngrid,nslope,min_h2o_ice,d_h2oice)
627d_co2ice_ini = d_co2ice
628deallocate(min_co2_ice,min_h2o_ice)
629
630!------------------------
631! I   Initialization
632!    I_g Compute global surface pressure
633!------------------------
634total_surface = sum(cell_area)
635ps_avg_global_ini = sum(cell_area*ps_avg)/total_surface
636ps_avg_global_new = ps_avg_global_ini
637write(*,*) "Total surface of the planet      =", total_surface
638write(*,*) "Initial global averaged pressure =", ps_avg_global_ini
639
640!------------------------
641! I   Initialization
642!    I_h Read the "startpem.nc"
643!------------------------
644write(*,*) '> Reading "startpem.nc"'
645allocate(co2_ice(ngrid,nslope),h2o_ice(ngrid,nslope),stratif(ngrid,nslope))
646allocate(delta_h2o_adsorbed(ngrid),delta_co2_adsorbed(ngrid),delta_h2o_icetablesublim(ngrid))
647if (layering_algo) then
648    do islope = 1,nslope
649        do i = 1,ngrid
650            call ini_layering(stratif(i,islope))
651        enddo
652    enddo
653endif
654
655delta_h2o_icetablesublim = 0.
656call pemetat0("startpem.nc",ngrid,nsoilmx,nsoilmx_PEM,nslope,timelen,timestep,TI_PEM,tsoil_PEM,icetable_depth,icetable_thickness,ice_porefilling, &
657              tsurf_avg_yr1,tsurf_avg,q_co2_PEM_phys,q_h2o_PEM_phys,ps_timeseries,ps_avg_global_ini,d_h2oice,d_co2ice,co2_ice,h2o_ice,            &
658              watersurf_density_avg,watersoil_density_PEM_avg,co2_adsorbed_phys,delta_co2_adsorbed,h2o_adsorbed_phys,delta_h2o_adsorbed,stratif)
659deallocate(tsurf_avg_yr1)
660
661! We save the places where h2o ice is sublimating
662! We compute the surface of h2o ice sublimating
663allocate(is_co2ice_sublim_ini(ngrid,nslope),is_h2oice_sublim_ini(ngrid,nslope),is_co2ice_ini(ngrid,nslope),co2ice_disappeared(ngrid,nslope))
664co2ice_sublim_surf_ini = 0.
665h2oice_ini_surf = 0.
666is_co2ice_sublim_ini = .false.
667is_h2oice_sublim_ini = .false.
668is_co2ice_ini = .false.
669co2ice_disappeared = .false.
670do i = 1,ngrid
671    do islope = 1,nslope
672        if (co2_ice(i,islope) > 0.) is_co2ice_ini(i,islope) = .true.
673        if (d_co2ice(i,islope) < 0. .and. co2_ice(i,islope) > 0.) then
674            is_co2ice_sublim_ini(i,islope) = .true.
675            co2ice_sublim_surf_ini = co2ice_sublim_surf_ini + cell_area(i)*subslope_dist(i,islope)
676        endif
677        if (d_h2oice(i,islope) < 0. .and. h2o_ice(i,islope) > 0.) then
678            is_h2oice_sublim_ini(i,islope) = .true.
679            h2oice_ini_surf = h2oice_ini_surf + cell_area(i)*subslope_dist(i,islope)
680        endif
681    enddo
682enddo
683write(*,*) "Total initial surface of CO2 ice sublimating =", co2ice_sublim_surf_ini
684write(*,*) "Total initial surface of H2O ice sublimating =", h2oice_ini_surf
685
686if (adsorption_pem) then
687    totmassco2_adsorbed = 0.
688    totmassh2o_adsorbed = 0.
689    do ig = 1,ngrid
690        do islope = 1,nslope
691            do l = 1,nsoilmx_PEM - 1
692                if (l == 1) then
693                   totmassco2_adsorbed = totmassco2_adsorbed + co2_adsorbed_phys(ig,l,islope)*(layer_PEM(l))* &
694                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
695                   totmassh2o_adsorbed = totmassh2o_adsorbed + h2o_adsorbed_phys(ig,l,islope)*(layer_PEM(l))* &
696                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
697                else
698                   totmassco2_adsorbed = totmassco2_adsorbed + co2_adsorbed_phys(ig,l,islope)*(layer_PEM(l) - layer_PEM(l-1))* &
699                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
700                   totmassh2o_adsorbed = totmassh2o_adsorbed + h2o_adsorbed_phys(ig,l,islope)*(layer_PEM(l) - layer_PEM(l-1))* &
701                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
702                endif
703            enddo
704        enddo
705    enddo
706    write(*,*) "Tot mass of CO2 in the regolith =", totmassco2_adsorbed
707    write(*,*) "Tot mass of H2O in the regolith =", totmassh2o_adsorbed
708endif ! adsorption
709
710!------------------------
711! I   Initialization
712!    I_i Compute orbit criterion
713!------------------------
714#ifndef CPP_STD
715    call iniorbit(aphelie,periheli,year_day,peri_day,obliquit)
716#else
717    call iniorbit(apoastr,periastr,year_day,peri_day,obliquit)
718#endif
719
720n_myear_leg = Max_iter_pem
721if (evol_orbit_pem) call orbit_param_criterion(i_myear,n_myear_leg)
722
723!-------------------------- END INITIALIZATION -------------------------
724
725!-------------------------------- RUN ----------------------------------
726!------------------------
727! II  Run
728!    II_a Update pressure, ice and tracers
729!------------------------
730write(*,*)
731write(*,*) '######### PEM cycle #########'
732i_myear_leg = 0
733stopPEM = 0
734if (layering_algo) then
735    allocate(new_str(ngrid,nslope),new_lag1(ngrid,nslope),new_lag2(ngrid,nslope),current1(ngrid,nslope),current2(ngrid,nslope))
736    new_str = .true.
737    new_lag1 = .true.
738    new_lag2 = .true.
739    do islope = 1,nslope
740        do ig = 1,ngrid
741            current1(ig,islope)%p => stratif(ig,islope)%top
742            current2(ig,islope)%p => stratif(ig,islope)%top
743        enddo
744    enddo
745endif
746
747do while (i_myear_leg < n_myear_leg .and. i_myear < n_myear)
748! II.a.1. Compute updated global pressure
749    write(*,'(a,f10.2)') ' #### Iteration of the PEM leg (Martian years): ', i_myear_leg + 1
750    write(*,*) "> Updating the surface pressure"
751    ps_avg_global_old = ps_avg_global_new
752    do i = 1,ngrid
753        do islope = 1,nslope
754            ps_avg_global_new = ps_avg_global_new - CO2cond_ps*g*cell_area(i)*d_co2ice(i,islope)*subslope_dist(i,islope)/cos(pi*def_slope_mean(islope)/180.)/total_surface
755        enddo
756    enddo
757
758    if (adsorption_pem) then
759        do i = 1,ngrid
760            ps_avg_global_new = ps_avg_global_new - g*cell_area(i)*delta_co2_adsorbed(i)/total_surface
761        enddo
762    endif
763    write(*,*) 'Global average pressure old time step:',ps_avg_global_old
764    write(*,*) 'Global average pressure new time step:',ps_avg_global_new
765
766! II.a.2. Pressure timeseries (the values are deleted when unused because of big memory consumption)
767    write(*,*) "> Updating the surface pressure timeseries for the new pressure"
768    allocate(zplev_timeseries_old(ngrid,nlayer + 1,timelen))
769    do l = 1,nlayer + 1
770        do ig = 1,ngrid
771            zplev_timeseries_old(ig,l,:) = ap(l) + bp(l)*ps_timeseries(ig,:)
772        enddo
773    enddo
774    do ig = 1,ngrid
775        ps_timeseries(ig,:) = ps_timeseries(ig,:)*ps_avg_global_new/ps_avg_global_old
776    enddo
777    write(*,*) "> Updating the pressure levels timeseries for the new pressure"
778    allocate(zplev_timeseries_new(ngrid,nlayer + 1,timelen))
779    do l = 1,nlayer + 1
780        do ig = 1,ngrid
781            zplev_timeseries_new(ig,l,:) = ap(l) + bp(l)*ps_timeseries(ig,:)
782        enddo
783    enddo
784
785! II.a.3. Tracers timeseries
786    write(*,*) "> Updating the tracer VMR timeseries for the new pressure"
787    allocate(vmr_co2_PEM_phys(ngrid,timelen))
788    l = 1
789    do ig = 1,ngrid
790        do t = 1,timelen
791            ! H2O
792            q_h2o_PEM_phys(ig,t) = q_h2o_PEM_phys(ig,t)*(zplev_timeseries_old(ig,l,t) - zplev_timeseries_old(ig,l + 1,t))/ &
793                                   (zplev_timeseries_new(ig,l,t) - zplev_timeseries_new(ig,l + 1,t))
794            if (q_h2o_PEM_phys(ig,t) < 0) then
795                q_h2o_PEM_phys(ig,t) = 1.e-30
796            else if (q_h2o_PEM_phys(ig,t) > 1) then
797                q_h2o_PEM_phys(ig,t) = 1.
798            endif
799            ! CO2
800            q_co2_PEM_phys(ig,t) = q_co2_PEM_phys(ig,t)*(zplev_timeseries_old(ig,l,t) - zplev_timeseries_old(ig,l + 1,t))/ &
801                                   (zplev_timeseries_new(ig,l,t) - zplev_timeseries_new(ig,l + 1,t))                       &
802                                + ((zplev_timeseries_new(ig,l,t) - zplev_timeseries_new(ig,l + 1,t))                       &
803                                -  (zplev_timeseries_old(ig,l,t) - zplev_timeseries_old(ig,l + 1,t)))/                     &
804                                   (zplev_timeseries_new(ig,l,t) - zplev_timeseries_new(ig,l + 1,t))
805            if (q_co2_PEM_phys(ig,t) < 0) then
806                q_co2_PEM_phys(ig,t) = 1.e-30
807            else if (q_co2_PEM_phys(ig,t) > 1) then
808                q_co2_PEM_phys(ig,t) = 1.
809            endif
810            mmean = 1./(A*q_co2_PEM_phys(ig,t) + B)
811            vmr_co2_PEM_phys(ig,t) = q_co2_PEM_phys(ig,t)*mmean/m_co2
812        enddo
813    enddo
814    deallocate(zplev_timeseries_new,zplev_timeseries_old)
815
816!------------------------
817! II  Run
818!    II_b Evolution of ice
819!------------------------
820    allocate(zshift_surf(ngrid,nslope),zlag(ngrid,nslope))
821    call evol_h2o_ice(ngrid,nslope,cell_area,delta_h2o_adsorbed,delta_h2o_icetablesublim,h2o_ice,d_h2oice,zshift_surf,stopPEM)
822    call evol_co2_ice(ngrid,nslope,co2_ice,d_co2ice,zshift_surf)
823    if (layering_algo) then
824        do islope = 1,nslope
825            do ig = 1,ngrid
826                call make_layering(stratif(ig,islope),d_co2ice(ig,islope),d_h2oice(ig,islope),d_dust,new_str(ig,islope),zshift_surf(ig,islope),new_lag1(ig,islope),new_lag2(ig,islope),zlag(ig,islope),stopPEM,current1(ig,islope)%p,current2(ig,islope)%p)
827            enddo
828        enddo
829    else
830        zlag = 0.
831    endif
832
833!------------------------
834! II  Run
835!    II_c Flow of glaciers
836!------------------------
837    allocate(flag_co2flow(ngrid,nslope),flag_h2oflow(ngrid,nslope))
838    if (co2ice_flow .and. nslope > 1) call flow_co2glaciers(timelen,ngrid,nslope,iflat,subslope_dist,def_slope_mean,vmr_co2_PEM_phys, &
839                                                            ps_timeseries,ps_avg_global_old,ps_avg_global_new,co2_ice,flag_co2flow)
840    if (h2oice_flow .and. nslope > 1) call flow_h2oglaciers(ngrid,nslope,iflat,subslope_dist,def_slope_mean,tsurf_avg,h2o_ice,flag_h2oflow)
841
842!------------------------
843! II  Run
844!    II_d Update surface and soil temperatures
845!------------------------
846! II_d.1 Update Tsurf
847    write(*,*) "> Updating surface temperature"
848    do ig = 1,ngrid
849        do islope = 1,nslope
850            ! CO2 ice disappeared so we look for the closest point without CO2 ice
851            if (is_co2ice_ini(ig,islope) .and. co2_ice(ig,islope) < 1.e-10 .and. .not. co2ice_disappeared(ig,islope)) then
852                co2ice_disappeared(ig,islope) = .true.
853                if (latitude_deg(ig) > 0.) then ! North hemisphere
854                    outer1: do ig_loop = ig,ngrid ! Go towards equator
855                        do islope_loop = islope - 1,1,-1 ! Go over the slopes (backward numbering - should be equator-ward)
856                            if (.not. is_co2ice_ini(ig_loop,islope_loop) .and. co2_ice(ig_loop,islope_loop) < 1.e-10) then
857                                tsurf_avg(ig,islope) = tsurf_avg(ig_loop,islope_loop)
858                                exit outer1
859                            endif
860                        enddo
861                        do islope_loop = islope + 1,nslope ! Go over the slopes (forward numbering - should be pole-ward)
862                            if (.not. is_co2ice_ini(ig_loop,islope_loop) .and. co2_ice(ig_loop,islope_loop) < 1.e-10) then
863                                tsurf_avg(ig,islope) = tsurf_avg(ig_loop,islope_loop)
864                                exit outer1
865                            endif
866                        enddo
867                    enddo outer1
868                else ! South hemisphere
869                    outer2: do ig_loop = ig,1,-1 ! Go towards equator
870                        do islope_loop = islope + 1,nslope ! Go over the slopes (forward numbering - should be equator-ward)
871                            if (.not. is_co2ice_ini(ig_loop,islope_loop) .and. co2_ice(ig_loop,islope_loop) < 1.e-10) then
872                                tsurf_avg(ig,islope) = tsurf_avg(ig_loop,islope_loop)
873                                exit outer2
874                            endif
875                        enddo
876                        do islope_loop = islope - 1,1,-1 ! Go over the slopes (backward numbering - should be pole-ward)
877                            if (.not. is_co2ice_ini(ig_loop,islope_loop) .and. co2_ice(ig_loop,islope_loop) < 1.e-10) then
878                                tsurf_avg(ig,islope) = tsurf_avg(ig_loop,islope_loop)
879                                exit outer2
880                            endif
881                        enddo
882                    enddo outer2
883                endif
884            else if (co2_ice(ig,islope) > 1.e-10 .and. d_co2ice(ig,islope) > 1.e-10) then ! Put tsurf as Tcond CO2
885                call computeTcondCO2(timelen,ngrid,nslope,vmr_co2_PEM_phys,ps_timeseries,ps_avg_global_ini,ps_avg_global_new,tsurf_avg)
886            endif
887        enddo
888    enddo
889
890    if (soil_pem) then
891! II_d.2 Shifting soil temperature to surface
892        write(*,*) "> Shifting soil temperature profile to match surface evolution"
893        call shift_tsoil2surf(ngrid,nsoilmx_PEM,nslope,zshift_surf,zlag,tsurf_avg,tsoil_PEM)
894        deallocate(zshift_surf,zlag)
895
896! II_d.3 Update soil temperature
897        write(*,*)"> Updating soil temperature profile"
898        allocate(tsoil_avg_old(ngrid,nsoilmx_PEM),tsoil_PEM_timeseries_old(ngrid,nsoilmx_PEM,nslope,timelen))
899        tsoil_PEM_timeseries_old = tsoil_PEM_timeseries
900        do islope = 1,nslope
901            tsoil_avg_old = tsoil_PEM(:,:,islope)
902            call compute_tsoil_pem(ngrid,nsoilmx_PEM,.true.,TI_PEM(:,:,islope),timestep,tsurf_avg(:,islope),tsoil_PEM(:,:,islope))
903            call compute_tsoil_pem(ngrid,nsoilmx_PEM,.false.,TI_PEM(:,:,islope),timestep,tsurf_avg(:,islope),tsoil_PEM(:,:,islope))
904
905            do t = 1,timelen
906                do ig = 1,ngrid
907                    do isoil = 1,nsoilmx_PEM
908                        ! Update of soil temperature timeseries which is needed to compute the water soil density timeseries
909                        tsoil_PEM_timeseries(ig,isoil,islope,t) = tsoil_PEM_timeseries(ig,isoil,islope,t)*tsoil_PEM(ig,isoil,islope)/tsoil_avg_old(ig,isoil)
910                        ! Update of watersoil density
911                        watersoil_density_PEM_timeseries(ig,isoil,islope,t) = exp(beta_clap_h2o/tsoil_PEM_timeseries(ig,isoil,islope,t) + alpha_clap_h2o)/tsoil_PEM_timeseries(ig,isoil,islope,t)*mmol(igcm_h2o_vap)/(mugaz*r)
912                        if (isnan(tsoil_PEM(ig,isoil,islope))) call abort_pem("PEM - Update Tsoil","NaN detected in tsoil_PEM",1)
913                    enddo
914                enddo
915            enddo
916        enddo
917        watersoil_density_PEM_avg = sum(watersoil_density_PEM_timeseries,4)/timelen
918        deallocate(tsoil_avg_old)
919
920! II_d.4 Update the ice table
921        allocate(icetable_thickness_old(ngrid,nslope),ice_porefilling_old(ngrid,nsoilmx_PEM,nslope),icetable_depth_old(ngrid,nslope))
922        if (icetable_equilibrium) then
923            write(*,*) "> Updating ice table (equilibrium method)"
924            icetable_thickness_old = icetable_thickness
925            call computeice_table_equilibrium(ngrid,nslope,nsoilmx_PEM,watercaptag,watersurf_density_avg,watersoil_density_PEM_avg,TI_PEM(:,1,:),icetable_depth,icetable_thickness)
926            call compute_massh2o_exchange_ssi(ngrid,nslope,nsoilmx_PEM,icetable_thickness_old,ice_porefilling_old,tsurf_avg,tsoil_PEM,delta_h2o_icetablesublim) ! Mass of H2O exchange between the ssi and the atmosphere
927        else if (icetable_dynamic) then
928            write(*,*) "> Updating ice table (dynamic method)"
929            ice_porefilling_old = ice_porefilling
930            icetable_depth_old = icetable_depth
931            allocate(porefill(nsoilmx_PEM))
932            do ig = 1,ngrid
933                do islope = 1,nslope
934                    call dyn_ss_ice_m(icetable_depth(ig,islope),tsurf_avg(ig,islope),tsoil_PEM(ig,:,islope),nsoilmx_PEM,TI_PEM(ig,1,nslope),ps_avg(ig),(/sum(q_h2o_PEM_phys(ig,:))/size(q_h2o_PEM_phys,2)/),ice_porefilling(ig,:,islope),porefill,ssi_depth)
935                    icetable_depth(ig,islope) = ssi_depth
936                    ice_porefilling(ig,:,islope) = porefill
937                enddo
938            enddo
939            deallocate(porefill)
940            call compute_massh2o_exchange_ssi(ngrid,nslope,nsoilmx_PEM,icetable_thickness_old,ice_porefilling_old,tsurf_avg, tsoil_PEM,delta_h2o_icetablesublim) ! Mass of H2O exchange between the ssi and the atmosphere
941        endif
942        deallocate(icetable_thickness_old,ice_porefilling_old)
943
944! II_d.5 Update the soil thermal properties
945        call update_soil_thermalproperties(ngrid,nslope,nsoilmx_PEM,d_h2oice,h2o_ice,ps_avg_global_new,icetable_depth,icetable_thickness,ice_porefilling,icetable_equilibrium,icetable_dynamic,TI_PEM)
946
947! II_d.6 Update the mass of the regolith adsorbed
948        if (adsorption_pem) then
949            call regolith_adsorption(ngrid,nslope,nsoilmx_PEM,timelen,d_h2oice,d_co2ice,h2o_ice,co2_ice, &
950                                     tsoil_PEM,TI_PEM,ps_timeseries,q_co2_PEM_phys,q_h2o_PEM_phys,       &
951                                     h2o_adsorbed_phys,delta_h2o_adsorbed,co2_adsorbed_phys,delta_co2_adsorbed)
952
953            totmassco2_adsorbed = 0.
954            totmassh2o_adsorbed = 0.
955            do ig = 1,ngrid
956                do islope = 1,nslope
957                    do l = 1,nsoilmx_PEM
958                        if (l == 1) then
959                            totmassco2_adsorbed = totmassco2_adsorbed + co2_adsorbed_phys(ig,l,islope)*(layer_PEM(l))* &
960                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
961                            totmassh2o_adsorbed = totmassh2o_adsorbed + h2o_adsorbed_phys(ig,l,islope)*(layer_PEM(l))* &
962                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
963                        else
964                            totmassco2_adsorbed = totmassco2_adsorbed + co2_adsorbed_phys(ig,l,islope)*(layer_PEM(l) - layer_PEM(l - 1))* &
965                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
966                            totmassh2o_adsorbed = totmassh2o_adsorbed + h2o_adsorbed_phys(ig,l,islope)*(layer_PEM(l) - layer_PEM(l - 1))* &
967                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
968                        endif
969                    enddo
970                enddo
971            enddo
972            write(*,*) "Total mass of CO2 in the regolith =", totmassco2_adsorbed
973            write(*,*) "Total mass of H2O in the regolith =", totmassh2o_adsorbed
974        endif
975    endif !soil_pem
976
977!------------------------
978! II  Run
979!    II_e Outputs
980!------------------------
981    call writediagpem(ngrid,'ps_avg','Global average pressure','Pa',0,(/ps_avg_global_new/))
982    do islope = 1,nslope
983        write(str2(1:2),'(i2.2)') islope
984        call writediagpem(ngrid,'h2o_ice_slope'//str2,'H2O ice','kg.m-2',2,h2o_ice(:,islope))
985        call writediagpem(ngrid,'co2_ice_slope'//str2,'CO2 ice','kg.m-2',2,co2_ice(:,islope))
986        call writediagpem(ngrid,'d_h2oice_slope'//str2,'H2O ice tend','kg.m-2.year-1',2,d_h2oice(:,islope))
987        call writediagpem(ngrid,'d_co2ice_slope'//str2,'CO2 ice tend','kg.m-2.year-1',2,d_co2ice(:,islope))
988        call writediagpem(ngrid,'Flow_co2ice_slope'//str2,'CO2 ice flow','Boolean',2,real(flag_co2flow(:,islope)))
989        call writediagpem(ngrid,'Flow_h2oice_slope'//str2,'H2O ice flow','Boolean',2,real(flag_h2oflow(:,islope)))
990        call writediagpem(ngrid,'tsurf_slope'//str2,'tsurf','K',2,tsurf_avg(:,islope))
991        if (icetable_equilibrium) then
992            call writediagpem(ngrid,'ssi_depth_slope'//str2,'ice table depth','m',2,icetable_depth(:,islope))
993            call writediagpem(ngrid,'ssi_thick_slope'//str2,'ice table thickness','m',2,icetable_thickness(:,islope))
994        else if (icetable_dynamic) then
995            call writediagpem(ngrid,'ssi_depth_slope'//str2,'ice table depth','m',2,icetable_depth(:,islope))
996        endif
997
998        if (soil_pem) then
999            call writediagsoilpem(ngrid,'tsoil_PEM_slope'//str2,'tsoil','K',3,tsoil_PEM(:,:,islope))
1000            call writediagsoilpem(ngrid,'inertiesoil_PEM_slope'//str2,'TI','K',3,TI_PEM(:,:,islope))
1001            if (icetable_dynamic) call writediagsoilpem(ngrid,'ice_porefilling'//str2,'ice pore filling','-',3,ice_porefilling(:,:,islope))
1002            if (adsorption_pem) then
1003                call writediagsoilpem(ngrid,'co2_ads_slope'//str2,'co2_ads','K',3,co2_adsorbed_phys(:,:,islope))
1004                call writediagsoilpem(ngrid,'h2o_ads_slope'//str2,'h2o_ads','K',3,h2o_adsorbed_phys(:,:,islope))
1005            endif
1006        endif
1007    enddo
1008    deallocate(flag_co2flow,flag_h2oflow)
1009
1010!------------------------
1011! II  Run
1012!    II_f Update the tendencies
1013!------------------------
1014    call recomp_tend_co2(ngrid,nslope,timelen,d_co2ice,d_co2ice_ini,co2_ice,emis,vmr_co2_PCM,vmr_co2_PEM_phys,ps_timeseries,ps_avg_global_old,ps_avg_global_new)
1015   
1016    do ig = 1,ngrid
1017        do islope = 1,nslope
1018            call recomp_tend_h2o(icetable_depth_old(ig,islope),icetable_depth(ig,islope),tsurf_avg(ig,islope),tsoil_PEM_timeseries_old(ig,:,islope,:),tsoil_PEM_timeseries(ig,:,islope,:),d_h2oice(ig,islope))
1019        enddo
1020    enddo
1021    deallocate(vmr_co2_PEM_phys,icetable_depth_old,tsoil_PEM_timeseries_old)
1022
1023!------------------------
1024! II  Run
1025!    II_g Checking the stopping criterion
1026!------------------------
1027    write(*,*) "> Checking the stopping criteria"
1028    call stopping_crit_h2o_ice(cell_area,h2oice_ini_surf,is_h2oice_sublim_ini,h2o_ice,stopPEM,ngrid)
1029    call stopping_crit_co2(cell_area,co2ice_sublim_surf_ini,is_co2ice_sublim_ini,co2_ice,stopPEM,ngrid,ps_avg_global_ini,ps_avg_global_new,nslope)
1030    i_myear_leg = i_myear_leg + dt
1031    i_myear = i_myear + dt
1032    if (stopPEM <= 0 .and. i_myear_leg >= n_myear_leg) stopPEM = 5
1033    if (stopPEM <= 0 .and. i_myear >= n_myear) stopPEM = 6
1034    call system_clock(c2)
1035    if (stopPEM <= 0 .and. timewall .and. real((c2 - c1)/cr) >= timelimit - antetime) stopPEM = 7
1036    if (stopPEM > 0) then
1037        select case (stopPEM)
1038            case(1)
1039                write(*,'(a,i0,a)') " #### STOPPING because surface of h2o ice sublimating is too low:", stopPEM, "See message above."
1040            case(2)
1041                write(*,'(a,i0,a)') " #### STOPPING because tendencies on h2o ice = 0:", stopPEM, "See message above."
1042            case(3)
1043                write(*,'(a,i0,a)') " #### STOPPING because surface of co2 ice sublimating is too low:", stopPEM, "See message above."
1044            case(4)
1045                write(*,'(a,i0,a)') " #### STOPPING because surface global pressure changed too much:", stopPEM, "See message above."
1046            case(5)
1047                write(*,'(a,i0)') " #### STOPPING because maximum number of iterations is reached (possibly due to orbital parameters):", stopPEM
1048            case(6)
1049                write(*,'(a,i0)') " #### STOPPING because maximum number of Martian years to be simulated is reached:", stopPEM
1050            case(7)
1051                write(*,'(a,i0)') " #### STOPPING because the time limit for the PEM job will be reached soon:", stopPEM
1052            case(8)
1053                write(*,'(a,i0)') " #### STOPPING because the layering algorithm met an hasty end:", stopPEM
1054            case default
1055                write(*,'(a,i0)') " #### STOPPING with unknown stopping criterion code:", stopPEM
1056        end select
1057        exit
1058    else
1059        write(*,'(a,f10.2,a)') ' #### The chained simulation has run for ',i_myear,' Martian years.'
1060        write(*,*) '#### The PEM can continue!'
1061        write(*,*) '####'
1062    endif
1063enddo ! big time iteration loop of the pem
1064deallocate(vmr_co2_PCM,q_co2_PEM_phys,q_h2o_PEM_phys,delta_co2_adsorbed)
1065deallocate(watersoil_density_PEM_avg,watersurf_density_avg)
1066deallocate(ps_timeseries,tsoil_PEM_timeseries,watersoil_density_PEM_timeseries)
1067deallocate(co2ice_disappeared,delta_h2o_adsorbed,delta_h2o_icetablesublim)
1068deallocate(d_co2ice,d_co2ice_ini,d_h2oice)
1069deallocate(is_co2ice_ini,is_co2ice_sublim_ini,is_h2oice_sublim_ini)
1070if (layering_algo) then
1071    do islope = 1,nslope
1072        do i = 1,ngrid
1073            call del_layering(stratif(i,islope))
1074        enddo
1075    enddo
1076    deallocate(new_str,new_lag1,new_lag2,current1,current2)
1077endif
1078!------------------------------ END RUN --------------------------------
1079
1080!------------------------------- OUTPUT --------------------------------
1081!------------------------
1082! III Output
1083!    III_a Update surface value for the PCM start files
1084!------------------------
1085! III_a.1 Ice update for start file
1086write(*,*)
1087write(*,*) '######### PEM finalization #########'
1088write(*,*) '> Reconstructing perennial ice and frost for the PCM'
1089watercap = 0.
1090perennial_co2ice = co2_ice
1091do ig = 1,ngrid
1092    ! H2O ice metamorphism
1093    if (metam_h2oice .and. sum(qsurf(ig,igcm_h2o_ice,:)*subslope_dist(ig,:)/cos(pi*def_slope_mean(:)/180.)) > metam_h2oice_threshold) then
1094        h2o_ice(ig,:) = h2o_ice(ig,:) + qsurf(ig,igcm_h2o_ice,:) - metam_h2oice_threshold
1095        qsurf(ig,igcm_h2o_ice,:) = metam_h2oice_threshold
1096    endif
1097
1098    ! Is H2O ice still considered as an infinite reservoir for the PCM?
1099    if (sum(h2o_ice(ig,:)*subslope_dist(ig,:)/cos(pi*def_slope_mean(:)/180.)) > inf_h2oice_threshold) then
1100        ! There is enough ice to be considered as an infinite reservoir
1101        watercaptag(ig) = .true.
1102    else
1103        ! There too little ice to be considered as an infinite reservoir so ice is transferred to the frost
1104        watercaptag(ig) = .false.
1105        qsurf(ig,igcm_h2o_ice,:) = qsurf(ig,igcm_h2o_ice,:) + h2o_ice(ig,:)
1106        h2o_ice(ig,:) = 0.
1107    endif
1108
1109    ! CO2 ice metamorphism
1110    if (metam_co2ice .and. sum(qsurf(ig,igcm_co2,:)*subslope_dist(ig,:)/cos(pi*def_slope_mean(:)/180.)) > metam_co2ice_threshold) then
1111        perennial_co2ice(ig,:) = perennial_co2ice(ig,:) + qsurf(ig,igcm_co2,:) - metam_co2ice_threshold
1112        qsurf(ig,igcm_co2,:) = metam_co2ice_threshold
1113    endif
1114enddo
1115
1116! III.a.2. Tsurf update for start file
1117write(*,*) '> Reconstructing the surface temperature for the PCM'
1118tsurf = tsurf_avg + tsurf_dev
1119deallocate(tsurf_dev)
1120
1121! III_a.3 Tsoil update for start file
1122if (soil_pem) then
1123    write(*,*) '> Reconstructing the soil temperature profile for the PCM'
1124    inertiesoil = TI_PEM(:,:nsoilmx,:)
1125    ! Tsurf has evolved and so the soil temperature profile needs to be adapted to match this new value
1126    do isoil = 1,nsoilmx
1127        tsoil_dev(:,isoil,:) = tsoil_dev(:,isoil,:)*(tsurf_avg(:,:) - tsoil_PEM(:,1,:))/tsoil_dev(:,1,:)
1128    enddo
1129    tsoil = tsoil_PEM(:,1:nsoilmx,:) + tsoil_dev
1130#ifndef CPP_STD
1131    flux_geo = fluxgeo
1132#endif
1133endif
1134deallocate(tsurf_avg,tsoil_dev)
1135
1136! III_a.4 Pressure update for start file
1137write(*,*) '> Reconstructing the pressure for the PCM'
1138allocate(ps_start(ngrid))
1139! The pressure deviation is rescaled to avoid disproportionate oscillations in case of huge average pressure drop
1140ps_start = ps_avg + ps_dev*ps_avg_global_new/ps_avg_global_ini
1141deallocate(ps_avg,ps_dev)
1142
1143! III_a.5 Tracers update for start file
1144write(*,*) '> Reconstructing the tracer VMR for the PCM'
1145allocate(zplev_start0(ngrid,nlayer + 1),zplev_new(ngrid,nlayer + 1))
1146do l = 1,nlayer + 1
1147    zplev_start0(:,l) = ap(l) + bp(l)*ps_start0
1148    zplev_new(:,l) = ap(l) + bp(l)*ps_start
1149enddo
1150
1151do nnq = 1,nqtot
1152    if (noms(nnq) /= "co2") then
1153        do l = 1,llm - 1
1154            do ig = 1,ngrid
1155                q(ig,l,nnq) = q(ig,l,nnq)*(zplev_start0(ig,l) - zplev_start0(ig,l + 1))/(zplev_new(ig,l) - zplev_new(ig,l + 1))
1156            enddo
1157            q(:,llm,nnq) = q(:,llm - 1,nnq)
1158        enddo
1159    else
1160        do l = 1,llm - 1
1161            do ig = 1,ngrid
1162                q(ig,l,nnq) = q(ig,l,nnq)*(zplev_start0(ig,l) - zplev_start0(ig,l + 1))/(zplev_new(ig,l) - zplev_new(ig,l + 1)) &
1163                              + ((zplev_new(ig,l) - zplev_new(ig,l + 1)) - (zplev_start0(ig,l) - zplev_start0(ig,l + 1)))/(zplev_new(ig,l) - zplev_new(ig,l + 1))
1164            enddo
1165            q(:,llm,nnq) = q(:,llm - 1,nnq)
1166        enddo
1167    endif
1168enddo
1169deallocate(zplev_start0)
1170
1171! Conserving the tracers mass for start file
1172do nnq = 1,nqtot
1173    do ig = 1,ngrid
1174        do l = 1,llm - 1
1175            if (q(ig,l,nnq) > 1 .and. (noms(nnq) /= "dust_number") .and. (noms(nnq) /= "ccn_number") .and. (noms(nnq) /= "stormdust_number") .and. (noms(nnq) /= "topdust_number")) then
1176                extra_mass = (q(ig,l,nnq) - 1)*(zplev_new(ig,l) - zplev_new(ig,l + 1))
1177                q(ig,l,nnq) = 1.
1178                q(ig,l + 1,nnq) = q(ig,l + 1,nnq) + extra_mass*(zplev_new(ig,l + 1) - zplev_new(ig,l + 2))
1179                write(*,*) 'extra ',noms(nnq),extra_mass, noms(nnq) /= "dust_number",noms(nnq) /= "ccn_number"
1180           endif
1181            if (q(ig,l,nnq) < 0) q(ig,l,nnq) = 1.e-30
1182        enddo
1183    enddo
1184enddo
1185deallocate(zplev_new)
1186
1187! III_a.6 Albedo update for start file
1188write(*,*) '> Reconstructing the albedo for the PCM'
1189do ig = 1,ngrid
1190    if (latitude(ig) < 0.) then
1191        icap = 2 ! Southern hemisphere
1192    else
1193        icap = 1 ! Northern hemisphere
1194    endif
1195    do islope = 1,nslope
1196        ! Bare ground
1197        albedo(ig,:,islope) = albedodat(ig)
1198        emis(ig,islope) = emissiv
1199
1200        ! CO2 ice/frost is treated after H20 ice/frost because it is considered dominant
1201        ! H2O ice
1202        if (h2o_ice(ig,islope) > 0.) then
1203            albedo(ig,:,islope) = albedo_h2o_cap
1204            emis(ig,islope) = 1.
1205        endif
1206        ! CO2 ice
1207        if (co2_ice(ig,islope) > 0.) then
1208            albedo(ig,:,islope) = albedo_perennialco2(icap)
1209            emis(ig,islope) = emisice(icap)
1210        endif
1211        ! H2O frost
1212        if (qsurf(ig,igcm_h2o_ice,islope) > 0.) then
1213            albedo(ig,:,islope) = albedo_h2o_frost
1214            emis(ig,islope) = 1.
1215        endif
1216        ! CO2 frost
1217        if (qsurf(ig,igcm_co2,islope) > 0.) then
1218            albedo(ig,:,islope) = albedice(icap)
1219            emis(ig,islope) = emisice(icap)
1220        endif
1221    enddo
1222enddo
1223
1224! III_a.7 Orbital parameters update for start file
1225write(*,*) '> Setting the new orbital parameters'
1226if (evol_orbit_pem) call recomp_orb_param(i_myear,i_myear_leg)
1227
1228!------------------------
1229! III Output
1230!    III_b Write "restart.nc" and "restartfi.nc"
1231!------------------------
1232! III_b.1 Write "restart.nc"
1233ptimestep = iphysiq*daysec/real(day_step)/nsplit_phys ! dtphys/nsplit_phys
1234pday = day_ini
1235ztime_fin = time_phys
1236#ifndef CPP_1D
1237    write(*,*) '> Writing "restart.nc"'
1238    ! Correction on teta due to surface pressure changes
1239    allocate(pdyn(ip1jmp1))
1240    call gr_fi_dyn(1,ngrid,iip1,jjp1,ps_start0/ps_start,pdyn)
1241    do i = 1,ip1jmp1
1242        teta(i,:) = teta(i,:)*pdyn(i)**kappa
1243    enddo
1244    ! Correction on atmospheric pressure
1245    allocate(p(ip1jmp1,nlayer + 1))
1246    call gr_fi_dyn(1,ngrid,iip1,jjp1,ps_start,pdyn)
1247    call pression(ip1jmp1,ap,bp,pdyn,p)
1248    ! Correction on the mass of atmosphere
1249    call massdair(p,masse)
1250    call dynredem0("restart.nc",day_ini,phis)
1251    call dynredem1("restart.nc",time_0,vcov,ucov,teta,q,masse,ps_start)
1252    deallocate(ap,bp,p,pdyn)
1253#else
1254    write(*,*) '> Writing "restart1D.txt"'
1255    call writerestart1D('restart1D.txt',ps_start(1),tsurf(1,:),nlayer,size(tsurf,2),teta,ucov,vcov,nq,noms,qsurf(1,:,:),q)
1256#endif
1257deallocate(ps_start0,ps_start)
1258
1259! III_b.2 Write the "restartfi.nc"
1260write(*,*) '> Writing "restartfi.nc"'
1261#ifndef CPP_STD
1262    call physdem0("restartfi.nc",longitude,latitude,nsoilmx,ngrid, &
1263                  nlayer,nq,ptimestep,pday,0.,cell_area,albedodat, &
1264                  inertiedat,def_slope,subslope_dist)
1265    call physdem1("restartfi.nc",nsoilmx,ngrid,nlayer,nq,nqsoil,      &
1266                  ptimestep,ztime_fin,tsurf,tsoil,inertiesoil,        &
1267                  albedo,emis,q2,qsurf,qsoil,tauscaling,totcloudfrac, &
1268                  wstar,watercap,perennial_co2ice)
1269#else
1270    if (allocated(noms)) deallocate(noms)
1271    deallocate(qsurf,tsurf,tsoil,emis,watercap,watercaptag,albedo,inertiesoil)
1272    call physdem0("restartfi.nc",longitude,latitude,nsoilmx,ngrid, &
1273                  nlayer,nq,ptimestep,pday,time_phys,cell_area,    &
1274                  albedo_bareground,inertiedat,zmea,zstd,zsig,zgam,zthe)
1275    call physdem1("restartfi.nc",nsoilmx,ngrid,nlayer,nq,nqsoil,       &
1276                  ptimestep,ztime_fin,tsurf,tsoil,emis,q2,qsurf,qsoil, &
1277                  cloudfrac,totcloudfrac,hice,rnat,pctsrf_sic,tslab,   &
1278                  tsea_ice,sea_ice)
1279#endif
1280
1281!------------------------
1282! III Output
1283!    III_c Write the "restartpem.nc"
1284!------------------------
1285write(*,*) '> Writing "restartpem.nc"'
1286if (layering_algo) nb_str_max = get_nb_str_max(stratif,ngrid,nslope) ! Get the maximum number of "stratum" in the stratification (layerings)
1287call pemdem0("restartpem.nc",longitude,latitude,cell_area,ngrid,nslope,def_slope,subslope_dist)
1288call pemdem1("restartpem.nc",i_myear,nsoilmx_PEM,ngrid,nslope,tsoil_PEM,TI_PEM,icetable_depth,icetable_thickness,ice_porefilling, &
1289             co2_adsorbed_phys,h2o_adsorbed_phys,h2o_ice,stratif)
1290
1291call info_PEM(i_myear_leg,stopPEM,i_myear,n_myear)
1292
1293write(*,*)
1294write(*,*) '######### PEM finalization #########'
1295write(*,'(a,f10.2,a)') " + The PEM leg has run for ", i_myear_leg, " Martian years."
1296write(*,'(a,f10.2,a,f10.2,a)') " + The chained simulation has run for ", i_myear, " Martian years =", i_myear*convert_years, "Earth years."
1297write(*,'(a,f10.2,a)') " + The reached date is now ", (year_bp_ini + i_myear)*convert_years, " Earth years."
1298write(*,*) "+ PEM: so far, so good!"
1299write(*,*) '####################################'
1300
1301if (layering_algo) then
1302    do islope = 1,nslope
1303        do i = 1,ngrid
1304            call del_layering(stratif(i,islope))
1305        enddo
1306    enddo
1307endif
1308deallocate(q,longitude,latitude,cell_area,tsoil_PEM)
1309deallocate(co2_ice,h2o_ice,stratif)
1310!----------------------------- END OUTPUT ------------------------------
1311
1312END PROGRAM pem
Note: See TracBrowser for help on using the repository browser.