source: trunk/LMDZ.COMMON/libf/evolution/pem.F90 @ 3563

Last change on this file since 3563 was 3554, checked in by jbclement, 3 weeks ago

PEM:
Follow-up of previous commit (r3553).
JBC

File size: 62.3 KB
RevLine 
[2779]1!------------------------
[3028]2! I   Initialization
[3161]3!    I_a Read the "run.def"
[3317]4!    I_b Read the "start.nc" and "startfi.nc"
[2835]5!    I_c Subslope parametrisation
[3161]6!    I_d Read the PCM data and convert them to the physical grid
[3028]7!    I_e Initialization of the PEM variable and soil
[3143]8!    I_f Compute tendencies
[3384]9!    I_g Save the initial situation
10!    I_h Read the "startpem.nc"
[2835]11!    I_i Compute orbit criterion
[2779]12
13! II  Run
[3028]14!    II_a Update pressure, ice and tracers
[3149]15!    II_b Evolution of ice
16!    II_c Flow of glaciers
[2835]17!    II_d Update surface and soil temperatures
[3088]18!    II_e Outputs
19!    II_f Update the tendencies
20!    II_g Checking the stopping criterion
[2779]21
22! III Output
[2835]23!    III_a Update surface value for the PCM start files
[3317]24!    III_b Write the "restart.nc" and "restartfi.nc"
[3161]25!    III_c Write the "restartpem.nc"
[2779]26!------------------------
27
28PROGRAM pem
29
[3161]30use phyetat0_mod,               only: phyetat0
31use phyredem,                   only: physdem0, physdem1
32use netcdf,                     only: nf90_open, NF90_NOWRITE, nf90_get_var, nf90_inq_varid, nf90_close
33use turb_mod,                   only: q2, wstar
[3206]34use comslope_mod,               only: nslope, def_slope, def_slope_mean, subslope_dist, iflat, ini_comslope_h
[3161]35use logic_mod,                  only: iflag_phys
36use mod_const_mpi,              only: COMM_LMDZ
[3028]37use infotrac
[3161]38use geometry_mod,               only: latitude_deg
39use conf_pem_mod,               only: conf_pem
40use pemredem,                   only: pemdem0, pemdem1
41use glaciers_mod,               only: flow_co2glaciers, flow_h2oglaciers, co2ice_flow, h2oice_flow, inf_h2oice_threshold, &
42                                      metam_h2oice_threshold, metam_co2ice_threshold, metam_h2oice, metam_co2ice
43use stopping_crit_mod,          only: stopping_crit_h2o_ice, stopping_crit_co2
44use constants_marspem_mod,      only: alpha_clap_co2, beta_clap_co2, alpha_clap_h2o, beta_clap_h2o, m_co2, m_noco2
45use evol_ice_mod,               only: evol_co2_ice, evol_h2o_ice
[3553]46use comsoil_h_PEM,              only: soil_pem, ini_comsoil_h_PEM, end_comsoil_h_PEM, nsoilmx_PEM, mlayer_PEM, &
[3330]47                                      TI_PEM,               & ! soil thermal inertia
48                                      tsoil_PEM, layer_PEM, & ! Soil temp, number of subsurface layers, soil mid layer depths
49                                      fluxgeo                 ! Geothermal flux for the PEM and PCM
[3161]50use adsorption_mod,             only: regolith_adsorption, adsorption_pem,        & ! Bool to check if adsorption, main subroutine
51                                      ini_adsorption_h_PEM, end_adsorption_h_PEM, & ! Allocate arrays
[3553]52                                      co2_adsorbed_phys, h2o_adsorbed_phys        ! Mass of co2 and h2O adsorbed
[3498]53use time_evol_mod,              only: dt, evol_orbit_pem, Max_iter_pem, convert_years, year_bp_ini
[3161]54use orbit_param_criterion_mod,  only: orbit_param_criterion
55use recomp_orb_param_mod,       only: recomp_orb_param
[3493]56use ice_table_mod,              only: icetable_depth, icetable_thickness, end_ice_table, ice_porefilling, &
57                                      ini_ice_table, icetable_equilibrium, icetable_dynamic, computeice_table_equilibrium, compute_massh2o_exchange_ssi
[3161]58use soil_thermalproperties_mod, only: update_soil_thermalproperties
[3206]59use time_phylmdz_mod,           only: daysec, dtphys
[3161]60use abort_pem_mod,              only: abort_pem
61use soil_settings_PEM_mod,      only: soil_settings_PEM
62use compute_tend_mod,           only: compute_tend
63use info_PEM_mod,               only: info_PEM
64use nb_time_step_PCM_mod,       only: nb_time_step_PCM
65use pemetat0_mod,               only: pemetat0
66use read_data_PCM_mod,          only: read_data_PCM
[3553]67use recomp_tend_co2_slope_mod,  only: recomp_tend_co2
68use compute_soiltemp_mod,       only: compute_tsoil_pem, shift_tsoil2surf
[3181]69use writediagpem_mod,           only: writediagpem, writediagsoilpem
[3207]70use co2condens_mod,             only: CO2cond_ps
[3498]71use layering_mod,               only: d_dust, ptrarray, stratum, layering, ini_layering, del_layering, make_layering, get_nb_str_max, nb_str_max, layering_algo
[3527]72use dyn_ss_ice_m_mod,           only: dyn_ss_ice_m
[2985]73
[2842]74#ifndef CPP_STD
[3206]75    use comsoil_h,          only: tsoil, nsoilmx, ini_comsoil_h, inertiedat, mlayer, inertiesoil, flux_geo, nqsoil, qsoil
[3028]76    use surfdat_h,          only: tsurf, emis, qsurf, watercap, ini_surfdat_h, &
77                                  albedodat, zmea, zstd, zsig, zgam, zthe,     &
[3206]78                                  albedo_h2o_frost,frost_albedo_threshold,     &
79                                  emissiv, watercaptag, perennial_co2ice, emisice, albedice
[3028]80    use dimradmars_mod,     only: totcloudfrac, albedo
81    use dust_param_mod,     only: tauscaling
[3149]82    use tracer_mod,         only: noms, igcm_h2o_ice, igcm_co2, mmol, igcm_h2o_vap ! Tracer names and molar masses
[3028]83    use mod_phys_lmdz_para, only: is_parallel, is_sequential, is_mpi_root, is_omp_root, is_master
[3096]84    use planete_h,          only: aphelie, periheli, year_day, peri_day, obliquit, iniorbit
[3442]85    use comcstfi_h,         only: pi, rad, g, mugaz, r
[3143]86    use surfini_mod,        only: surfini
[3442]87    use comconst_mod,       only: kappa, cpp
[2842]88#else
[3028]89    use tracer_h,           only: noms, igcm_h2o_ice, igcm_co2 ! Tracer names
90    use phys_state_var_mod, only: cloudfrac, totcloudfrac, albedo_snow_SPECTV,HICE,RNAT,   &
91                                  PCTSRF_SIC, TSLAB, TSEA_ICE, SEA_ICE, ALBEDO_BAREGROUND, &
92                                  ALBEDO_CO2_ICE_SPECTV, phys_state_var_init
[3039]93    use aerosol_mod,        only: iniaerosol
94    use planete_mod,        only: apoastr, periastr, year_day, peri_day, obliquit
[3442]95    use comcstfi_mod,       only: pi, rad, g, mugaz, r
[2842]96#endif
[2985]97
[3028]98#ifndef CPP_1D
[3076]99    use iniphysiq_mod,            only: iniphysiq
100    use control_mod,              only: iphysiq, day_step, nsplit_phys
[3019]101#else
[3386]102    use time_phylmdz_mod,         only: iphysiq, steps_per_sol
[3028]103    use regular_lonlat_mod,       only: init_regular_lonlat
104    use physics_distribution_mod, only: init_physics_distribution
105    use mod_grid_phy_lmdz,        only: regular_lonlat
[3065]106    use init_testphys1d_mod,      only: init_testphys1d
107    use comvert_mod,              only: ap, bp
[3076]108    use writerestart1D_mod,       only: writerestart1D
[2980]109#endif
[2835]110
[3076]111implicit none
[2980]112
[3028]113include "dimensions.h"
114include "paramet.h"
115include "comgeom.h"
116include "iniprint.h"
[3039]117include "callkeys.h"
[2779]118
[3028]119integer ngridmx
120parameter(ngridmx = 2 + (jjm - 1)*iim - 1/jjm)
[2794]121
[3096]122! Same variable names as in the PCM
[3065]123integer, parameter :: nlayer = llm ! Number of vertical layer
124integer            :: ngrid        ! Number of physical grid points
125integer            :: nq           ! Number of tracer
126integer            :: day_ini      ! First day of the simulation
127real               :: pday         ! Physical day
[3149]128real               :: time_phys    ! Same as in PCM
129real               :: ptimestep    ! Same as in PCM
[3297]130real               :: ztime_fin     ! Same as in PCM
[2794]131
[3028]132! Variables to read start.nc
[3317]133character(*), parameter :: start_name = "start.nc" ! Name of the file used to initialize the PEM
[2779]134
[3028]135! Dynamic variables
[3065]136real, dimension(ip1jm,llm)          :: vcov          ! vents covariants
137real, dimension(ip1jmp1,llm)        :: ucov          ! vents covariants
138real, dimension(ip1jmp1,llm)        :: teta          ! temperature potentielle
139real, dimension(:,:,:), allocatable :: q             ! champs advectes
[3143]140real, dimension(ip1jmp1)            :: ps            ! pression au sol
[3442]141real, dimension(ip1jmp1)            :: ps0           ! pression au sol initiale
[3149]142real, dimension(:),     allocatable :: ps_start_PCM  ! (ngrid) surface pressure
143real, dimension(:,:),   allocatable :: ps_timeseries ! (ngrid x timelen) instantaneous surface pressure
[3065]144real, dimension(ip1jmp1,llm)        :: masse         ! masse d'air
145real, dimension(ip1jmp1)            :: phis          ! geopotentiel au sol
[3028]146real                                :: time_0
[2779]147
[3028]148! Variables to read starfi.nc
[3317]149character(*), parameter :: startfi_name = "startfi.nc" ! Name of the file used to initialize the PEM
[3143]150character(2)            :: str2
[3206]151integer                 :: ncid, status                           ! Variable for handling opening of files
152integer                 :: lonvarid, latvarid, areavarid, sdvarid ! Variable ID for Netcdf files
153integer                 :: apvarid, bpvarid                       ! Variable ID for Netcdf files
[2794]154
[3028]155! Variables to read starfi.nc and write restartfi.nc
[3143]156real, dimension(:), allocatable :: longitude     ! Longitude read in startfi_name and written in restartfi
157real, dimension(:), allocatable :: latitude      ! Latitude read in startfi_name and written in restartfi
158real, dimension(:), allocatable :: cell_area     ! Cell_area read in startfi_name and written in restartfi
[3028]159real                            :: Total_surface ! Total surface of the planet
[2897]160
[3028]161! Variables for h2o_ice evolution
[3327]162real, dimension(:,:),    allocatable  :: h2o_ice              ! h2o ice in the PEM
163real, dimension(:,:,:),  allocatable  :: min_h2o_ice          ! Minima of h2o ice at each point for the PCM years [kg/m^2]
164real                                  :: h2oice_ini_surf      ! Initial surface of sublimating h2o ice
165logical, dimension(:,:), allocatable  :: ini_h2oice_sublim    ! Logical array to know if h2o ice is sublimating
166real                                  :: global_avg_press_PCM ! constant: global average pressure retrieved in the PCM [Pa]
167real                                  :: global_avg_press_old ! constant: Global average pressure of initial/previous time step
168real                                  :: global_avg_press_new ! constant: Global average pressure of current time step
169real,   dimension(:,:),   allocatable :: zplev_new            ! Physical x Atmospheric field: mass of the atmospheric  layers in the pem at current time step [kg/m^2]
170real,   dimension(:,:),   allocatable :: zplev_PCM            ! same but retrieved from the PCM [kg/m^2]
171real,   dimension(:,:,:), allocatable :: zplev_new_timeseries ! Physical x Atmospheric x Time: same as zplev_new, but in times series [kg/m ^2]
172real,   dimension(:,:,:), allocatable :: zplev_old_timeseries ! same but with the time series, for oldest time step
173integer                               :: stopPEM              ! which criterion is reached? 0 = no stopping; 1 = h2o ice surf; 2 = no h2o ice; 3 = co2 ice surf; 4 = ps; 5 = orb param; 6 = end of simu
174real, save                            :: A, B, mmean          ! Molar mass: intermediate A, B for computations of the  mean molar mass of the layer [mol/kg]
175real,   dimension(:,:),   allocatable :: q_h2o_PEM_phys       ! Physics x Times: h2o mass mixing ratio computed in the PEM, first value comes from PCM [kg/kg]
176integer                               :: timelen              ! # time samples
177real                                  :: ave                  ! intermediate varibale to compute average
178real,   dimension(:,:),   allocatable :: p                    ! Physics x Atmosphere: pressure to recompute and write in restart (ngrid,llmp1)
179real                                  :: extra_mass           ! Intermediate variables Extra mass of a tracer if it is greater than 1
[2779]180
[3130]181! Variables for co2_ice evolution
[3330]182real,    dimension(:,:), allocatable :: co2_ice           ! co2 ice in the PEM
183logical, dimension(:,:), allocatable :: is_co2ice_ini     ! Was there co2 ice initially in the PEM?
[3327]184real,  dimension(:,:,:), allocatable :: min_co2_ice       ! Minimum of co2 ice at each point for the first year [kg/m^2]
185real                                 :: co2ice_ini_surf   ! Initial surface of sublimating co2 ice
186logical, dimension(:,:), allocatable :: ini_co2ice_sublim ! Logical array to know if co2 ice is sublimating
[3330]187real,    dimension(:,:), allocatable :: vmr_co2_PCM       ! Physics x Times co2 volume mixing ratio retrieve from the PCM [m^3/m^3]
188real,    dimension(:,:), allocatable :: vmr_co2_PEM_phys  ! Physics x Times co2 volume mixing ratio used in the PEM
189real,    dimension(:,:), allocatable :: q_co2_PEM_phys    ! Physics x Times co2 mass mixing ratio in the first layer computed in the PEM, first value comes from PCM [kg/kg]
[3130]190
[3297]191! Variables for stratification (layering) evolution
192type(layering), dimension(:,:), allocatable :: stratif                     ! Layering (linked list of "stratum") for each grid point and slope
193type(ptrarray), dimension(:,:), allocatable :: current1, current2          ! Current active stratum in the layering
194logical,        dimension(:,:), allocatable :: new_str, new_lag1, new_lag2 ! Flags for the layering algorithm
195
[3028]196! Variables for slopes
[3498]197real, dimension(:,:),   allocatable :: d_co2ice          ! physical point x slope field: Tendency of evolution of perennial co2 ice over a year
198real, dimension(:,:),   allocatable :: d_co2ice_ini      ! physical point x slope field: Tendency of evolution of perennial co2 ice over a year in the PCM
199real, dimension(:,:),   allocatable :: d_h2oice          ! physical point x slope field: Tendency of evolution of perennial h2o ice
200real, dimension(:,:),   allocatable :: flag_co2flow      ! (ngrid,nslope): Flag where there is a CO2 glacier flow
201real, dimension(:),     allocatable :: flag_co2flow_mesh ! (ngrid)       : Flag where there is a CO2 glacier flow
202real, dimension(:,:),   allocatable :: flag_h2oflow      ! (ngrid,nslope): Flag where there is a H2O glacier flow
203real, dimension(:),     allocatable :: flag_h2oflow_mesh ! (ngrid)       : Flag where there is a H2O glacier flow
[2779]204
[3028]205! Variables for surface and soil
[3493]206real, dimension(:,:),     allocatable :: tsurf_avg                        ! Physic x SLOPE field: Averaged Surface Temperature [K]
207real, dimension(:,:,:),   allocatable :: tsoil_avg                        ! Physic x SOIL x SLOPE field: Averaged Soil Temperature [K]
208real, dimension(:,:,:),   allocatable :: tsurf_PCM_timeseries             ! ngrid x SLOPE x TIMES field: Surface Temperature in timeseries [K]
209real, dimension(:,:,:,:), allocatable :: tsoil_phys_PEM_timeseries        ! IG x SOIL x SLOPE x TIMES field: Non averaged Soil Temperature [K]
210real, dimension(:,:,:,:), allocatable :: tsoil_anom                       ! IG x SOIL x SLOPE x TIMES field: Amplitude between instataneous and yearly average soil temperature at the beginning [K]
211real, dimension(:,:),     allocatable :: tsurf_avg_yr1                    ! Physic x SLOPE field: Averaged Surface Temperature of first call of the PCM [K]
212real, dimension(:,:),     allocatable :: Tsoil_locslope                   ! Physic x Soil: Intermediate when computing Tsoil [K]
213real, dimension(:),       allocatable :: Tsurf_locslope                   ! Physic x Soil: Intermediate surface temperature to compute Tsoil [K]
214real, dimension(:,:,:,:), allocatable :: watersoil_density_timeseries     ! Physic x Soil x Slope x Times water soil density, time series [kg /m^3]
215real, dimension(:,:),     allocatable :: watersurf_density_avg            ! Physic x Slope, water surface density, yearly averaged [kg/m^3]
216real, dimension(:,:,:,:), allocatable :: watersoil_density_PEM_timeseries ! Physic x Soil x Slope x Times, water soil density, time series [kg/m^3]
217real, dimension(:,:,:),   allocatable :: watersoil_density_PEM_avg        ! Physic x Soil x Slopes, water soil density, yearly averaged [kg/m^3]
218real, dimension(:,:),     allocatable :: Tsurfavg_before_saved            ! Surface temperature saved from previous time step [K]
[3554]219real, dimension(:),       allocatable :: delta_co2_adsorbed               ! Physics: quantity of CO2 that is exchanged because of adsorption / desorption [kg/m^2]
220real, dimension(:),       allocatable :: delta_h2o_adsorbed               ! Physics: quantity of H2O that is exchanged because of adsorption / desorption [kg/m^2]
221real                                  :: totmassco2_adsorbed              ! Total mass of CO2 that is exchanged because of adsorption / desoprtion over the planets [kg]
222real                                  :: totmassh2o_adsorbed              ! Total mass of H2O that is exchanged because of adsorption / desoprtion over the planets [kg]
[3493]223logical                               :: bool_sublim                      ! logical to check if there is sublimation or not
224logical, dimension(:,:),  allocatable :: co2ice_disappeared               ! logical to check if a co2 ice reservoir already disappeared at a previous timestep
[3525]225real, dimension(:,:),     allocatable :: icetable_thickness_old           ! ngrid x nslope: Thickness of the ice table at the previous iteration [m]
226real, dimension(:,:,:),   allocatable :: ice_porefilling_old              ! ngrid x nslope: Ice pore filling at the previous iteration [m]
[3493]227real, dimension(:),       allocatable :: delta_h2o_icetablesublim         ! ngrid x Total mass of the H2O that has sublimated / condenses from the ice table [kg]
228real, dimension(:),       allocatable :: porefill                         ! Pore filling (output) to compute the dynamic ice table
229real                                  :: ssi_depth                        ! Ice table depth (output) to compute the dynamic ice table
[3553]230real, dimension(:,:),     allocatable :: zshift_surf                      ! Elevation shift for the surface [m]
231real, dimension(:,:),     allocatable :: zlag                             ! Newly built lag thickness [m]
[3065]232
[3028]233! Some variables for the PEM run
[3363]234real, parameter :: year_step = 1   ! Timestep for the pem
[3498]235real            :: i_myear_leg       ! Number of iteration
236real            :: n_myear_leg     ! Maximum number of iterations before stopping
237real            :: i_myear         ! Global number of Martian years of the chained simulations
238real            :: n_myear         ! Maximum number of Martian years of the chained simulations
[3363]239real            :: timestep        ! Timestep [s]
240character(20)   :: job_id          ! Job id provided as argument passed on the command line when the program was invoked
[3394]241logical         :: timewall        ! Flag to use the time limit stopping criterion in case of a PEM job
[3363]242integer(kind=8) :: cr              ! Number of clock ticks per second (count rate)
243integer(kind=8) :: c1, c2          ! Counts of processor clock
244character(100)  :: chtimelimit     ! Time limit for the PEM job outputted by the SLURM command
245real            :: timelimit       ! Time limit for the PEM job in seconds
[3365]246real, parameter :: antetime = 1200 ! Anticipation time to prevent reaching the time limit: 1200 s = 20 min by default
[3363]247integer         :: cstat, days, hours, minutes, seconds
248character(1)    :: sep
[2779]249
[2842]250#ifdef CPP_STD
[3065]251    real                                :: frost_albedo_threshold = 0.05 ! frost albedo threeshold to convert fresh frost to old ice
252    real                                :: albedo_h2o_frost              ! albedo of h2o frost
[3143]253    real, dimension(:),     allocatable :: tsurf_read_generic            ! Temporary variable to do the subslope transfert dimension when reading form generic
254    real, dimension(:,:),   allocatable :: qsurf_read_generic            ! Temporary variable to do the subslope transfert dimension when reading form generic
255    real, dimension(:,:),   allocatable :: tsoil_read_generic            ! Temporary variable to do the subslope transfert dimension when reading form generic
256    real, dimension(:),     allocatable :: emis_read_generic             ! Temporary variable to do the subslope transfert dimension when reading form generic
257    real, dimension(:,:),   allocatable :: albedo_read_generic           ! Temporary variable to do the subslope transfert dimension when reading form generic
[3065]258    real, dimension(:,:),   allocatable :: tsurf                         ! Subslope variable, only needed in the GENERIC case
259    real, dimension(:,:,:), allocatable :: qsurf                         ! Subslope variable, only needed in the GENERIC case
260    real, dimension(:,:,:), allocatable :: tsoil                         ! Subslope variable, only needed in the GENERIC case
261    real, dimension(:,:),   allocatable :: emis                          ! Subslope variable, only needed in the GENERIC case
262    real, dimension(:,:),   allocatable :: watercap                      ! Subslope variable, only needed in the GENERIC case =0 no watercap in generic model
[3068]263    logical, dimension(:),  allocatable :: watercaptag                   ! Subslope variable, only needed in the GENERIC case =false no watercaptag in generic model
[3065]264    real, dimension(:,:,:), allocatable :: albedo                        ! Subslope variable, only needed in the GENERIC case
265    real, dimension(:,:,:), allocatable :: inertiesoil                   ! Subslope variable, only needed in the GENERIC case
[2842]266#endif
267
[2980]268#ifdef CPP_1D
[3143]269    integer            :: nsplit_phys
270    integer, parameter :: jjm_value = jjm - 1
[3386]271    integer            :: day_step
[3065]272
273    ! Dummy variables to use the subroutine 'init_testphys1d'
[3129]274    logical                             :: therestart1D, therestartfi
[3068]275    integer                             :: ndt, day0
276    real                                :: ptif, pks, day, gru, grv, atm_wat_profile, atm_wat_tau
277    real, dimension(:),     allocatable :: zqsat
278    real, dimension(:,:,:), allocatable :: dq, dqdyn
279    real, dimension(nlayer)             :: play, w
280    real, dimension(nlayer + 1)         :: plev
[2980]281#else
[3143]282    integer, parameter              :: jjm_value = jjm
283    real, dimension(:), allocatable :: ap ! Coefficient ap read in start_name and written in restart
284    real, dimension(:), allocatable :: bp ! Coefficient bp read in start_name and written in restart
[2980]285#endif
286
[3028]287! Loop variables
[3206]288integer :: i, l, ig, nnq, t, islope, ig_loop, islope_loop, isoil, icap
[2779]289
[3363]290! Elapsed time with system clock
291call system_clock(count_rate = cr)
292call system_clock(c1)
[3394]293timewall = .true.
[3363]294timelimit = 86400 ! 86400 seconds = 24 h by default
295if (command_argument_count() > 0) then
296    ! Read the job id passed as argument to the program
297    call get_command_argument(1,job_id)
298    ! Execute the system command
299    call execute_command_line('squeue -j '//trim(job_id)//' -h --Format TimeLimit > tmp_cmdout.txt',cmdstat = cstat)
[3403]300    if (cstat /= 0) then
[3532]301        call execute_command_line('qstat -f '//trim(job_id)//' | grep "Walltime" | awk ''{print $3}'' > tmp_cmdout.txt',cmdstat = cstat)
[3403]302        if (cstat > 0) then
303            error stop 'pem: command execution failed!'
304        else if (cstat < 0) then
305            error stop 'pem: command execution not supported (neither SLURM nor PBS/TORQUE is installed)!'
306        endif
[3363]307    endif
308    ! Read the output
309    open(1,file = 'tmp_cmdout.txt',status = 'old')
310    read(1,'(a)') chtimelimit
311    close(1)
312    chtimelimit = trim(chtimelimit)
313    call execute_command_line('rm tmp_cmdout.txt',cmdstat = cstat)
314    if (cstat > 0) then
315        error stop 'pem: command execution failed!'
316    else if (cstat < 0) then
317        error stop 'pem: command execution not supported!'
318    endif
[3387]319    if (index(chtimelimit,'-') > 0) then ! 'chtimelimit' format is "D-HH:MM:SS"
[3388]320        read(chtimelimit,'(i1,a1,i2,a1,i2,a1,i2)') days, sep, hours, sep, minutes, sep, seconds
[3363]321        timelimit = days*86400 + hours*3600 + minutes*60 + seconds
[3387]322    else if (index(chtimelimit,':') > 0 .and. len_trim(chtimelimit) > 5) then ! 'chtimelimit' format is "HH:MM:SS"
[3388]323        read(chtimelimit,'(i2,a1,i2,a1,i2)') hours, sep, minutes, sep, seconds
[3363]324        timelimit = hours*3600 + minutes*60 + seconds
[3387]325    else ! 'chtimelimit' format is "MM:SS"
326        read(chtimelimit,'(i2,a1,i2)') minutes, sep, seconds
327        timelimit = minutes*60 + seconds
[3363]328    endif
[3394]329else
330    timewall = .false.
[3363]331endif
332
[3028]333! Parallel variables
[2842]334#ifndef CPP_STD
[3028]335    is_sequential = .true.
336    is_parallel = .false.
337    is_mpi_root = .true.
338    is_omp_root = .true.
339    is_master = .true.
[2842]340#endif
[2779]341
[3065]342! Some constants
[3028]343day_ini = 0    ! test
344time_phys = 0. ! test
345ngrid = ngridmx
346A = (1/m_co2 - 1/m_noco2)
347B = 1/m_noco2
348year_day = 669
349daysec = 88775.
[3426]350timestep = year_day*daysec*year_step
[2794]351
[3028]352!----------------------------- INITIALIZATION --------------------------
[2779]353!------------------------
[3028]354! I   Initialization
[3161]355!    I_a Read the "run.def"
[2779]356!------------------------
[2980]357#ifndef CPP_1D
[3383]358    dtphys = daysec/48. ! Dummy value (overwritten in phyetat0)
[3028]359    call conf_gcm(99,.true.)
360    call infotrac_init
361    nq = nqtot
362    allocate(q(ip1jmp1,llm,nqtot))
[3065]363    allocate(longitude(ngrid),latitude(ngrid),cell_area(ngrid))
[2980]364#else
[3068]365    allocate(q(1,llm,nqtot))
[3065]366    allocate(longitude(1),latitude(1),cell_area(1))
[3129]367
[3143]368    therestart1D = .false. ! Default value
[3363]369    inquire(file = 'start1D.txt',exist = therestart1D)
[3129]370    if (.not. therestart1D) then
[3363]371        write(*,*) 'There is no "start1D.txt" file!'
[3129]372        error stop 'Initialization cannot be done for the 1D PEM.'
373    endif
[3143]374    therestartfi = .false. ! Default value
[3317]375    inquire(file = 'startfi.nc',exist = therestartfi)
[3129]376    if (.not. therestartfi) then
[3317]377        write(*,*) 'There is no "startfi.nc" file!'
[3129]378        error stop 'Initialization cannot be done for the 1D PEM.'
379    endif
380
[3363]381    call init_testphys1d('start1D.txt','startfi.nc',therestart1D,therestartfi,ngrid,nlayer,610.,nq,q,        &
382                         time_0,ps(1),ucov,vcov,teta,ndt,ptif,pks,dtphys,zqsat,dq,dqdyn,day0,day,gru,grv,w,  &
[3207]383                         play,plev,latitude,longitude,cell_area,atm_wat_profile,atm_wat_tau)
[3065]384    ps(2) = ps(1)
[3028]385    nsplit_phys = 1
[3399]386    day_step = steps_per_sol
[2980]387#endif
[2779]388
[3039]389call conf_pem(i_myear,n_myear)
[2779]390
[2835]391!------------------------
[3028]392! I   Initialization
[3317]393!    I_b Read of the "start.nc" and starfi_evol.nc
[3028]394!------------------------
[3317]395! I_b.1 Read "start.nc"
[3149]396allocate(ps_start_PCM(ngrid))
[2980]397#ifndef CPP_1D
[3143]398    call dynetat0(start_name,vcov,ucov,teta,q,masse,ps,phis,time_0)
[2779]399
[3149]400    call gr_dyn_fi(1,iip1,jjp1,ngridmx,ps,ps_start_PCM)
[2897]401
[3028]402    call iniconst !new
403    call inigeom
[2980]404
[3028]405    allocate(ap(nlayer + 1))
406    allocate(bp(nlayer + 1))
[3143]407    status = nf90_open(start_name,NF90_NOWRITE,ncid)
[3028]408    status = nf90_inq_varid(ncid,"ap",apvarid)
409    status = nf90_get_var(ncid,apvarid,ap)
410    status = nf90_inq_varid(ncid,"bp",bpvarid)
411    status = nf90_get_var(ncid,bpvarid,bp)
412    status = nf90_close(ncid)
[2779]413
[3319]414    call iniphysiq(iim,jjm,llm,(jjm-1)*iim+2,comm_lmdz,daysec,day_ini,dtphys/nsplit_phys,rlatu,rlatv,rlonu,rlonv,aire,cu,cv,rad,g,r,cpp,iflag_phys)
[2980]415#else
[3149]416    ps_start_PCM(1) = ps(1)
[2980]417#endif
418
[3442]419! Save initial surface pressure
420ps0 = ps
421
[3096]422! In the PCM, these values are given to the physic by the dynamic.
[3317]423! Here we simply read them in the "startfi.nc" file
[3143]424status = nf90_open(startfi_name, NF90_NOWRITE, ncid)
[2963]425
[3028]426status = nf90_inq_varid(ncid,"longitude",lonvarid)
427status = nf90_get_var(ncid,lonvarid,longitude)
[2963]428
[3028]429status = nf90_inq_varid(ncid,"latitude",latvarid)
430status = nf90_get_var(ncid,latvarid,latitude)
[2963]431
[3028]432status = nf90_inq_varid(ncid,"area",areavarid)
433status = nf90_get_var(ncid,areavarid,cell_area)
[2963]434
[3028]435status = nf90_inq_varid(ncid,"soildepth",sdvarid)
436status = nf90_get_var(ncid,sdvarid,mlayer)
[2963]437
[3028]438status = nf90_close(ncid)
[2963]439
[3317]440! I_b.2 Read the "startfi.nc"
[2779]441! First we read the initial state (starfi.nc)
[2842]442#ifndef CPP_STD
[3143]443    call phyetat0(startfi_name,0,0,nsoilmx,ngrid,nlayer,nq,nqsoil,day_ini,time_phys,tsurf, &
[3149]444                  tsoil,albedo,emis,q2,qsurf,qsoil,tauscaling,totcloudfrac,wstar,          &
[3130]445                  watercap,perennial_co2ice,def_slope,def_slope_mean,subslope_dist)
[2779]446
[3070]447    ! Remove unphysical values of surface tracer
448    where (qsurf < 0.) qsurf = 0.
[2885]449
[3143]450    call surfini(ngrid,nslope,qsurf)
[2842]451#else
[3028]452    call phys_state_var_init(nq)
453    if (.not. allocated(noms)) allocate(noms(nq)) ! (because noms is an argument of physdem1 whether or not tracer is on)
454    call initracer(ngrid,nq)
455    call iniaerosol()
456    allocate(tsurf_read_generic(ngrid))
457    allocate(qsurf_read_generic(ngrid,nq))
458    allocate(tsoil_read_generic(ngrid,nsoilmx))
[3114]459    allocate(qsoil_read_generic(ngrid,nsoilmx,nqsoil,nslope))
[3028]460    allocate(emis_read_generic(ngrid))
461    allocate(tsurf(ngrid,1))
462    allocate(qsurf(ngrid,nq,1))
463    allocate(tsoil(ngrid,nsoilmx,1))
464    allocate(emis(ngrid,1))
465    allocate(watercap(ngrid,1))
466    allocate(watercaptag(ngrid))
467    allocate(albedo_read_generic(ngrid,2))
468    allocate(albedo(ngrid,2,1))
469    allocate(inertiesoil(ngrid,nsoilmx,1))
[3143]470    call phyetat0(.true.,ngrid,nlayer,startfi_name,0,0,nsoilmx,nq,nqsoil,day_ini,time_phys, &
[3149]471                  tsurf_read_generic,tsoil_read_generic,emis_read_generic,q2,               &
472                  qsurf_read_generic,qsoil_read_generic,cloudfrac,totcloudfrac,hice,        &
[3114]473                  rnat,pctsrf_sic,tslab,tsea_ice,sea_ice)
[3065]474    call surfini(ngrid,nq,qsurf_read_generic,albedo_read_generic,albedo_bareground,albedo_snow_SPECTV,albedo_co2_ice_SPECTV)
[2842]475
[3028]476    nslope = 1
477    call ini_comslope_h(ngrid,1)
[2842]478
[3149]479    qsurf(:,:,1) = qsurf_read_generic
480    tsurf(:,1) = tsurf_read_generic
481    tsoil(:,:,1) = tsoil_read_generic
482    emis(:,1) = emis_read_generic
[3028]483    watercap(:,1) = 0.
484    watercaptag(:) = .false.
485    albedo(:,1,1) = albedo_read_generic(:,1)
486    albedo(:,2,1) = albedo_read_generic(:,2)
[3149]487    inertiesoil(:,:,1) = inertiedat
[2842]488
[3028]489    if (nslope == 1) then
490        def_slope(1) = 0
491        def_slope(2) = 0
492        def_slope_mean = 0
493        subslope_dist(:,1) = 1.
494    endif
[2842]495
[3070]496    ! Remove unphysical values of surface tracer
[3149]497    qsurf(:,:,1) = qsurf_read_generic
[3070]498    where (qsurf < 0.) qsurf = 0.
[2842]499#endif
500
[3028]501do nnq = 1,nqtot  ! Why not using ini_tracer ?
502    if (noms(nnq) == "h2o_ice") igcm_h2o_ice = nnq
503    if (noms(nnq) == "h2o_vap") then
504        igcm_h2o_vap = nnq
[3143]505        mmol(igcm_h2o_vap) = 18.
[3028]506    endif
507    if (noms(nnq) == "co2") igcm_co2 = nnq
[3065]508enddo
[3039]509r = 8.314511*1000./mugaz
[3028]510
[2835]511!------------------------
[3028]512! I   Initialization
[2835]513!    I_c Subslope parametrisation
514!------------------------
[3028]515! Define some slope statistics
516iflat = 1
517do islope = 2,nslope
518    if (abs(def_slope_mean(islope)) < abs(def_slope_mean(iflat))) iflat = islope
519enddo
[2794]520
[3028]521write(*,*) 'Flat slope for islope = ',iflat
522write(*,*) 'corresponding criterium = ',def_slope_mean(iflat)
[2794]523
[3028]524allocate(flag_co2flow(ngrid,nslope))
525allocate(flag_co2flow_mesh(ngrid))
526allocate(flag_h2oflow(ngrid,nslope))
527allocate(flag_h2oflow_mesh(ngrid))
[2835]528
[3149]529flag_co2flow = 0
530flag_co2flow_mesh = 0
531flag_h2oflow = 0
532flag_h2oflow_mesh = 0
[2835]533
[2794]534!------------------------
[3028]535! I   Initialization
[3161]536!    I_d Read the PCM data and convert them to the physical grid
[3028]537!------------------------
[3096]538! First we read the evolution of water and co2 ice (and the mass mixing ratio) over the first year of the PCM run, saving only the minimum value
539call nb_time_step_PCM("data_PCM_Y1.nc",timelen)
[2794]540
[3367]541allocate(tsoil_avg(ngrid,nsoilmx,nslope))
542allocate(watersoil_density_PEM_avg(ngrid,nsoilmx_PEM,nslope))
[3149]543allocate(vmr_co2_PCM(ngrid,timelen))
[3028]544allocate(ps_timeseries(ngrid,timelen))
[3553]545allocate(min_co2_ice(ngrid,nslope,2),min_h2o_ice(ngrid,nslope,2))
[3149]546allocate(tsurf_avg_yr1(ngrid,nslope))
[3367]547allocate(tsurf_avg(ngrid,nslope))
[3149]548allocate(tsurf_PCM_timeseries(ngrid,nslope,timelen))
[3426]549allocate(tsoil_anom(ngrid,nsoilmx,nslope,timelen))
[3553]550allocate(zshift_surf(ngrid,nslope),zlag(ngrid,nslope))
551allocate(q_co2_PEM_phys(ngrid,timelen),q_h2o_PEM_phys(ngrid,timelen))
[3367]552allocate(watersurf_density_avg(ngrid,nslope))
[3028]553allocate(watersoil_density_timeseries(ngrid,nsoilmx,nslope,timelen))
[3149]554allocate(Tsurfavg_before_saved(ngrid,nslope))
[3028]555allocate(tsoil_phys_PEM_timeseries(ngrid,nsoilmx_PEM,nslope,timelen))
556allocate(watersoil_density_PEM_timeseries(ngrid,nsoilmx_PEM,nslope,timelen))
[3553]557allocate(delta_co2_adsorbed(ngrid))
[3330]558allocate(co2ice_disappeared(ngrid,nslope))
[3553]559allocate(icetable_thickness_old(ngrid,nslope),ice_porefilling_old(ngrid,nsoilmx_PEM,nslope))
560allocate(delta_h2o_icetablesublim(ngrid),delta_h2o_adsorbed(ngrid))
[3149]561allocate(vmr_co2_PEM_phys(ngrid,timelen))
[2794]562
[3028]563write(*,*) "Downloading data Y1..."
[3199]564call read_data_PCM("data_PCM_Y1.nc",timelen,iim,jjm_value,ngrid,nslope,vmr_co2_PCM,ps_timeseries,min_co2_ice(:,:,1),min_h2o_ice(:,:,1), &
[3426]565                   tsurf_avg_yr1,tsoil_avg,tsurf_PCM_timeseries,tsoil_anom,q_co2_PEM_phys,q_h2o_PEM_phys,                     &
[3367]566                   watersurf_density_avg,watersoil_density_timeseries)
[3199]567write(*,*) "Downloading data Y1 done!"
[2985]568
[3096]569! Then we read the evolution of water and co2 ice (and the mass mixing ratio) over the second year of the PCM run, saving only the minimum value
[3199]570write(*,*) "Downloading data Y2..."
[3149]571call read_data_PCM("data_PCM_Y2.nc",timelen,iim,jjm_value,ngrid,nslope,vmr_co2_PCM,ps_timeseries,min_co2_ice(:,:,2),min_h2o_ice(:,:,2), &
[3426]572                   tsurf_avg,tsoil_avg,tsurf_PCM_timeseries,tsoil_anom,q_co2_PEM_phys,q_h2o_PEM_phys,                         &
[3367]573                   watersurf_density_avg,watersoil_density_timeseries)
[3199]574write(*,*) "Downloading data Y2 done!"
[2794]575
[2835]576!------------------------
[3028]577! I   Initialization
578!    I_e Initialization of the PEM variables and soil
[2835]579!------------------------
[3028]580call end_comsoil_h_PEM
581call ini_comsoil_h_PEM(ngrid,nslope)
582call end_adsorption_h_PEM
583call ini_adsorption_h_PEM(ngrid,nslope,nsoilmx_PEM)
[3493]584call end_ice_table
585call ini_ice_table(ngrid,nslope,nsoilmx_PEM)
[2794]586
[3028]587if (soil_pem) then
[3426]588    do t = 1,timelen
589        tsoil_anom(:,:,:,t) = tsoil_anom(:,:,:,t) - tsoil_avg ! compute anomaly between Tsoil(t) in the startfi - <Tsoil> to recompute properly tsoil in the restart
590    enddo
[3028]591    call soil_settings_PEM(ngrid,nslope,nsoilmx_PEM,nsoilmx,inertiesoil,TI_PEM)
[3367]592    tsoil_PEM(:,1:nsoilmx,:) = tsoil_avg
[3426]593    tsoil_phys_PEM_timeseries(:,1:nsoilmx,:,:) = tsoil_anom
[3149]594    watersoil_density_PEM_timeseries(:,1:nsoilmx,:,:) = watersoil_density_timeseries
[3070]595    do l = nsoilmx + 1,nsoilmx_PEM
[3367]596        tsoil_PEM(:,l,:) = tsoil_avg(:,nsoilmx,:)
[3070]597        watersoil_density_PEM_timeseries(:,l,:,:) = watersoil_density_timeseries(:,nsoilmx,:,:)
[3028]598    enddo
[3367]599    watersoil_density_PEM_avg = sum(watersoil_density_PEM_timeseries,4)/timelen
[3028]600endif !soil_pem
[3426]601deallocate(tsoil_avg)
[2794]602
[2779]603!------------------------
[3028]604! I   Initialization
[3143]605!    I_f Compute tendencies
[3028]606!------------------------
[3498]607allocate(d_co2ice(ngrid,nslope),d_h2oice(ngrid,nslope))
608allocate(d_co2ice_ini(ngrid,nslope))
[2779]609
[3028]610! Compute the tendencies of the evolution of ice over the years
[3498]611call compute_tend(ngrid,nslope,min_co2_ice,d_co2ice)
612call compute_tend(ngrid,nslope,min_h2o_ice,d_h2oice)
613d_co2ice_ini = d_co2ice
[3365]614deallocate(min_co2_ice,min_h2o_ice)
[2895]615
[2835]616!------------------------
[3028]617! I   Initialization
[3384]618!    I_g Save the initial situation
[3028]619!------------------------
[3384]620allocate(zplev_PCM(ngrid,nlayer + 1))
621Total_surface = 0.
622do ig = 1,ngrid
623    Total_surface = Total_surface + cell_area(ig)
624    zplev_PCM(ig,:) = ap + bp*ps_start_PCM(ig)
625enddo
626global_avg_press_old = sum(cell_area*ps_start_PCM)/Total_surface
627global_avg_press_PCM = global_avg_press_old
628global_avg_press_new = global_avg_press_old
629write(*,*) "Total surface of the planet =", Total_surface
630write(*,*) "Initial global average pressure =", global_avg_press_PCM
631
632!------------------------
633! I   Initialization
634!    I_h Read the "startpem.nc"
635!------------------------
[3149]636allocate(co2_ice(ngrid,nslope),h2o_ice(ngrid,nslope))
637
[3297]638allocate(stratif(ngrid,nslope))
[3319]639if (layering_algo) then
640    do islope = 1,nslope
641        do i = 1,ngrid
642            call ini_layering(stratif(i,islope))
643        enddo
[3297]644    enddo
[3319]645endif
[3297]646
[3493]647call pemetat0("startpem.nc",ngrid,nsoilmx,nsoilmx_PEM,nslope,timelen,timestep,TI_PEM,tsoil_PEM,icetable_depth, &
648              icetable_thickness,ice_porefilling,tsurf_avg_yr1,tsurf_avg,q_co2_PEM_phys,q_h2o_PEM_phys,        &
[3498]649              ps_timeseries,tsoil_phys_PEM_timeseries,d_h2oice,d_co2ice,co2_ice,h2o_ice,                       &
[3553]650              global_avg_press_PCM,watersurf_density_avg,watersoil_density_PEM_avg,co2_adsorbed_phys,         &
651              delta_co2_adsorbed,h2o_adsorbed_phys,delta_h2o_adsorbed,stratif)
[2779]652
[3384]653! We save the places where h2o ice is sublimating
654! We compute the surface of h2o ice sublimating
655allocate(ini_co2ice_sublim(ngrid,nslope),ini_h2oice_sublim(ngrid,nslope),is_co2ice_ini(ngrid,nslope))
656co2ice_ini_surf = 0.
657h2oice_ini_surf = 0.
658ini_co2ice_sublim = .false.
659ini_h2oice_sublim = .false.
660is_co2ice_ini = .false.
661co2ice_disappeared = .false.
662do i = 1,ngrid
663    do islope = 1,nslope
664        if (co2_ice(i,islope) > 0.) is_co2ice_ini(i,islope) = .true.
[3498]665        if (d_co2ice(i,islope) < 0. .and. co2_ice(i,islope) > 0.) then
[3384]666            ini_co2ice_sublim(i,islope) = .true.
667            co2ice_ini_surf = co2ice_ini_surf + cell_area(i)*subslope_dist(i,islope)
668        endif
[3498]669        if (d_h2oice(i,islope) < 0. .and. h2o_ice(i,islope) > 0.) then
[3384]670            ini_h2oice_sublim(i,islope) = .true.
671            h2oice_ini_surf = h2oice_ini_surf + cell_area(i)*subslope_dist(i,islope)
672        endif
673    enddo
674enddo
675write(*,*) "Total initial surface of co2 ice sublimating (slope) =", co2ice_ini_surf
676write(*,*) "Total initial surface of h2o ice sublimating (slope) =", h2oice_ini_surf
677
[3149]678delta_h2o_icetablesublim = 0.
[3130]679
[3028]680if (adsorption_pem) then
[3553]681    totmassco2_adsorbed = 0.
682    totmassh2o_adsorbed = 0.
[3028]683    do ig = 1,ngrid
[3070]684        do islope = 1,nslope
[3028]685            do l = 1,nsoilmx_PEM - 1
[3264]686                if (l==1) then
[3553]687                   totmassco2_adsorbed = totmassco2_adsorbed + co2_adsorbed_phys(ig,l,islope)*(layer_PEM(l))* &
[3028]688                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
[3553]689                   totmassh2o_adsorbed = totmassh2o_adsorbed + h2o_adsorbed_phys(ig,l,islope)*(layer_PEM(l))* &
[3028]690                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
[3264]691                else
[3553]692                   totmassco2_adsorbed = totmassco2_adsorbed + co2_adsorbed_phys(ig,l,islope)*(layer_PEM(l) - layer_PEM(l-1))* &
[3264]693                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
[3553]694                   totmassh2o_adsorbed = totmassh2o_adsorbed + h2o_adsorbed_phys(ig,l,islope)*(layer_PEM(l) - layer_PEM(l-1))* &
[3264]695                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
696                endif
[3028]697            enddo
[2961]698        enddo
[3028]699    enddo
[3553]700    write(*,*) "Tot mass of CO2 in the regolith =", totmassco2_adsorbed
701    write(*,*) "Tot mass of H2O in the regolith =", totmassh2o_adsorbed
[3028]702endif ! adsorption
[3149]703deallocate(tsurf_avg_yr1)
[2794]704
[2835]705!------------------------
[3028]706! I   Initialization
[2835]707!    I_i Compute orbit criterion
[3028]708!------------------------
[2842]709#ifndef CPP_STD
[3050]710    call iniorbit(aphelie,periheli,year_day,peri_day,obliquit)
[2842]711#else
[3050]712    call iniorbit(apoastr,periastr,year_day,peri_day,obliquit)
[2842]713#endif
[2794]714
[3498]715n_myear_leg = Max_iter_pem
716if (evol_orbit_pem) call orbit_param_criterion(i_myear,n_myear_leg)
[3403]717
[3028]718!-------------------------- END INITIALIZATION -------------------------
[2794]719
[3028]720!-------------------------------- RUN ----------------------------------
[2794]721!------------------------
722! II  Run
[3065]723!    II_a Update pressure, ice and tracers
[2794]724!------------------------
[3498]725i_myear_leg = 0
[3149]726stopPEM = 0
[3319]727if (layering_algo) then
728    allocate(new_str(ngrid,nslope),new_lag1(ngrid,nslope),new_lag2(ngrid,nslope),current1(ngrid,nslope),current2(ngrid,nslope))
729    new_str = .true.
730    new_lag1 = .true.
731    new_lag2 = .true.
732    do islope = 1,nslope
733        do ig = 1,ngrid
734            current1(ig,islope)%p => stratif(ig,islope)%top
735            current2(ig,islope)%p => stratif(ig,islope)%top
736        enddo
[3297]737    enddo
[3319]738endif
[2794]739
[3498]740do while (i_myear_leg < n_myear_leg .and. i_myear < n_myear)
[2835]741! II.a.1. Compute updated global pressure
[3028]742    write(*,*) "Recomputing the new pressure..."
743    do i = 1,ngrid
744        do islope = 1,nslope
[3498]745            global_avg_press_new = global_avg_press_new - CO2cond_ps*g*cell_area(i)*d_co2ice(i,islope)*subslope_dist(i,islope)/cos(pi*def_slope_mean(islope)/180.)/Total_surface
[3028]746        enddo
747    enddo
[3065]748
[3028]749    if (adsorption_pem) then
750        do i = 1,ngrid
[3553]751            global_avg_press_new = global_avg_press_new - g*cell_area(i)*delta_co2_adsorbed(i)/Total_surface
[3050]752        enddo
[3028]753    endif
[3149]754    write(*,*) 'Global average pressure old time step',global_avg_press_old
755    write(*,*) 'Global average pressure new time step',global_avg_press_new
[2835]756
[3161]757! II.a.2. Old pressure levels for the timeseries, this value is deleted when unused and recreated each time (big memory consumption)
[3070]758    allocate(zplev_old_timeseries(ngrid,nlayer + 1,timelen))
[3028]759    write(*,*) "Recomputing the old pressure levels timeserie adapted to the old pressure..."
760    do l = 1,nlayer + 1
761        do ig = 1,ngrid
762            zplev_old_timeseries(ig,l,:) = ap(l) + bp(l)*ps_timeseries(ig,:)
763        enddo
764    enddo
[2779]765
[2835]766! II.a.3. Surface pressure timeseries
[3028]767    write(*,*) "Recomputing the surface pressure timeserie adapted to the new pressure..."
768    do ig = 1,ngrid
[3149]769        ps_timeseries(ig,:) = ps_timeseries(ig,:)*global_avg_press_new/global_avg_press_old
[3028]770    enddo
[2779]771
[2835]772! II.a.4. New pressure levels timeseries
[3149]773    allocate(zplev_new_timeseries(ngrid,nlayer + 1,timelen))
[3028]774    write(*,*) "Recomputing the new pressure levels timeserie adapted to the new pressure..."
775    do l = 1,nlayer + 1
776        do ig = 1,ngrid
777            zplev_new_timeseries(ig,l,:) = ap(l) + bp(l)*ps_timeseries(ig,:)
778        enddo
779    enddo
[2779]780
[2835]781! II.a.5. Tracers timeseries
[3028]782    write(*,*) "Recomputing of tracer VMR timeseries for the new pressure..."
[2794]783
[3028]784    l = 1
785    do ig = 1,ngrid
786        do t = 1,timelen
787            q_h2o_PEM_phys(ig,t) = q_h2o_PEM_phys(ig,t)*(zplev_old_timeseries(ig,l,t) - zplev_old_timeseries(ig,l + 1,t))/ &
788                                   (zplev_new_timeseries(ig,l,t) - zplev_new_timeseries(ig,l + 1,t))
[3143]789            if (q_h2o_PEM_phys(ig,t) < 0) then
790                q_h2o_PEM_phys(ig,t) = 1.e-30
791            else if (q_h2o_PEM_phys(ig,t) > 1) then
792                q_h2o_PEM_phys(ig,t) = 1.
793            endif
[3028]794        enddo
795    enddo
[2794]796
[3028]797    do ig = 1,ngrid
[3065]798        do t = 1,timelen
[3028]799            q_co2_PEM_phys(ig,t) = q_co2_PEM_phys(ig,t)*(zplev_old_timeseries(ig,l,t) - zplev_old_timeseries(ig,l + 1,t))/ &
[3122]800                                   (zplev_new_timeseries(ig,l,t) - zplev_new_timeseries(ig,l + 1,t))                       &
801                                + ((zplev_new_timeseries(ig,l,t) - zplev_new_timeseries(ig,l + 1,t))                       &
802                                -  (zplev_old_timeseries(ig,l,t) - zplev_old_timeseries(ig,l + 1,t)))/                     &
[3028]803                                   (zplev_new_timeseries(ig,l,t) - zplev_new_timeseries(ig,l + 1,t))
804            if (q_co2_PEM_phys(ig,t) < 0) then
805                q_co2_PEM_phys(ig,t) = 1.e-30
[3143]806            else if (q_co2_PEM_phys(ig,t) > 1) then
[3028]807                q_co2_PEM_phys(ig,t) = 1.
808            endif
809            mmean=1/(A*q_co2_PEM_phys(ig,t) + B)
[3149]810            vmr_co2_PEM_phys(ig,t) = q_co2_PEM_phys(ig,t)*mmean/m_co2
[3028]811        enddo
812    enddo
[2794]813
[3028]814    deallocate(zplev_new_timeseries,zplev_old_timeseries)
815
816!------------------------
[2835]817! II  Run
[3149]818!    II_b Evolution of ice
[3028]819!------------------------
[3553]820    call evol_h2o_ice(ngrid,nslope,cell_area,delta_h2o_adsorbed,delta_h2o_icetablesublim,h2o_ice,d_h2oice,zshift_surf,stopPEM)
821    call evol_co2_ice(ngrid,nslope,co2_ice,d_co2ice,zshift_surf)
[3319]822    if (layering_algo) then
823        do islope = 1,nslope
824            do ig = 1,ngrid
[3553]825                call make_layering(stratif(ig,islope),d_co2ice(ig,islope),d_h2oice(ig,islope),d_dust,new_str(ig,islope),zshift_surf(ig,islope),new_lag1(ig,islope),new_lag2(ig,islope),zlag(ig,islope),stopPEM,current1(ig,islope)%p,current2(ig,islope)%p)
[3319]826            enddo
[3297]827        enddo
[3553]828    else
829        zlag = 0.
[3319]830    endif
[2794]831
832!------------------------
833! II  Run
[3149]834!    II_c Flow of glaciers
[2794]835!------------------------
[3181]836    if (co2ice_flow .and. nslope > 1) call flow_co2glaciers(timelen,ngrid,nslope,iflat,subslope_dist,def_slope_mean,vmr_co2_PEM_phys,ps_timeseries, &
[3498]837                                                            global_avg_press_PCM,global_avg_press_new,co2_ice,flag_co2flow,flag_co2flow_mesh)
[3367]838    if (h2oice_flow .and. nslope > 1) call flow_h2oglaciers(timelen,ngrid,nslope,iflat,subslope_dist,def_slope_mean,tsurf_avg,h2o_ice,flag_h2oflow,flag_h2oflow_mesh)
[3065]839
[2794]840!------------------------
841! II  Run
[2835]842!    II_d Update surface and soil temperatures
[2794]843!------------------------
[2835]844! II_d.1 Update Tsurf
[3028]845    write(*,*) "Updating the new Tsurf"
846    bool_sublim = .false.
[3367]847    Tsurfavg_before_saved = tsurf_avg
[3028]848    do ig = 1,ngrid
849        do islope = 1,nslope
[3330]850            if (is_co2ice_ini(ig,islope) .and. co2_ice(ig,islope) < 1.e-10 .and. .not. co2ice_disappeared(ig,islope)) then ! co2 ice disappeared, look for closest point without co2ice
[3331]851                co2ice_disappeared(ig,islope) = .true.
[3028]852                if (latitude_deg(ig) > 0) then
853                    do ig_loop = ig,ngrid
854                        do islope_loop = islope,iflat,-1
[3330]855                            if (.not. is_co2ice_ini(ig_loop,islope_loop) .and. co2_ice(ig_loop,islope_loop) < 1.e-10) then
[3367]856                                tsurf_avg(ig,islope) = tsurf_avg(ig_loop,islope_loop)
[3028]857                                bool_sublim = .true.
858                                exit
859                            endif
860                        enddo
861                        if (bool_sublim) exit
862                    enddo
863                else
864                    do ig_loop = ig,1,-1
865                        do islope_loop = islope,iflat
[3330]866                            if (.not. is_co2ice_ini(ig_loop,islope_loop) .and. co2_ice(ig_loop,islope_loop) < 1.e-10) then
[3367]867                                tsurf_avg(ig,islope) = tsurf_avg(ig_loop,islope_loop)
[3028]868                                bool_sublim = .true.
869                                exit
870                            endif
871                        enddo
872                        if (bool_sublim) exit
873                    enddo
[2835]874                endif
[3149]875                if ((co2_ice(ig,islope) < 1.e-10) .and. (h2o_ice(ig,islope) > frost_albedo_threshold)) then
[3028]876                    albedo(ig,1,islope) = albedo_h2o_frost
877                    albedo(ig,2,islope) = albedo_h2o_frost
878                else
879                    albedo(ig,1,islope) = albedodat(ig)
[3065]880                    albedo(ig,2,islope) = albedodat(ig)
[3028]881                    emis(ig,islope) = emissiv
882                endif
[3498]883            else if ((co2_ice(ig,islope) > 1.e-3) .and. (d_co2ice(ig,islope) > 1.e-10)) then ! Put tsurf as tcond co2
[3028]884                ave = 0.
885                do t = 1,timelen
[3367]886                    ave = ave + beta_clap_co2/(alpha_clap_co2 - log(vmr_co2_PEM_phys(ig,t)*ps_timeseries(ig,t)/100.))
[2794]887                enddo
[3367]888                tsurf_avg(ig,islope) = ave/timelen
[2835]889            endif
[3553]890            !!!!!!!!!!!!!!!!!!!!!!!!!!!!!! SUBLIMATION??? !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
[2835]891        enddo
[3028]892    enddo
[2794]893
[3028]894    do t = 1,timelen
[3367]895        tsurf_PCM_timeseries(:,:,t) = tsurf_PCM_timeseries(:,:,t) + tsurf_avg - Tsurfavg_before_saved
[3028]896    enddo
897    ! for the start
898    do ig = 1,ngrid
[2835]899        do islope = 1,nslope
[3367]900            tsurf(ig,islope) =  tsurf(ig,islope) - (Tsurfavg_before_saved(ig,islope) - tsurf_avg(ig,islope))
[2794]901        enddo
[3028]902    enddo
[2794]903
[3028]904    if (soil_pem) then
[3553]905! II_d.2 Shifting soil temperature to surface
906        call shift_tsoil2surf(ngrid,nsoilmx_PEM,nslope,zshift_surf,zlag,tsurf_avg,tsoil_PEM)
[2794]907
[3553]908! II_d.3 Update soil temperature
[3426]909        write(*,*)"Updating soil temperature"
[3028]910        allocate(Tsoil_locslope(ngrid,nsoilmx_PEM))
[3426]911        do islope = 1,nslope
912            call compute_tsoil_pem(ngrid,nsoilmx_PEM,.true.,TI_PEM(:,:,islope),timestep,tsurf_avg(:,islope),tsoil_PEM(:,:,islope))
913            call compute_tsoil_pem(ngrid,nsoilmx_PEM,.false.,TI_PEM(:,:,islope),timestep,tsurf_avg(:,islope),tsoil_PEM(:,:,islope))
[2794]914
[3028]915            do t = 1,timelen
[3426]916                Tsoil_locslope(:,1:nsoilmx) = tsoil_PEM(:,1:nsoilmx,islope) + tsoil_anom(:,:,islope,t)
917                Tsoil_locslope(:,nsoilmx + 1:) = tsoil_PEM(:,nsoilmx + 1:,islope)
[3028]918                do ig = 1,ngrid
919                    do isoil = 1,nsoilmx_PEM
920                        watersoil_density_PEM_timeseries(ig,isoil,islope,t) = exp(beta_clap_h2o/Tsoil_locslope(ig,isoil) + alpha_clap_h2o)/Tsoil_locslope(ig,isoil)*mmol(igcm_h2o_vap)/(mugaz*r)
[3426]921                        if (isnan(tsoil_PEM(ig,isoil,islope))) call abort_pem("PEM - Update Tsoil","NaN detected in tsoil_PEM",1)
[3028]922                    enddo
923                enddo
924            enddo
925        enddo
[3367]926        watersoil_density_PEM_avg = sum(watersoil_density_PEM_timeseries,4)/timelen
[2794]927
[3028]928        write(*,*) "Update of soil temperature done"
[2888]929
[3426]930        deallocate(Tsoil_locslope)
[2849]931
[3553]932! II_d.4 Update the ice table
[3170]933        if (icetable_equilibrium) then
[3493]934            write(*,*) "Compute ice table (equilibrium method)"
[3525]935            icetable_thickness_old = icetable_thickness
[3493]936            call computeice_table_equilibrium(ngrid,nslope,nsoilmx_PEM,watercaptag,watersurf_density_avg,watersoil_density_PEM_avg,TI_PEM(:,1,:),icetable_depth,icetable_thickness)
[3525]937            call compute_massh2o_exchange_ssi(ngrid,nslope,nsoilmx_PEM,icetable_thickness_old,ice_porefilling_old,tsurf_avg,tsoil_PEM,delta_h2o_icetablesublim) ! Mass of H2O exchange between the ssi and the atmosphere
[3490]938        else if (icetable_dynamic) then
[3493]939            write(*,*) "Compute ice table (dynamic method)"
[3525]940            ice_porefilling_old = ice_porefilling
[3493]941            allocate(porefill(nsoilmx_PEM))
942            do ig = 1,ngrid
943                do islope = 1,nslope
[3532]944                    call dyn_ss_ice_m(icetable_depth(ig,islope),tsurf_avg(ig,islope),tsoil_PEM(ig,:,islope),nsoilmx_PEM,TI_PEM(ig,1,nslope),ps(ig),(/sum(q_h2o_PEM_phys(ig,:))/size(q_h2o_PEM_phys,2)/),ice_porefilling(ig,:,islope),porefill,ssi_depth)
[3493]945                    icetable_depth(ig,islope) = ssi_depth
946                    ice_porefilling(ig,:,islope) = porefill
947                enddo
948            enddo
949            deallocate(porefill)
[3525]950            call compute_massh2o_exchange_ssi(ngrid,nslope,nsoilmx_PEM,icetable_thickness_old,ice_porefilling_old,tsurf_avg, tsoil_PEM,delta_h2o_icetablesublim) ! Mass of H2O exchange between the ssi and the atmosphere
[3486]951        endif
952
[3553]953! II_d.5 Update the soil thermal properties
[3525]954        call update_soil_thermalproperties(ngrid,nslope,nsoilmx_PEM,d_h2oice,h2o_ice,global_avg_press_new,icetable_depth,icetable_thickness,ice_porefilling,icetable_equilibrium,icetable_dynamic,TI_PEM)
[2794]955
[3553]956! II_d.6 Update the mass of the regolith adsorbed
[3028]957        if (adsorption_pem) then
[3512]958            call regolith_adsorption(ngrid,nslope,nsoilmx_PEM,timelen,d_h2oice,d_co2ice,                           &
[3149]959                                     h2o_ice,co2_ice,tsoil_PEM,TI_PEM,ps_timeseries,q_co2_PEM_phys,q_h2o_PEM_phys, &
[3553]960                                     h2o_adsorbed_phys,delta_h2o_adsorbed,co2_adsorbed_phys,delta_co2_adsorbed)
[2794]961
[3553]962            totmassco2_adsorbed = 0.
963            totmassh2o_adsorbed = 0.
[3028]964            do ig = 1,ngrid
[3493]965                do islope = 1,nslope
[3532]966                    do l = 1,nsoilmx_PEM
[3493]967                        if (l == 1) then
[3553]968                            totmassco2_adsorbed = totmassco2_adsorbed + co2_adsorbed_phys(ig,l,islope)*(layer_PEM(l))* &
[3264]969                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
[3553]970                            totmassh2o_adsorbed = totmassh2o_adsorbed + h2o_adsorbed_phys(ig,l,islope)*(layer_PEM(l))* &
[3264]971                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
972                        else
[3553]973                            totmassco2_adsorbed = totmassco2_adsorbed + co2_adsorbed_phys(ig,l,islope)*(layer_PEM(l) - layer_PEM(l - 1))* &
[3264]974                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
[3553]975                            totmassh2o_adsorbed = totmassh2o_adsorbed + h2o_adsorbed_phys(ig,l,islope)*(layer_PEM(l) - layer_PEM(l - 1))* &
[3264]976                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
977                        endif
[3028]978                    enddo
979                enddo
980            enddo
[3553]981            write(*,*) "Tot mass of CO2 in the regolith=", totmassco2_adsorbed
982            write(*,*) "Tot mass of H2O in the regolith=", totmassh2o_adsorbed
[3028]983        endif
984    endif !soil_pem
985
[2794]986!------------------------
987! II  Run
[3088]988!    II_e Outputs
[2794]989!------------------------
[3367]990    call writediagpem(ngrid,'ps_avg','Global average pressure','Pa',0,(/global_avg_press_new/))
[3088]991    do islope = 1,nslope
992        write(str2(1:2),'(i2.2)') islope
[3181]993        call writediagpem(ngrid,'h2o_ice_slope'//str2,'H2O ice','kg.m-2',2,h2o_ice(:,islope))
994        call writediagpem(ngrid,'co2_ice_slope'//str2,'CO2 ice','kg.m-2',2,co2_ice(:,islope))
[3498]995        call writediagpem(ngrid,'d_h2oice_slope'//str2,'H2O ice tend','kg.m-2.year-1',2,d_h2oice(:,islope))
996        call writediagpem(ngrid,'d_co2ice_slope'//str2,'CO2 ice tend','kg.m-2.year-1',2,d_co2ice(:,islope))
[3181]997        call writediagpem(ngrid,'Flow_co2ice_slope'//str2,'CO2 ice flow','Boolean',2,flag_co2flow(:,islope))
998        call writediagpem(ngrid,'tsurf_slope'//str2,'tsurf','K',2,tsurf(:,islope))
[3339]999        if (icetable_equilibrium) then
[3493]1000            call writediagpem(ngrid,'ssi_depth_slope'//str2,'ice table depth','m',2,icetable_depth(:,islope))
[3537]1001            call writediagpem(ngrid,'ssi_thick_slope'//str2,'ice table thickness','m',2,icetable_thickness(:,islope))
[3490]1002        else if (icetable_dynamic) then
[3493]1003            call writediagpem(ngrid,'ssi_depth_slope'//str2,'ice table depth','m',2,icetable_depth(:,islope))
[3486]1004        endif
1005
[3339]1006        if (soil_pem) then
[3171]1007            call writediagsoilpem(ngrid,'tsoil_PEM_slope'//str2,'tsoil_PEM','K',3,tsoil_PEM(:,:,islope))
1008            call writediagsoilpem(ngrid,'inertiesoil_PEM_slope'//str2,'TI_PEM','K',3,TI_PEM(:,:,islope))
[3543]1009            if (icetable_dynamic) call writediagsoilpem(ngrid,'ice_porefilling'//str2,'ice pore filling','-',3,ice_porefilling(:,:,islope))
[3171]1010            if (adsorption_pem) then
[3553]1011                call writediagsoilpem(ngrid,'co2_ads_slope'//str2,'co2_ads','K',3,co2_adsorbed_phys(:,:,islope))
1012                call writediagsoilpem(ngrid,'h2o_ads_slope'//str2,'h2o_ads','K',3,h2o_adsorbed_phys(:,:,islope))
[3532]1013            endif
[3171]1014        endif
[3088]1015    enddo
1016
1017!------------------------
1018! II  Run
1019!    II_f Update the tendencies
1020!------------------------
[3553]1021    call recomp_tend_co2(ngrid,nslope,timelen,d_co2ice,d_co2ice_ini,co2_ice,emis,vmr_co2_PCM,vmr_co2_PEM_phys,ps_timeseries,global_avg_press_PCM,global_avg_press_new)
[2794]1022
[2835]1023!------------------------
1024! II  Run
[3088]1025!    II_g Checking the stopping criterion
[2835]1026!------------------------
[3389]1027    write(*,*) "Checking the stopping criteria..."
[3327]1028    call stopping_crit_h2o_ice(cell_area,h2oice_ini_surf,ini_h2oice_sublim,h2o_ice,stopPEM,ngrid)
1029    call stopping_crit_co2(cell_area,co2ice_ini_surf,ini_co2ice_sublim,co2_ice,stopPEM,ngrid,global_avg_press_PCM,global_avg_press_new,nslope)
[3498]1030    i_myear_leg = i_myear_leg + dt
1031    i_myear = i_myear + dt
1032    if (stopPEM <= 0 .and. i_myear_leg >= n_myear_leg) stopPEM = 5
[3430]1033    if (stopPEM <= 0 .and. i_myear >= n_myear) stopPEM = 6
[3389]1034    call system_clock(c2)
[3430]1035    if (stopPEM <= 0 .and. timewall .and. real((c2 - c1)/cr) >= timelimit - antetime) stopPEM = 7
[3432]1036    if (stopPEM > 0) then
[3149]1037        select case (stopPEM)
1038            case(1)
[3159]1039                write(*,*) "STOPPING because surface of h2o ice sublimating is too low:", stopPEM, "See message above."
[3149]1040            case(2)
[3159]1041                write(*,*) "STOPPING because tendencies on h2o ice = 0:", stopPEM, "See message above."
[3149]1042            case(3)
1043                write(*,*) "STOPPING because surface of co2 ice sublimating is too low:", stopPEM, "See message above."
1044            case(4)
1045                write(*,*) "STOPPING because surface global pressure changed too much:", stopPEM, "See message above."
1046            case(5)
[3419]1047                write(*,*) "STOPPING because maximum number of iterations is reached (possibly due to orbital parameters):", stopPEM
[3149]1048            case(6)
1049                write(*,*) "STOPPING because maximum number of Martian years to be simulated is reached:", stopPEM
[3363]1050            case(7)
1051                write(*,*) "STOPPING because the time limit for the PEM job will be reached soon:", stopPEM
[3430]1052            case(8)
1053                write(*,*) "STOPPING because the layering algorithm met an hasty end:", stopPEM
[3149]1054            case default
1055                write(*,*) "STOPPING with unknown stopping criterion code:", stopPEM
1056        end select
[2779]1057        exit
[3028]1058    else
[3143]1059        write(*,*) "The PEM can continue!"
[3498]1060        write(*,*) "Number of iterations of the PEM: i_myear_leg =", i_myear_leg
[3039]1061        write(*,*) "Number of simulated Martian years: i_myear =", i_myear
[3028]1062    endif
[2779]1063
[3149]1064    global_avg_press_old = global_avg_press_new
[2779]1065
[3149]1066enddo ! big time iteration loop of the pem
[3028]1067!------------------------------ END RUN --------------------------------
[2779]1068
[3028]1069!------------------------------- OUTPUT --------------------------------
[2794]1070!------------------------
1071! III Output
[2835]1072!    III_a Update surface value for the PCM start files
[2794]1073!------------------------
[2835]1074! III_a.1 Ice update (for startfi)
[3149]1075watercap = 0.
[3159]1076perennial_co2ice = co2_ice
[3028]1077do ig = 1,ngrid
[3159]1078    ! H2O ice metamorphism
[3161]1079    if (metam_h2oice .and. sum(qsurf(ig,igcm_h2o_ice,:)*subslope_dist(ig,:)/cos(pi*def_slope_mean(:)/180.)) > metam_h2oice_threshold) then
[3308]1080        h2o_ice(ig,:) = h2o_ice(ig,:) + qsurf(ig,igcm_h2o_ice,:) - metam_h2oice_threshold
1081        qsurf(ig,igcm_h2o_ice,:) = metam_h2oice_threshold
[3159]1082    endif
1083
1084    ! Is H2O ice still considered as an infinite reservoir for the PCM?
[3149]1085    if (sum(h2o_ice(ig,:)*subslope_dist(ig,:)/cos(pi*def_slope_mean(:)/180.)) > inf_h2oice_threshold) then
[3159]1086        ! There is enough ice to be considered as an infinite reservoir
[3149]1087        watercaptag(ig) = .true.
1088    else
[3159]1089        ! There too little ice to be considered as an infinite reservoir so ice is transferred to the frost
[3149]1090        watercaptag(ig) = .false.
1091        qsurf(ig,igcm_h2o_ice,:) = qsurf(ig,igcm_h2o_ice,:) + h2o_ice(ig,:)
1092        h2o_ice(ig,:) = 0.
[3028]1093    endif
[3159]1094
1095    ! CO2 ice metamorphism
[3161]1096    if (metam_co2ice .and. sum(qsurf(ig,igcm_co2,:)*subslope_dist(ig,:)/cos(pi*def_slope_mean(:)/180.)) > metam_co2ice_threshold) then
[3308]1097        perennial_co2ice(ig,:) = perennial_co2ice(ig,:) + qsurf(ig,igcm_co2,:) - metam_co2ice_threshold
1098        qsurf(ig,igcm_co2,:) = metam_co2ice_threshold
[3159]1099    endif
[3028]1100enddo
[2888]1101
[3446]1102! III_a.2 Tsoil update (for startfi)
[3028]1103if (soil_pem) then
[3532]1104    inertiesoil = TI_PEM(:,:nsoilmx,:)
[3426]1105    tsoil = tsoil_PEM(:,1:nsoilmx,:) + tsoil_anom(:,:,:,timelen)
[3172]1106#ifndef CPP_STD
[3181]1107    flux_geo = fluxgeo
[3172]1108#endif
[3028]1109endif
[3426]1110deallocate(tsoil_anom)
[2779]1111
[2835]1112! III_a.4 Pressure (for start)
[3149]1113ps = ps*global_avg_press_new/global_avg_press_PCM
1114ps_start_PCM = ps_start_PCM*global_avg_press_new/global_avg_press_PCM
[2794]1115
[2835]1116! III_a.5 Tracer (for start)
[3028]1117allocate(zplev_new(ngrid,nlayer + 1))
[2835]1118
[3028]1119do l = 1,nlayer + 1
[3149]1120    zplev_new(:,l) = ap(l) + bp(l)*ps_start_PCM
[3028]1121enddo
[2835]1122
[3028]1123do nnq = 1,nqtot
1124    if (noms(nnq) /= "co2") then
1125        do l = 1,llm - 1
1126            do ig = 1,ngrid
[3149]1127                q(ig,l,nnq) = q(ig,l,nnq)*(zplev_PCM(ig,l) - zplev_PCM(ig,l + 1))/(zplev_new(ig,l) - zplev_new(ig,l + 1))
[3028]1128            enddo
1129            q(:,llm,nnq) = q(:,llm - 1,nnq)
1130        enddo
1131    else
1132        do l = 1,llm - 1
1133            do ig = 1,ngrid
[3149]1134                q(ig,l,nnq) = q(ig,l,nnq)*(zplev_PCM(ig,l) - zplev_PCM(ig,l + 1))/(zplev_new(ig,l) - zplev_new(ig,l + 1)) &
1135                              + ((zplev_new(ig,l) - zplev_new(ig,l + 1)) - (zplev_PCM(ig,l) - zplev_PCM(ig,l + 1)))/(zplev_new(ig,l) - zplev_new(ig,l + 1))
[3028]1136            enddo
1137            q(:,llm,nnq) = q(:,llm - 1,nnq)
1138        enddo
1139    endif
1140enddo
[2835]1141
[3096]1142! Conserving the tracers mass for PCM start files
[3028]1143do nnq = 1,nqtot
1144    do ig = 1,ngrid
1145        do l = 1,llm - 1
1146            if (q(ig,l,nnq) > 1 .and. (noms(nnq) /= "dust_number") .and. (noms(nnq) /= "ccn_number") .and. (noms(nnq) /= "stormdust_number") .and. (noms(nnq) /= "topdust_number")) then
[3065]1147                extra_mass = (q(ig,l,nnq) - 1)*(zplev_new(ig,l) - zplev_new(ig,l + 1))
1148                q(ig,l,nnq) = 1.
1149                q(ig,l + 1,nnq) = q(ig,l + 1,nnq) + extra_mass*(zplev_new(ig,l + 1) - zplev_new(ig,l + 2))
[3028]1150                write(*,*) 'extra ',noms(nnq),extra_mass, noms(nnq) /= "dust_number",noms(nnq) /= "ccn_number"
[2835]1151           endif
[3028]1152            if (q(ig,l,nnq) < 0) q(ig,l,nnq) = 1.e-30
1153        enddo
1154    enddo
1155enddo
[2779]1156
[3498]1157if (evol_orbit_pem) call recomp_orb_param(i_myear,i_myear_leg)
[2779]1158
1159!------------------------
[3028]1160! III Output
[3317]1161!    III_b Write "restart.nc" and "restartfi.nc"
[3028]1162!------------------------
[3317]1163! III_b.1 Write "restart.nc"
[3042]1164ptimestep = iphysiq*daysec/real(day_step)/nsplit_phys ! dtphys/nsplit_phys
[3028]1165pday = day_ini
[3042]1166ztime_fin = time_phys
[2779]1167
[3028]1168allocate(p(ip1jmp1,nlayer + 1))
[2980]1169#ifndef CPP_1D
[3442]1170    ! Correction on teta due to surface pressure changes
1171    do l = 1,nlayer
1172        do i = 1,ip1jmp1
[3492]1173            teta(i,l)= teta(i,l)*(ps0(i)/ps(i))**kappa
[3442]1174        enddo
1175    enddo
1176    ! Correction on atmospheric pressure
1177    call pression(ip1jmp1,ap,bp,ps,p)
1178    ! Correction on the mass of atmosphere
[3028]1179    call massdair(p,masse)
[3317]1180    call dynredem0("restart.nc",day_ini,phis)
1181    call dynredem1("restart.nc",time_0,vcov,ucov,teta,q,masse,ps)
1182    write(*,*) "restart.nc has been written"
[2980]1183#else
[3363]1184    call writerestart1D('restart1D.txt',ps(1),tsurf(1,:),nlayer,size(tsurf,2),teta,ucov,vcov,nq,noms,qsurf(1,:,:),q)
1185    write(*,*) "restart1D.txt has been written"
[2980]1186#endif
1187
[3317]1188! III_b.2 Write the "restartfi.nc"
[2842]1189#ifndef CPP_STD
[3317]1190    call physdem0("restartfi.nc",longitude,latitude,nsoilmx,ngrid, &
[3327]1191                  nlayer,nq,ptimestep,pday,0.,cell_area,albedodat, &
[3028]1192                  inertiedat,def_slope,subslope_dist)
[3327]1193    call physdem1("restartfi.nc",nsoilmx,ngrid,nlayer,nq,nqsoil,      &
[3114]1194                  ptimestep,ztime_fin,tsurf,tsoil,inertiesoil,        &
1195                  albedo,emis,q2,qsurf,qsoil,tauscaling,totcloudfrac, &
[3130]1196                  wstar,watercap,perennial_co2ice)
[2842]1197#else
[3317]1198    call physdem0("restartfi.nc",longitude,latitude,nsoilmx,ngrid, &
[3327]1199                  nlayer,nq,ptimestep,pday,time_phys,cell_area,    &
[3028]1200                  albedo_bareground,inertiedat,zmea,zstd,zsig,zgam,zthe)
[3327]1201    call physdem1("restartfi.nc",nsoilmx,ngrid,nlayer,nq,nqsoil,       &
[3114]1202                  ptimestep,ztime_fin,tsurf,tsoil,emis,q2,qsurf,qsoil, &
1203                  cloudfrac,totcloudfrac,hice,rnat,pctsrf_sic,tslab,   &
1204                  tsea_ice,sea_ice)
[2842]1205#endif
[3317]1206write(*,*) "restartfi.nc has been written"
[2842]1207
[2794]1208!------------------------
1209! III Output
[3161]1210!    III_c Write the "restartpem.nc"
[2794]1211!------------------------
[3319]1212if (layering_algo) nb_str_max = get_nb_str_max(stratif,ngrid,nslope) ! Get the maximum number of "stratum" in the stratification (layerings)
[3206]1213call pemdem0("restartpem.nc",longitude,latitude,cell_area,ngrid,nslope,def_slope,subslope_dist)
[3537]1214call pemdem1("restartpem.nc",i_myear,nsoilmx_PEM,ngrid,nslope,tsoil_PEM,TI_PEM,icetable_depth,icetable_thickness,ice_porefilling, &
[3553]1215             co2_adsorbed_phys,h2o_adsorbed_phys,h2o_ice,stratif)
[3088]1216write(*,*) "restartpem.nc has been written"
[2779]1217
[3498]1218call info_PEM(i_myear_leg,stopPEM,i_myear,n_myear)
[3149]1219
[3498]1220write(*,*) "The PEM has run for", i_myear_leg, "Martian years."
[3039]1221write(*,*) "The chained simulation has run for", i_myear, "Martian years =", i_myear*convert_years, "Earth years."
1222write(*,*) "The reached date is now", (year_bp_ini + i_myear)*convert_years, "Earth years."
[3498]1223write(*,*) "PEM: so far, so good!"
[2794]1224
[3319]1225if (layering_algo) then
1226    do islope = 1,nslope
1227        do i = 1,ngrid
1228            call del_layering(stratif(i,islope))
1229        enddo
[3297]1230    enddo
[3319]1231    deallocate(new_str,new_lag1,new_lag2,current1,current2)
1232endif
[3149]1233deallocate(vmr_co2_PCM,ps_timeseries,tsurf_PCM_timeseries,q_co2_PEM_phys,q_h2o_PEM_phys)
[3367]1234deallocate(watersurf_density_avg,watersoil_density_timeseries,Tsurfavg_before_saved)
1235deallocate(tsoil_phys_PEM_timeseries,watersoil_density_PEM_timeseries,watersoil_density_PEM_avg)
[3553]1236deallocate(delta_co2_adsorbed,delta_h2o_adsorbed,vmr_co2_PEM_phys,delta_h2o_icetablesublim)
1237deallocate(icetable_thickness_old,ice_porefilling_old,zshift_surf,zlag)
[3330]1238deallocate(is_co2ice_ini,co2ice_disappeared,ini_co2ice_sublim,ini_h2oice_sublim,stratif)
[3028]1239!----------------------------- END OUTPUT ------------------------------
[2897]1240
[2779]1241END PROGRAM pem
Note: See TracBrowser for help on using the repository browser.