[2779] | 1 | !------------------------ |
---|
[3028] | 2 | ! I Initialization |
---|
[3161] | 3 | ! I_a Read the "run.def" |
---|
[3317] | 4 | ! I_b Read the "start.nc" and "startfi.nc" |
---|
[2835] | 5 | ! I_c Subslope parametrisation |
---|
[3161] | 6 | ! I_d Read the PCM data and convert them to the physical grid |
---|
[3028] | 7 | ! I_e Initialization of the PEM variable and soil |
---|
[3143] | 8 | ! I_f Compute tendencies |
---|
[3384] | 9 | ! I_g Save the initial situation |
---|
| 10 | ! I_h Read the "startpem.nc" |
---|
[2835] | 11 | ! I_i Compute orbit criterion |
---|
[2779] | 12 | |
---|
| 13 | ! II Run |
---|
[3028] | 14 | ! II_a Update pressure, ice and tracers |
---|
[3149] | 15 | ! II_b Evolution of ice |
---|
| 16 | ! II_c Flow of glaciers |
---|
[2835] | 17 | ! II_d Update surface and soil temperatures |
---|
[3088] | 18 | ! II_e Outputs |
---|
| 19 | ! II_f Update the tendencies |
---|
| 20 | ! II_g Checking the stopping criterion |
---|
[2779] | 21 | |
---|
| 22 | ! III Output |
---|
[2835] | 23 | ! III_a Update surface value for the PCM start files |
---|
[3317] | 24 | ! III_b Write the "restart.nc" and "restartfi.nc" |
---|
[3161] | 25 | ! III_c Write the "restartpem.nc" |
---|
[2779] | 26 | !------------------------ |
---|
| 27 | |
---|
| 28 | PROGRAM pem |
---|
| 29 | |
---|
[3161] | 30 | use phyetat0_mod, only: phyetat0 |
---|
| 31 | use phyredem, only: physdem0, physdem1 |
---|
| 32 | use netcdf, only: nf90_open, NF90_NOWRITE, nf90_get_var, nf90_inq_varid, nf90_close |
---|
| 33 | use turb_mod, only: q2, wstar |
---|
[3206] | 34 | use comslope_mod, only: nslope, def_slope, def_slope_mean, subslope_dist, iflat, ini_comslope_h |
---|
[3161] | 35 | use logic_mod, only: iflag_phys |
---|
| 36 | use mod_const_mpi, only: COMM_LMDZ |
---|
[3028] | 37 | use infotrac |
---|
[3161] | 38 | use geometry_mod, only: latitude_deg |
---|
| 39 | use conf_pem_mod, only: conf_pem |
---|
| 40 | use pemredem, only: pemdem0, pemdem1 |
---|
| 41 | use glaciers_mod, only: flow_co2glaciers, flow_h2oglaciers, co2ice_flow, h2oice_flow, inf_h2oice_threshold, & |
---|
| 42 | metam_h2oice_threshold, metam_co2ice_threshold, metam_h2oice, metam_co2ice |
---|
| 43 | use stopping_crit_mod, only: stopping_crit_h2o_ice, stopping_crit_co2 |
---|
| 44 | use constants_marspem_mod, only: alpha_clap_co2, beta_clap_co2, alpha_clap_h2o, beta_clap_h2o, m_co2, m_noco2 |
---|
| 45 | use evol_ice_mod, only: evol_co2_ice, evol_h2o_ice |
---|
| 46 | use comsoil_h_PEM, only: soil_pem, ini_comsoil_h_PEM, end_comsoil_h_PEM, nsoilmx_PEM, & |
---|
[3330] | 47 | TI_PEM, & ! soil thermal inertia |
---|
| 48 | tsoil_PEM, layer_PEM, & ! Soil temp, number of subsurface layers, soil mid layer depths |
---|
| 49 | fluxgeo ! Geothermal flux for the PEM and PCM |
---|
[3161] | 50 | use adsorption_mod, only: regolith_adsorption, adsorption_pem, & ! Bool to check if adsorption, main subroutine |
---|
| 51 | ini_adsorption_h_PEM, end_adsorption_h_PEM, & ! Allocate arrays |
---|
| 52 | co2_adsorbded_phys, h2o_adsorbded_phys ! Mass of co2 and h2O adsorbded |
---|
[3498] | 53 | use time_evol_mod, only: dt, evol_orbit_pem, Max_iter_pem, convert_years, year_bp_ini |
---|
[3161] | 54 | use orbit_param_criterion_mod, only: orbit_param_criterion |
---|
| 55 | use recomp_orb_param_mod, only: recomp_orb_param |
---|
[3493] | 56 | use ice_table_mod, only: icetable_depth, icetable_thickness, end_ice_table, ice_porefilling, & |
---|
| 57 | ini_ice_table, icetable_equilibrium, icetable_dynamic, computeice_table_equilibrium, compute_massh2o_exchange_ssi |
---|
[3161] | 58 | use soil_thermalproperties_mod, only: update_soil_thermalproperties |
---|
[3206] | 59 | use time_phylmdz_mod, only: daysec, dtphys |
---|
[3161] | 60 | use abort_pem_mod, only: abort_pem |
---|
| 61 | use soil_settings_PEM_mod, only: soil_settings_PEM |
---|
| 62 | use compute_tend_mod, only: compute_tend |
---|
| 63 | use info_PEM_mod, only: info_PEM |
---|
| 64 | use interpol_TI_PEM2PCM_mod, only: interpol_TI_PEM2PCM |
---|
| 65 | use nb_time_step_PCM_mod, only: nb_time_step_PCM |
---|
| 66 | use pemetat0_mod, only: pemetat0 |
---|
| 67 | use read_data_PCM_mod, only: read_data_PCM |
---|
| 68 | use recomp_tend_co2_slope_mod, only: recomp_tend_co2_slope |
---|
[3178] | 69 | use compute_soiltemp_mod, only: compute_tsoil_pem |
---|
[3181] | 70 | use writediagpem_mod, only: writediagpem, writediagsoilpem |
---|
[3207] | 71 | use co2condens_mod, only: CO2cond_ps |
---|
[3498] | 72 | use layering_mod, only: d_dust, ptrarray, stratum, layering, ini_layering, del_layering, make_layering, get_nb_str_max, nb_str_max, layering_algo |
---|
[2985] | 73 | |
---|
[2842] | 74 | #ifndef CPP_STD |
---|
[3206] | 75 | use comsoil_h, only: tsoil, nsoilmx, ini_comsoil_h, inertiedat, mlayer, inertiesoil, flux_geo, nqsoil, qsoil |
---|
[3028] | 76 | use surfdat_h, only: tsurf, emis, qsurf, watercap, ini_surfdat_h, & |
---|
| 77 | albedodat, zmea, zstd, zsig, zgam, zthe, & |
---|
[3206] | 78 | albedo_h2o_frost,frost_albedo_threshold, & |
---|
| 79 | emissiv, watercaptag, perennial_co2ice, emisice, albedice |
---|
[3028] | 80 | use dimradmars_mod, only: totcloudfrac, albedo |
---|
| 81 | use dust_param_mod, only: tauscaling |
---|
[3149] | 82 | use tracer_mod, only: noms, igcm_h2o_ice, igcm_co2, mmol, igcm_h2o_vap ! Tracer names and molar masses |
---|
[3028] | 83 | use mod_phys_lmdz_para, only: is_parallel, is_sequential, is_mpi_root, is_omp_root, is_master |
---|
[3096] | 84 | use planete_h, only: aphelie, periheli, year_day, peri_day, obliquit, iniorbit |
---|
[3442] | 85 | use comcstfi_h, only: pi, rad, g, mugaz, r |
---|
[3143] | 86 | use surfini_mod, only: surfini |
---|
[3442] | 87 | use comconst_mod, only: kappa, cpp |
---|
[2842] | 88 | #else |
---|
[3028] | 89 | use tracer_h, only: noms, igcm_h2o_ice, igcm_co2 ! Tracer names |
---|
| 90 | use phys_state_var_mod, only: cloudfrac, totcloudfrac, albedo_snow_SPECTV,HICE,RNAT, & |
---|
| 91 | PCTSRF_SIC, TSLAB, TSEA_ICE, SEA_ICE, ALBEDO_BAREGROUND, & |
---|
| 92 | ALBEDO_CO2_ICE_SPECTV, phys_state_var_init |
---|
[3039] | 93 | use aerosol_mod, only: iniaerosol |
---|
| 94 | use planete_mod, only: apoastr, periastr, year_day, peri_day, obliquit |
---|
[3442] | 95 | use comcstfi_mod, only: pi, rad, g, mugaz, r |
---|
[2842] | 96 | #endif |
---|
[2985] | 97 | |
---|
[3028] | 98 | #ifndef CPP_1D |
---|
[3076] | 99 | use iniphysiq_mod, only: iniphysiq |
---|
| 100 | use control_mod, only: iphysiq, day_step, nsplit_phys |
---|
[3019] | 101 | #else |
---|
[3386] | 102 | use time_phylmdz_mod, only: iphysiq, steps_per_sol |
---|
[3028] | 103 | use regular_lonlat_mod, only: init_regular_lonlat |
---|
| 104 | use physics_distribution_mod, only: init_physics_distribution |
---|
| 105 | use mod_grid_phy_lmdz, only: regular_lonlat |
---|
[3065] | 106 | use init_testphys1d_mod, only: init_testphys1d |
---|
| 107 | use comvert_mod, only: ap, bp |
---|
[3076] | 108 | use writerestart1D_mod, only: writerestart1D |
---|
[2980] | 109 | #endif |
---|
[2835] | 110 | |
---|
[3076] | 111 | implicit none |
---|
[2980] | 112 | |
---|
[3028] | 113 | include "dimensions.h" |
---|
| 114 | include "paramet.h" |
---|
| 115 | include "comgeom.h" |
---|
| 116 | include "iniprint.h" |
---|
[3039] | 117 | include "callkeys.h" |
---|
[2779] | 118 | |
---|
[3028] | 119 | integer ngridmx |
---|
| 120 | parameter(ngridmx = 2 + (jjm - 1)*iim - 1/jjm) |
---|
[2794] | 121 | |
---|
[3096] | 122 | ! Same variable names as in the PCM |
---|
[3065] | 123 | integer, parameter :: nlayer = llm ! Number of vertical layer |
---|
| 124 | integer :: ngrid ! Number of physical grid points |
---|
| 125 | integer :: nq ! Number of tracer |
---|
| 126 | integer :: day_ini ! First day of the simulation |
---|
| 127 | real :: pday ! Physical day |
---|
[3149] | 128 | real :: time_phys ! Same as in PCM |
---|
| 129 | real :: ptimestep ! Same as in PCM |
---|
[3297] | 130 | real :: ztime_fin ! Same as in PCM |
---|
[2794] | 131 | |
---|
[3028] | 132 | ! Variables to read start.nc |
---|
[3317] | 133 | character(*), parameter :: start_name = "start.nc" ! Name of the file used to initialize the PEM |
---|
[2779] | 134 | |
---|
[3028] | 135 | ! Dynamic variables |
---|
[3065] | 136 | real, dimension(ip1jm,llm) :: vcov ! vents covariants |
---|
| 137 | real, dimension(ip1jmp1,llm) :: ucov ! vents covariants |
---|
| 138 | real, dimension(ip1jmp1,llm) :: teta ! temperature potentielle |
---|
| 139 | real, dimension(:,:,:), allocatable :: q ! champs advectes |
---|
[3143] | 140 | real, dimension(ip1jmp1) :: ps ! pression au sol |
---|
[3442] | 141 | real, dimension(ip1jmp1) :: ps0 ! pression au sol initiale |
---|
[3149] | 142 | real, dimension(:), allocatable :: ps_start_PCM ! (ngrid) surface pressure |
---|
| 143 | real, dimension(:,:), allocatable :: ps_timeseries ! (ngrid x timelen) instantaneous surface pressure |
---|
[3065] | 144 | real, dimension(ip1jmp1,llm) :: masse ! masse d'air |
---|
| 145 | real, dimension(ip1jmp1) :: phis ! geopotentiel au sol |
---|
[3028] | 146 | real :: time_0 |
---|
[2779] | 147 | |
---|
[3028] | 148 | ! Variables to read starfi.nc |
---|
[3317] | 149 | character(*), parameter :: startfi_name = "startfi.nc" ! Name of the file used to initialize the PEM |
---|
[3143] | 150 | character(2) :: str2 |
---|
[3206] | 151 | integer :: ncid, status ! Variable for handling opening of files |
---|
| 152 | integer :: lonvarid, latvarid, areavarid, sdvarid ! Variable ID for Netcdf files |
---|
| 153 | integer :: apvarid, bpvarid ! Variable ID for Netcdf files |
---|
[2794] | 154 | |
---|
[3028] | 155 | ! Variables to read starfi.nc and write restartfi.nc |
---|
[3143] | 156 | real, dimension(:), allocatable :: longitude ! Longitude read in startfi_name and written in restartfi |
---|
| 157 | real, dimension(:), allocatable :: latitude ! Latitude read in startfi_name and written in restartfi |
---|
| 158 | real, dimension(:), allocatable :: cell_area ! Cell_area read in startfi_name and written in restartfi |
---|
[3028] | 159 | real :: Total_surface ! Total surface of the planet |
---|
[2897] | 160 | |
---|
[3028] | 161 | ! Variables for h2o_ice evolution |
---|
[3327] | 162 | real, dimension(:,:), allocatable :: h2o_ice ! h2o ice in the PEM |
---|
| 163 | real, dimension(:,:,:), allocatable :: min_h2o_ice ! Minima of h2o ice at each point for the PCM years [kg/m^2] |
---|
| 164 | real :: h2oice_ini_surf ! Initial surface of sublimating h2o ice |
---|
| 165 | logical, dimension(:,:), allocatable :: ini_h2oice_sublim ! Logical array to know if h2o ice is sublimating |
---|
| 166 | real :: global_avg_press_PCM ! constant: global average pressure retrieved in the PCM [Pa] |
---|
| 167 | real :: global_avg_press_old ! constant: Global average pressure of initial/previous time step |
---|
| 168 | real :: global_avg_press_new ! constant: Global average pressure of current time step |
---|
| 169 | real, dimension(:,:), allocatable :: zplev_new ! Physical x Atmospheric field: mass of the atmospheric layers in the pem at current time step [kg/m^2] |
---|
| 170 | real, dimension(:,:), allocatable :: zplev_PCM ! same but retrieved from the PCM [kg/m^2] |
---|
| 171 | real, dimension(:,:,:), allocatable :: zplev_new_timeseries ! Physical x Atmospheric x Time: same as zplev_new, but in times series [kg/m ^2] |
---|
| 172 | real, dimension(:,:,:), allocatable :: zplev_old_timeseries ! same but with the time series, for oldest time step |
---|
| 173 | integer :: stopPEM ! which criterion is reached? 0 = no stopping; 1 = h2o ice surf; 2 = no h2o ice; 3 = co2 ice surf; 4 = ps; 5 = orb param; 6 = end of simu |
---|
| 174 | real, save :: A, B, mmean ! Molar mass: intermediate A, B for computations of the mean molar mass of the layer [mol/kg] |
---|
| 175 | real, dimension(:,:), allocatable :: q_h2o_PEM_phys ! Physics x Times: h2o mass mixing ratio computed in the PEM, first value comes from PCM [kg/kg] |
---|
| 176 | integer :: timelen ! # time samples |
---|
| 177 | real :: ave ! intermediate varibale to compute average |
---|
| 178 | real, dimension(:,:), allocatable :: p ! Physics x Atmosphere: pressure to recompute and write in restart (ngrid,llmp1) |
---|
| 179 | real :: extra_mass ! Intermediate variables Extra mass of a tracer if it is greater than 1 |
---|
[2779] | 180 | |
---|
[3130] | 181 | ! Variables for co2_ice evolution |
---|
[3330] | 182 | real, dimension(:,:), allocatable :: co2_ice ! co2 ice in the PEM |
---|
| 183 | logical, dimension(:,:), allocatable :: is_co2ice_ini ! Was there co2 ice initially in the PEM? |
---|
[3327] | 184 | real, dimension(:,:,:), allocatable :: min_co2_ice ! Minimum of co2 ice at each point for the first year [kg/m^2] |
---|
| 185 | real :: co2ice_ini_surf ! Initial surface of sublimating co2 ice |
---|
| 186 | logical, dimension(:,:), allocatable :: ini_co2ice_sublim ! Logical array to know if co2 ice is sublimating |
---|
[3330] | 187 | real, dimension(:,:), allocatable :: vmr_co2_PCM ! Physics x Times co2 volume mixing ratio retrieve from the PCM [m^3/m^3] |
---|
| 188 | real, dimension(:,:), allocatable :: vmr_co2_PEM_phys ! Physics x Times co2 volume mixing ratio used in the PEM |
---|
| 189 | real, dimension(:,:), allocatable :: q_co2_PEM_phys ! Physics x Times co2 mass mixing ratio in the first layer computed in the PEM, first value comes from PCM [kg/kg] |
---|
[3130] | 190 | |
---|
[3297] | 191 | ! Variables for stratification (layering) evolution |
---|
| 192 | type(layering), dimension(:,:), allocatable :: stratif ! Layering (linked list of "stratum") for each grid point and slope |
---|
| 193 | type(ptrarray), dimension(:,:), allocatable :: current1, current2 ! Current active stratum in the layering |
---|
| 194 | logical, dimension(:,:), allocatable :: new_str, new_lag1, new_lag2 ! Flags for the layering algorithm |
---|
| 195 | |
---|
[3028] | 196 | ! Variables for slopes |
---|
[3498] | 197 | real, dimension(:,:), allocatable :: d_co2ice ! physical point x slope field: Tendency of evolution of perennial co2 ice over a year |
---|
| 198 | real, dimension(:,:), allocatable :: d_co2ice_ini ! physical point x slope field: Tendency of evolution of perennial co2 ice over a year in the PCM |
---|
| 199 | real, dimension(:,:), allocatable :: d_h2oice ! physical point x slope field: Tendency of evolution of perennial h2o ice |
---|
| 200 | real, dimension(:,:), allocatable :: flag_co2flow ! (ngrid,nslope): Flag where there is a CO2 glacier flow |
---|
| 201 | real, dimension(:), allocatable :: flag_co2flow_mesh ! (ngrid) : Flag where there is a CO2 glacier flow |
---|
| 202 | real, dimension(:,:), allocatable :: flag_h2oflow ! (ngrid,nslope): Flag where there is a H2O glacier flow |
---|
| 203 | real, dimension(:), allocatable :: flag_h2oflow_mesh ! (ngrid) : Flag where there is a H2O glacier flow |
---|
[2779] | 204 | |
---|
[3028] | 205 | ! Variables for surface and soil |
---|
[3493] | 206 | real, dimension(:,:), allocatable :: tsurf_avg ! Physic x SLOPE field: Averaged Surface Temperature [K] |
---|
| 207 | real, dimension(:,:,:), allocatable :: tsoil_avg ! Physic x SOIL x SLOPE field: Averaged Soil Temperature [K] |
---|
| 208 | real, dimension(:,:,:), allocatable :: tsurf_PCM_timeseries ! ngrid x SLOPE x TIMES field: Surface Temperature in timeseries [K] |
---|
| 209 | real, dimension(:,:,:,:), allocatable :: tsoil_phys_PEM_timeseries ! IG x SOIL x SLOPE x TIMES field: Non averaged Soil Temperature [K] |
---|
| 210 | real, dimension(:,:,:,:), allocatable :: tsoil_anom ! IG x SOIL x SLOPE x TIMES field: Amplitude between instataneous and yearly average soil temperature at the beginning [K] |
---|
| 211 | real, dimension(:,:), allocatable :: tsurf_avg_yr1 ! Physic x SLOPE field: Averaged Surface Temperature of first call of the PCM [K] |
---|
| 212 | real, dimension(:,:), allocatable :: Tsoil_locslope ! Physic x Soil: Intermediate when computing Tsoil [K] |
---|
| 213 | real, dimension(:), allocatable :: Tsurf_locslope ! Physic x Soil: Intermediate surface temperature to compute Tsoil [K] |
---|
| 214 | real, dimension(:,:,:,:), allocatable :: watersoil_density_timeseries ! Physic x Soil x Slope x Times water soil density, time series [kg /m^3] |
---|
| 215 | real, dimension(:,:), allocatable :: watersurf_density_avg ! Physic x Slope, water surface density, yearly averaged [kg/m^3] |
---|
| 216 | real, dimension(:,:,:,:), allocatable :: watersoil_density_PEM_timeseries ! Physic x Soil x Slope x Times, water soil density, time series [kg/m^3] |
---|
| 217 | real, dimension(:,:,:), allocatable :: watersoil_density_PEM_avg ! Physic x Soil x Slopes, water soil density, yearly averaged [kg/m^3] |
---|
| 218 | real, dimension(:,:), allocatable :: Tsurfavg_before_saved ! Surface temperature saved from previous time step [K] |
---|
| 219 | real, dimension(:), allocatable :: delta_co2_adsorbded ! Physics: quantity of CO2 that is exchanged because of adsorption / desorption [kg/m^2] |
---|
| 220 | real, dimension(:), allocatable :: delta_h2o_adsorbded ! Physics: quantity of H2O that is exchanged because of adsorption / desorption [kg/m^2] |
---|
| 221 | real :: totmassco2_adsorbded ! Total mass of CO2 that is exchanged because of adsorption / desoprtion over the planets [kg] |
---|
| 222 | real :: totmassh2o_adsorbded ! Total mass of H2O that is exchanged because of adsorption / desoprtion over the planets [kg] |
---|
| 223 | logical :: bool_sublim ! logical to check if there is sublimation or not |
---|
| 224 | logical, dimension(:,:), allocatable :: co2ice_disappeared ! logical to check if a co2 ice reservoir already disappeared at a previous timestep |
---|
[3525] | 225 | real, dimension(:,:), allocatable :: icetable_thickness_old ! ngrid x nslope: Thickness of the ice table at the previous iteration [m] |
---|
| 226 | real, dimension(:,:,:), allocatable :: ice_porefilling_old ! ngrid x nslope: Ice pore filling at the previous iteration [m] |
---|
[3493] | 227 | real, dimension(:), allocatable :: delta_h2o_icetablesublim ! ngrid x Total mass of the H2O that has sublimated / condenses from the ice table [kg] |
---|
| 228 | real, dimension(:), allocatable :: porefill ! Pore filling (output) to compute the dynamic ice table |
---|
| 229 | real :: ssi_depth ! Ice table depth (output) to compute the dynamic ice table |
---|
[3065] | 230 | |
---|
[3028] | 231 | ! Some variables for the PEM run |
---|
[3363] | 232 | real, parameter :: year_step = 1 ! Timestep for the pem |
---|
[3498] | 233 | real :: i_myear_leg ! Number of iteration |
---|
| 234 | real :: n_myear_leg ! Maximum number of iterations before stopping |
---|
| 235 | real :: i_myear ! Global number of Martian years of the chained simulations |
---|
| 236 | real :: n_myear ! Maximum number of Martian years of the chained simulations |
---|
[3363] | 237 | real :: timestep ! Timestep [s] |
---|
| 238 | character(20) :: job_id ! Job id provided as argument passed on the command line when the program was invoked |
---|
[3394] | 239 | logical :: timewall ! Flag to use the time limit stopping criterion in case of a PEM job |
---|
[3363] | 240 | integer(kind=8) :: cr ! Number of clock ticks per second (count rate) |
---|
| 241 | integer(kind=8) :: c1, c2 ! Counts of processor clock |
---|
| 242 | character(100) :: chtimelimit ! Time limit for the PEM job outputted by the SLURM command |
---|
| 243 | real :: timelimit ! Time limit for the PEM job in seconds |
---|
[3365] | 244 | real, parameter :: antetime = 1200 ! Anticipation time to prevent reaching the time limit: 1200 s = 20 min by default |
---|
[3363] | 245 | integer :: cstat, days, hours, minutes, seconds |
---|
| 246 | character(1) :: sep |
---|
[2779] | 247 | |
---|
[2842] | 248 | #ifdef CPP_STD |
---|
[3065] | 249 | real :: frost_albedo_threshold = 0.05 ! frost albedo threeshold to convert fresh frost to old ice |
---|
| 250 | real :: albedo_h2o_frost ! albedo of h2o frost |
---|
[3143] | 251 | real, dimension(:), allocatable :: tsurf_read_generic ! Temporary variable to do the subslope transfert dimension when reading form generic |
---|
| 252 | real, dimension(:,:), allocatable :: qsurf_read_generic ! Temporary variable to do the subslope transfert dimension when reading form generic |
---|
| 253 | real, dimension(:,:), allocatable :: tsoil_read_generic ! Temporary variable to do the subslope transfert dimension when reading form generic |
---|
| 254 | real, dimension(:), allocatable :: emis_read_generic ! Temporary variable to do the subslope transfert dimension when reading form generic |
---|
| 255 | real, dimension(:,:), allocatable :: albedo_read_generic ! Temporary variable to do the subslope transfert dimension when reading form generic |
---|
[3065] | 256 | real, dimension(:,:), allocatable :: tsurf ! Subslope variable, only needed in the GENERIC case |
---|
| 257 | real, dimension(:,:,:), allocatable :: qsurf ! Subslope variable, only needed in the GENERIC case |
---|
| 258 | real, dimension(:,:,:), allocatable :: tsoil ! Subslope variable, only needed in the GENERIC case |
---|
| 259 | real, dimension(:,:), allocatable :: emis ! Subslope variable, only needed in the GENERIC case |
---|
| 260 | real, dimension(:,:), allocatable :: watercap ! Subslope variable, only needed in the GENERIC case =0 no watercap in generic model |
---|
[3068] | 261 | logical, dimension(:), allocatable :: watercaptag ! Subslope variable, only needed in the GENERIC case =false no watercaptag in generic model |
---|
[3065] | 262 | real, dimension(:,:,:), allocatable :: albedo ! Subslope variable, only needed in the GENERIC case |
---|
| 263 | real, dimension(:,:,:), allocatable :: inertiesoil ! Subslope variable, only needed in the GENERIC case |
---|
[2842] | 264 | #endif |
---|
| 265 | |
---|
[2980] | 266 | #ifdef CPP_1D |
---|
[3143] | 267 | integer :: nsplit_phys |
---|
| 268 | integer, parameter :: jjm_value = jjm - 1 |
---|
[3386] | 269 | integer :: day_step |
---|
[3065] | 270 | |
---|
| 271 | ! Dummy variables to use the subroutine 'init_testphys1d' |
---|
[3129] | 272 | logical :: therestart1D, therestartfi |
---|
[3068] | 273 | integer :: ndt, day0 |
---|
| 274 | real :: ptif, pks, day, gru, grv, atm_wat_profile, atm_wat_tau |
---|
| 275 | real, dimension(:), allocatable :: zqsat |
---|
| 276 | real, dimension(:,:,:), allocatable :: dq, dqdyn |
---|
| 277 | real, dimension(nlayer) :: play, w |
---|
| 278 | real, dimension(nlayer + 1) :: plev |
---|
[2980] | 279 | #else |
---|
[3143] | 280 | integer, parameter :: jjm_value = jjm |
---|
| 281 | real, dimension(:), allocatable :: ap ! Coefficient ap read in start_name and written in restart |
---|
| 282 | real, dimension(:), allocatable :: bp ! Coefficient bp read in start_name and written in restart |
---|
[2980] | 283 | #endif |
---|
| 284 | |
---|
[3028] | 285 | ! Loop variables |
---|
[3206] | 286 | integer :: i, l, ig, nnq, t, islope, ig_loop, islope_loop, isoil, icap |
---|
[2779] | 287 | |
---|
[3363] | 288 | ! Elapsed time with system clock |
---|
| 289 | call system_clock(count_rate = cr) |
---|
| 290 | call system_clock(c1) |
---|
[3394] | 291 | timewall = .true. |
---|
[3363] | 292 | timelimit = 86400 ! 86400 seconds = 24 h by default |
---|
| 293 | if (command_argument_count() > 0) then |
---|
| 294 | ! Read the job id passed as argument to the program |
---|
| 295 | call get_command_argument(1,job_id) |
---|
| 296 | ! Execute the system command |
---|
| 297 | call execute_command_line('squeue -j '//trim(job_id)//' -h --Format TimeLimit > tmp_cmdout.txt',cmdstat = cstat) |
---|
[3403] | 298 | if (cstat /= 0) then |
---|
| 299 | call execute_command_line('qstat -f '//trim(job_id)//' | grep "Walltime" | awk ''{print $3}'' > tmp_cmdout.txt', cmdstat = cstat) |
---|
| 300 | if (cstat > 0) then |
---|
| 301 | error stop 'pem: command execution failed!' |
---|
| 302 | else if (cstat < 0) then |
---|
| 303 | error stop 'pem: command execution not supported (neither SLURM nor PBS/TORQUE is installed)!' |
---|
| 304 | endif |
---|
[3363] | 305 | endif |
---|
| 306 | ! Read the output |
---|
| 307 | open(1,file = 'tmp_cmdout.txt',status = 'old') |
---|
| 308 | read(1,'(a)') chtimelimit |
---|
| 309 | close(1) |
---|
| 310 | chtimelimit = trim(chtimelimit) |
---|
| 311 | call execute_command_line('rm tmp_cmdout.txt',cmdstat = cstat) |
---|
| 312 | if (cstat > 0) then |
---|
| 313 | error stop 'pem: command execution failed!' |
---|
| 314 | else if (cstat < 0) then |
---|
| 315 | error stop 'pem: command execution not supported!' |
---|
| 316 | endif |
---|
[3387] | 317 | if (index(chtimelimit,'-') > 0) then ! 'chtimelimit' format is "D-HH:MM:SS" |
---|
[3388] | 318 | read(chtimelimit,'(i1,a1,i2,a1,i2,a1,i2)') days, sep, hours, sep, minutes, sep, seconds |
---|
[3363] | 319 | timelimit = days*86400 + hours*3600 + minutes*60 + seconds |
---|
[3387] | 320 | else if (index(chtimelimit,':') > 0 .and. len_trim(chtimelimit) > 5) then ! 'chtimelimit' format is "HH:MM:SS" |
---|
[3388] | 321 | read(chtimelimit,'(i2,a1,i2,a1,i2)') hours, sep, minutes, sep, seconds |
---|
[3363] | 322 | timelimit = hours*3600 + minutes*60 + seconds |
---|
[3387] | 323 | else ! 'chtimelimit' format is "MM:SS" |
---|
| 324 | read(chtimelimit,'(i2,a1,i2)') minutes, sep, seconds |
---|
| 325 | timelimit = minutes*60 + seconds |
---|
[3363] | 326 | endif |
---|
[3394] | 327 | else |
---|
| 328 | timewall = .false. |
---|
[3363] | 329 | endif |
---|
| 330 | |
---|
[3028] | 331 | ! Parallel variables |
---|
[2842] | 332 | #ifndef CPP_STD |
---|
[3028] | 333 | is_sequential = .true. |
---|
| 334 | is_parallel = .false. |
---|
| 335 | is_mpi_root = .true. |
---|
| 336 | is_omp_root = .true. |
---|
| 337 | is_master = .true. |
---|
[2842] | 338 | #endif |
---|
[2779] | 339 | |
---|
[3065] | 340 | ! Some constants |
---|
[3028] | 341 | day_ini = 0 ! test |
---|
| 342 | time_phys = 0. ! test |
---|
| 343 | ngrid = ngridmx |
---|
| 344 | A = (1/m_co2 - 1/m_noco2) |
---|
| 345 | B = 1/m_noco2 |
---|
| 346 | year_day = 669 |
---|
| 347 | daysec = 88775. |
---|
[3426] | 348 | timestep = year_day*daysec*year_step |
---|
[2794] | 349 | |
---|
[3028] | 350 | !----------------------------- INITIALIZATION -------------------------- |
---|
[2779] | 351 | !------------------------ |
---|
[3028] | 352 | ! I Initialization |
---|
[3161] | 353 | ! I_a Read the "run.def" |
---|
[2779] | 354 | !------------------------ |
---|
[2980] | 355 | #ifndef CPP_1D |
---|
[3383] | 356 | dtphys = daysec/48. ! Dummy value (overwritten in phyetat0) |
---|
[3028] | 357 | call conf_gcm(99,.true.) |
---|
| 358 | call infotrac_init |
---|
| 359 | nq = nqtot |
---|
| 360 | allocate(q(ip1jmp1,llm,nqtot)) |
---|
[3065] | 361 | allocate(longitude(ngrid),latitude(ngrid),cell_area(ngrid)) |
---|
[2980] | 362 | #else |
---|
[3068] | 363 | allocate(q(1,llm,nqtot)) |
---|
[3065] | 364 | allocate(longitude(1),latitude(1),cell_area(1)) |
---|
[3129] | 365 | |
---|
[3143] | 366 | therestart1D = .false. ! Default value |
---|
[3363] | 367 | inquire(file = 'start1D.txt',exist = therestart1D) |
---|
[3129] | 368 | if (.not. therestart1D) then |
---|
[3363] | 369 | write(*,*) 'There is no "start1D.txt" file!' |
---|
[3129] | 370 | error stop 'Initialization cannot be done for the 1D PEM.' |
---|
| 371 | endif |
---|
[3143] | 372 | therestartfi = .false. ! Default value |
---|
[3317] | 373 | inquire(file = 'startfi.nc',exist = therestartfi) |
---|
[3129] | 374 | if (.not. therestartfi) then |
---|
[3317] | 375 | write(*,*) 'There is no "startfi.nc" file!' |
---|
[3129] | 376 | error stop 'Initialization cannot be done for the 1D PEM.' |
---|
| 377 | endif |
---|
| 378 | |
---|
[3363] | 379 | call init_testphys1d('start1D.txt','startfi.nc',therestart1D,therestartfi,ngrid,nlayer,610.,nq,q, & |
---|
| 380 | time_0,ps(1),ucov,vcov,teta,ndt,ptif,pks,dtphys,zqsat,dq,dqdyn,day0,day,gru,grv,w, & |
---|
[3207] | 381 | play,plev,latitude,longitude,cell_area,atm_wat_profile,atm_wat_tau) |
---|
[3065] | 382 | ps(2) = ps(1) |
---|
[3028] | 383 | nsplit_phys = 1 |
---|
[3399] | 384 | day_step = steps_per_sol |
---|
[2980] | 385 | #endif |
---|
[2779] | 386 | |
---|
[3039] | 387 | call conf_pem(i_myear,n_myear) |
---|
[2779] | 388 | |
---|
[2835] | 389 | !------------------------ |
---|
[3028] | 390 | ! I Initialization |
---|
[3317] | 391 | ! I_b Read of the "start.nc" and starfi_evol.nc |
---|
[3028] | 392 | !------------------------ |
---|
[3317] | 393 | ! I_b.1 Read "start.nc" |
---|
[3149] | 394 | allocate(ps_start_PCM(ngrid)) |
---|
[2980] | 395 | #ifndef CPP_1D |
---|
[3143] | 396 | call dynetat0(start_name,vcov,ucov,teta,q,masse,ps,phis,time_0) |
---|
[2779] | 397 | |
---|
[3149] | 398 | call gr_dyn_fi(1,iip1,jjp1,ngridmx,ps,ps_start_PCM) |
---|
[2897] | 399 | |
---|
[3028] | 400 | call iniconst !new |
---|
| 401 | call inigeom |
---|
[2980] | 402 | |
---|
[3028] | 403 | allocate(ap(nlayer + 1)) |
---|
| 404 | allocate(bp(nlayer + 1)) |
---|
[3143] | 405 | status = nf90_open(start_name,NF90_NOWRITE,ncid) |
---|
[3028] | 406 | status = nf90_inq_varid(ncid,"ap",apvarid) |
---|
| 407 | status = nf90_get_var(ncid,apvarid,ap) |
---|
| 408 | status = nf90_inq_varid(ncid,"bp",bpvarid) |
---|
| 409 | status = nf90_get_var(ncid,bpvarid,bp) |
---|
| 410 | status = nf90_close(ncid) |
---|
[2779] | 411 | |
---|
[3319] | 412 | call iniphysiq(iim,jjm,llm,(jjm-1)*iim+2,comm_lmdz,daysec,day_ini,dtphys/nsplit_phys,rlatu,rlatv,rlonu,rlonv,aire,cu,cv,rad,g,r,cpp,iflag_phys) |
---|
[2980] | 413 | #else |
---|
[3149] | 414 | ps_start_PCM(1) = ps(1) |
---|
[2980] | 415 | #endif |
---|
| 416 | |
---|
[3442] | 417 | ! Save initial surface pressure |
---|
| 418 | ps0 = ps |
---|
| 419 | |
---|
[3096] | 420 | ! In the PCM, these values are given to the physic by the dynamic. |
---|
[3317] | 421 | ! Here we simply read them in the "startfi.nc" file |
---|
[3143] | 422 | status = nf90_open(startfi_name, NF90_NOWRITE, ncid) |
---|
[2963] | 423 | |
---|
[3028] | 424 | status = nf90_inq_varid(ncid,"longitude",lonvarid) |
---|
| 425 | status = nf90_get_var(ncid,lonvarid,longitude) |
---|
[2963] | 426 | |
---|
[3028] | 427 | status = nf90_inq_varid(ncid,"latitude",latvarid) |
---|
| 428 | status = nf90_get_var(ncid,latvarid,latitude) |
---|
[2963] | 429 | |
---|
[3028] | 430 | status = nf90_inq_varid(ncid,"area",areavarid) |
---|
| 431 | status = nf90_get_var(ncid,areavarid,cell_area) |
---|
[2963] | 432 | |
---|
[3028] | 433 | status = nf90_inq_varid(ncid,"soildepth",sdvarid) |
---|
| 434 | status = nf90_get_var(ncid,sdvarid,mlayer) |
---|
[2963] | 435 | |
---|
[3028] | 436 | status = nf90_close(ncid) |
---|
[2963] | 437 | |
---|
[3317] | 438 | ! I_b.2 Read the "startfi.nc" |
---|
[2779] | 439 | ! First we read the initial state (starfi.nc) |
---|
[2842] | 440 | #ifndef CPP_STD |
---|
[3143] | 441 | call phyetat0(startfi_name,0,0,nsoilmx,ngrid,nlayer,nq,nqsoil,day_ini,time_phys,tsurf, & |
---|
[3149] | 442 | tsoil,albedo,emis,q2,qsurf,qsoil,tauscaling,totcloudfrac,wstar, & |
---|
[3130] | 443 | watercap,perennial_co2ice,def_slope,def_slope_mean,subslope_dist) |
---|
[2779] | 444 | |
---|
[3070] | 445 | ! Remove unphysical values of surface tracer |
---|
| 446 | where (qsurf < 0.) qsurf = 0. |
---|
[2885] | 447 | |
---|
[3143] | 448 | call surfini(ngrid,nslope,qsurf) |
---|
[2842] | 449 | #else |
---|
[3028] | 450 | call phys_state_var_init(nq) |
---|
| 451 | if (.not. allocated(noms)) allocate(noms(nq)) ! (because noms is an argument of physdem1 whether or not tracer is on) |
---|
| 452 | call initracer(ngrid,nq) |
---|
| 453 | call iniaerosol() |
---|
| 454 | allocate(tsurf_read_generic(ngrid)) |
---|
| 455 | allocate(qsurf_read_generic(ngrid,nq)) |
---|
| 456 | allocate(tsoil_read_generic(ngrid,nsoilmx)) |
---|
[3114] | 457 | allocate(qsoil_read_generic(ngrid,nsoilmx,nqsoil,nslope)) |
---|
[3028] | 458 | allocate(emis_read_generic(ngrid)) |
---|
| 459 | allocate(tsurf(ngrid,1)) |
---|
| 460 | allocate(qsurf(ngrid,nq,1)) |
---|
| 461 | allocate(tsoil(ngrid,nsoilmx,1)) |
---|
| 462 | allocate(emis(ngrid,1)) |
---|
| 463 | allocate(watercap(ngrid,1)) |
---|
| 464 | allocate(watercaptag(ngrid)) |
---|
| 465 | allocate(albedo_read_generic(ngrid,2)) |
---|
| 466 | allocate(albedo(ngrid,2,1)) |
---|
| 467 | allocate(inertiesoil(ngrid,nsoilmx,1)) |
---|
[3143] | 468 | call phyetat0(.true.,ngrid,nlayer,startfi_name,0,0,nsoilmx,nq,nqsoil,day_ini,time_phys, & |
---|
[3149] | 469 | tsurf_read_generic,tsoil_read_generic,emis_read_generic,q2, & |
---|
| 470 | qsurf_read_generic,qsoil_read_generic,cloudfrac,totcloudfrac,hice, & |
---|
[3114] | 471 | rnat,pctsrf_sic,tslab,tsea_ice,sea_ice) |
---|
[3065] | 472 | call surfini(ngrid,nq,qsurf_read_generic,albedo_read_generic,albedo_bareground,albedo_snow_SPECTV,albedo_co2_ice_SPECTV) |
---|
[2842] | 473 | |
---|
[3028] | 474 | nslope = 1 |
---|
| 475 | call ini_comslope_h(ngrid,1) |
---|
[2842] | 476 | |
---|
[3149] | 477 | qsurf(:,:,1) = qsurf_read_generic |
---|
| 478 | tsurf(:,1) = tsurf_read_generic |
---|
| 479 | tsoil(:,:,1) = tsoil_read_generic |
---|
| 480 | emis(:,1) = emis_read_generic |
---|
[3028] | 481 | watercap(:,1) = 0. |
---|
| 482 | watercaptag(:) = .false. |
---|
| 483 | albedo(:,1,1) = albedo_read_generic(:,1) |
---|
| 484 | albedo(:,2,1) = albedo_read_generic(:,2) |
---|
[3149] | 485 | inertiesoil(:,:,1) = inertiedat |
---|
[2842] | 486 | |
---|
[3028] | 487 | if (nslope == 1) then |
---|
| 488 | def_slope(1) = 0 |
---|
| 489 | def_slope(2) = 0 |
---|
| 490 | def_slope_mean = 0 |
---|
| 491 | subslope_dist(:,1) = 1. |
---|
| 492 | endif |
---|
[2842] | 493 | |
---|
[3070] | 494 | ! Remove unphysical values of surface tracer |
---|
[3149] | 495 | qsurf(:,:,1) = qsurf_read_generic |
---|
[3070] | 496 | where (qsurf < 0.) qsurf = 0. |
---|
[2842] | 497 | #endif |
---|
| 498 | |
---|
[3028] | 499 | do nnq = 1,nqtot ! Why not using ini_tracer ? |
---|
| 500 | if (noms(nnq) == "h2o_ice") igcm_h2o_ice = nnq |
---|
| 501 | if (noms(nnq) == "h2o_vap") then |
---|
| 502 | igcm_h2o_vap = nnq |
---|
[3143] | 503 | mmol(igcm_h2o_vap) = 18. |
---|
[3028] | 504 | endif |
---|
| 505 | if (noms(nnq) == "co2") igcm_co2 = nnq |
---|
[3065] | 506 | enddo |
---|
[3039] | 507 | r = 8.314511*1000./mugaz |
---|
[3028] | 508 | |
---|
[2835] | 509 | !------------------------ |
---|
[3028] | 510 | ! I Initialization |
---|
[2835] | 511 | ! I_c Subslope parametrisation |
---|
| 512 | !------------------------ |
---|
[3028] | 513 | ! Define some slope statistics |
---|
| 514 | iflat = 1 |
---|
| 515 | do islope = 2,nslope |
---|
| 516 | if (abs(def_slope_mean(islope)) < abs(def_slope_mean(iflat))) iflat = islope |
---|
| 517 | enddo |
---|
[2794] | 518 | |
---|
[3028] | 519 | write(*,*) 'Flat slope for islope = ',iflat |
---|
| 520 | write(*,*) 'corresponding criterium = ',def_slope_mean(iflat) |
---|
[2794] | 521 | |
---|
[3028] | 522 | allocate(flag_co2flow(ngrid,nslope)) |
---|
| 523 | allocate(flag_co2flow_mesh(ngrid)) |
---|
| 524 | allocate(flag_h2oflow(ngrid,nslope)) |
---|
| 525 | allocate(flag_h2oflow_mesh(ngrid)) |
---|
[2835] | 526 | |
---|
[3149] | 527 | flag_co2flow = 0 |
---|
| 528 | flag_co2flow_mesh = 0 |
---|
| 529 | flag_h2oflow = 0 |
---|
| 530 | flag_h2oflow_mesh = 0 |
---|
[2835] | 531 | |
---|
[2794] | 532 | !------------------------ |
---|
[3028] | 533 | ! I Initialization |
---|
[3161] | 534 | ! I_d Read the PCM data and convert them to the physical grid |
---|
[3028] | 535 | !------------------------ |
---|
[3096] | 536 | ! First we read the evolution of water and co2 ice (and the mass mixing ratio) over the first year of the PCM run, saving only the minimum value |
---|
| 537 | call nb_time_step_PCM("data_PCM_Y1.nc",timelen) |
---|
[2794] | 538 | |
---|
[3367] | 539 | allocate(tsoil_avg(ngrid,nsoilmx,nslope)) |
---|
| 540 | allocate(watersoil_density_PEM_avg(ngrid,nsoilmx_PEM,nslope)) |
---|
[3149] | 541 | allocate(vmr_co2_PCM(ngrid,timelen)) |
---|
[3028] | 542 | allocate(ps_timeseries(ngrid,timelen)) |
---|
[3149] | 543 | allocate(min_co2_ice(ngrid,nslope,2)) |
---|
| 544 | allocate(min_h2o_ice(ngrid,nslope,2)) |
---|
| 545 | allocate(tsurf_avg_yr1(ngrid,nslope)) |
---|
[3367] | 546 | allocate(tsurf_avg(ngrid,nslope)) |
---|
[3149] | 547 | allocate(tsurf_PCM_timeseries(ngrid,nslope,timelen)) |
---|
[3426] | 548 | allocate(tsoil_anom(ngrid,nsoilmx,nslope,timelen)) |
---|
[3028] | 549 | allocate(q_co2_PEM_phys(ngrid,timelen)) |
---|
| 550 | allocate(q_h2o_PEM_phys(ngrid,timelen)) |
---|
[3367] | 551 | allocate(watersurf_density_avg(ngrid,nslope)) |
---|
[3028] | 552 | allocate(watersoil_density_timeseries(ngrid,nsoilmx,nslope,timelen)) |
---|
[3149] | 553 | allocate(Tsurfavg_before_saved(ngrid,nslope)) |
---|
[3028] | 554 | allocate(tsoil_phys_PEM_timeseries(ngrid,nsoilmx_PEM,nslope,timelen)) |
---|
| 555 | allocate(watersoil_density_PEM_timeseries(ngrid,nsoilmx_PEM,nslope,timelen)) |
---|
| 556 | allocate(delta_co2_adsorbded(ngrid)) |
---|
[3330] | 557 | allocate(co2ice_disappeared(ngrid,nslope)) |
---|
[3525] | 558 | allocate(icetable_thickness_old(ngrid,nslope)) |
---|
| 559 | allocate(ice_porefilling_old(ngrid,nsoilmx_PEM,nslope)) |
---|
[3031] | 560 | allocate(delta_h2o_icetablesublim(ngrid)) |
---|
[3028] | 561 | allocate(delta_h2o_adsorbded(ngrid)) |
---|
[3149] | 562 | allocate(vmr_co2_PEM_phys(ngrid,timelen)) |
---|
[2794] | 563 | |
---|
[3028] | 564 | write(*,*) "Downloading data Y1..." |
---|
[3199] | 565 | call read_data_PCM("data_PCM_Y1.nc",timelen,iim,jjm_value,ngrid,nslope,vmr_co2_PCM,ps_timeseries,min_co2_ice(:,:,1),min_h2o_ice(:,:,1), & |
---|
[3426] | 566 | tsurf_avg_yr1,tsoil_avg,tsurf_PCM_timeseries,tsoil_anom,q_co2_PEM_phys,q_h2o_PEM_phys, & |
---|
[3367] | 567 | watersurf_density_avg,watersoil_density_timeseries) |
---|
[3199] | 568 | write(*,*) "Downloading data Y1 done!" |
---|
[2985] | 569 | |
---|
[3096] | 570 | ! Then we read the evolution of water and co2 ice (and the mass mixing ratio) over the second year of the PCM run, saving only the minimum value |
---|
[3199] | 571 | write(*,*) "Downloading data Y2..." |
---|
[3149] | 572 | call read_data_PCM("data_PCM_Y2.nc",timelen,iim,jjm_value,ngrid,nslope,vmr_co2_PCM,ps_timeseries,min_co2_ice(:,:,2),min_h2o_ice(:,:,2), & |
---|
[3426] | 573 | tsurf_avg,tsoil_avg,tsurf_PCM_timeseries,tsoil_anom,q_co2_PEM_phys,q_h2o_PEM_phys, & |
---|
[3367] | 574 | watersurf_density_avg,watersoil_density_timeseries) |
---|
[3199] | 575 | write(*,*) "Downloading data Y2 done!" |
---|
[2794] | 576 | |
---|
[2835] | 577 | !------------------------ |
---|
[3028] | 578 | ! I Initialization |
---|
| 579 | ! I_e Initialization of the PEM variables and soil |
---|
[2835] | 580 | !------------------------ |
---|
[3028] | 581 | call end_comsoil_h_PEM |
---|
| 582 | call ini_comsoil_h_PEM(ngrid,nslope) |
---|
| 583 | call end_adsorption_h_PEM |
---|
| 584 | call ini_adsorption_h_PEM(ngrid,nslope,nsoilmx_PEM) |
---|
[3493] | 585 | call end_ice_table |
---|
| 586 | call ini_ice_table(ngrid,nslope,nsoilmx_PEM) |
---|
[2794] | 587 | |
---|
[3028] | 588 | if (soil_pem) then |
---|
[3426] | 589 | do t = 1,timelen |
---|
| 590 | tsoil_anom(:,:,:,t) = tsoil_anom(:,:,:,t) - tsoil_avg ! compute anomaly between Tsoil(t) in the startfi - <Tsoil> to recompute properly tsoil in the restart |
---|
| 591 | enddo |
---|
[3028] | 592 | call soil_settings_PEM(ngrid,nslope,nsoilmx_PEM,nsoilmx,inertiesoil,TI_PEM) |
---|
[3367] | 593 | tsoil_PEM(:,1:nsoilmx,:) = tsoil_avg |
---|
[3426] | 594 | tsoil_phys_PEM_timeseries(:,1:nsoilmx,:,:) = tsoil_anom |
---|
[3149] | 595 | watersoil_density_PEM_timeseries(:,1:nsoilmx,:,:) = watersoil_density_timeseries |
---|
[3070] | 596 | do l = nsoilmx + 1,nsoilmx_PEM |
---|
[3367] | 597 | tsoil_PEM(:,l,:) = tsoil_avg(:,nsoilmx,:) |
---|
[3070] | 598 | watersoil_density_PEM_timeseries(:,l,:,:) = watersoil_density_timeseries(:,nsoilmx,:,:) |
---|
[3028] | 599 | enddo |
---|
[3367] | 600 | watersoil_density_PEM_avg = sum(watersoil_density_PEM_timeseries,4)/timelen |
---|
[3028] | 601 | endif !soil_pem |
---|
[3426] | 602 | deallocate(tsoil_avg) |
---|
[2794] | 603 | |
---|
[2779] | 604 | !------------------------ |
---|
[3028] | 605 | ! I Initialization |
---|
[3143] | 606 | ! I_f Compute tendencies |
---|
[3028] | 607 | !------------------------ |
---|
[3498] | 608 | allocate(d_co2ice(ngrid,nslope),d_h2oice(ngrid,nslope)) |
---|
| 609 | allocate(d_co2ice_ini(ngrid,nslope)) |
---|
[2779] | 610 | |
---|
[3028] | 611 | ! Compute the tendencies of the evolution of ice over the years |
---|
[3498] | 612 | call compute_tend(ngrid,nslope,min_co2_ice,d_co2ice) |
---|
| 613 | call compute_tend(ngrid,nslope,min_h2o_ice,d_h2oice) |
---|
| 614 | d_co2ice_ini = d_co2ice |
---|
[3365] | 615 | deallocate(min_co2_ice,min_h2o_ice) |
---|
[2895] | 616 | |
---|
[2835] | 617 | !------------------------ |
---|
[3028] | 618 | ! I Initialization |
---|
[3384] | 619 | ! I_g Save the initial situation |
---|
[3028] | 620 | !------------------------ |
---|
[3384] | 621 | allocate(zplev_PCM(ngrid,nlayer + 1)) |
---|
| 622 | Total_surface = 0. |
---|
| 623 | do ig = 1,ngrid |
---|
| 624 | Total_surface = Total_surface + cell_area(ig) |
---|
| 625 | zplev_PCM(ig,:) = ap + bp*ps_start_PCM(ig) |
---|
| 626 | enddo |
---|
| 627 | global_avg_press_old = sum(cell_area*ps_start_PCM)/Total_surface |
---|
| 628 | global_avg_press_PCM = global_avg_press_old |
---|
| 629 | global_avg_press_new = global_avg_press_old |
---|
| 630 | write(*,*) "Total surface of the planet =", Total_surface |
---|
| 631 | write(*,*) "Initial global average pressure =", global_avg_press_PCM |
---|
| 632 | |
---|
| 633 | !------------------------ |
---|
| 634 | ! I Initialization |
---|
| 635 | ! I_h Read the "startpem.nc" |
---|
| 636 | !------------------------ |
---|
[3149] | 637 | allocate(co2_ice(ngrid,nslope),h2o_ice(ngrid,nslope)) |
---|
| 638 | |
---|
[3297] | 639 | allocate(stratif(ngrid,nslope)) |
---|
[3319] | 640 | if (layering_algo) then |
---|
| 641 | do islope = 1,nslope |
---|
| 642 | do i = 1,ngrid |
---|
| 643 | call ini_layering(stratif(i,islope)) |
---|
| 644 | enddo |
---|
[3297] | 645 | enddo |
---|
[3319] | 646 | endif |
---|
[3297] | 647 | |
---|
[3493] | 648 | call pemetat0("startpem.nc",ngrid,nsoilmx,nsoilmx_PEM,nslope,timelen,timestep,TI_PEM,tsoil_PEM,icetable_depth, & |
---|
| 649 | icetable_thickness,ice_porefilling,tsurf_avg_yr1,tsurf_avg,q_co2_PEM_phys,q_h2o_PEM_phys, & |
---|
[3498] | 650 | ps_timeseries,tsoil_phys_PEM_timeseries,d_h2oice,d_co2ice,co2_ice,h2o_ice, & |
---|
| 651 | global_avg_press_PCM,watersurf_density_avg,watersoil_density_PEM_avg,co2_adsorbded_phys, & |
---|
[3493] | 652 | delta_co2_adsorbded,h2o_adsorbded_phys,delta_h2o_adsorbded,stratif) |
---|
[2779] | 653 | |
---|
[3384] | 654 | ! We save the places where h2o ice is sublimating |
---|
| 655 | ! We compute the surface of h2o ice sublimating |
---|
| 656 | allocate(ini_co2ice_sublim(ngrid,nslope),ini_h2oice_sublim(ngrid,nslope),is_co2ice_ini(ngrid,nslope)) |
---|
| 657 | co2ice_ini_surf = 0. |
---|
| 658 | h2oice_ini_surf = 0. |
---|
| 659 | ini_co2ice_sublim = .false. |
---|
| 660 | ini_h2oice_sublim = .false. |
---|
| 661 | is_co2ice_ini = .false. |
---|
| 662 | co2ice_disappeared = .false. |
---|
| 663 | do i = 1,ngrid |
---|
| 664 | do islope = 1,nslope |
---|
| 665 | if (co2_ice(i,islope) > 0.) is_co2ice_ini(i,islope) = .true. |
---|
[3498] | 666 | if (d_co2ice(i,islope) < 0. .and. co2_ice(i,islope) > 0.) then |
---|
[3384] | 667 | ini_co2ice_sublim(i,islope) = .true. |
---|
| 668 | co2ice_ini_surf = co2ice_ini_surf + cell_area(i)*subslope_dist(i,islope) |
---|
| 669 | endif |
---|
[3498] | 670 | if (d_h2oice(i,islope) < 0. .and. h2o_ice(i,islope) > 0.) then |
---|
[3384] | 671 | ini_h2oice_sublim(i,islope) = .true. |
---|
| 672 | h2oice_ini_surf = h2oice_ini_surf + cell_area(i)*subslope_dist(i,islope) |
---|
| 673 | endif |
---|
| 674 | enddo |
---|
| 675 | enddo |
---|
| 676 | write(*,*) "Total initial surface of co2 ice sublimating (slope) =", co2ice_ini_surf |
---|
| 677 | write(*,*) "Total initial surface of h2o ice sublimating (slope) =", h2oice_ini_surf |
---|
| 678 | |
---|
[3149] | 679 | delta_h2o_icetablesublim = 0. |
---|
[3130] | 680 | |
---|
[3028] | 681 | if (adsorption_pem) then |
---|
| 682 | totmassco2_adsorbded = 0. |
---|
| 683 | totmassh2o_adsorbded = 0. |
---|
| 684 | do ig = 1,ngrid |
---|
[3070] | 685 | do islope = 1,nslope |
---|
[3028] | 686 | do l = 1,nsoilmx_PEM - 1 |
---|
[3264] | 687 | if (l==1) then |
---|
| 688 | totmassco2_adsorbded = totmassco2_adsorbded + co2_adsorbded_phys(ig,l,islope)*(layer_PEM(l))* & |
---|
[3028] | 689 | subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig) |
---|
[3264] | 690 | totmassh2o_adsorbded = totmassh2o_adsorbded + h2o_adsorbded_phys(ig,l,islope)*(layer_PEM(l))* & |
---|
[3028] | 691 | subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig) |
---|
[3264] | 692 | else |
---|
| 693 | totmassco2_adsorbded = totmassco2_adsorbded + co2_adsorbded_phys(ig,l,islope)*(layer_PEM(l) - layer_PEM(l-1))* & |
---|
| 694 | subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig) |
---|
| 695 | totmassh2o_adsorbded = totmassh2o_adsorbded + h2o_adsorbded_phys(ig,l,islope)*(layer_PEM(l) - layer_PEM(l-1))* & |
---|
| 696 | subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig) |
---|
| 697 | endif |
---|
[3028] | 698 | enddo |
---|
[2961] | 699 | enddo |
---|
[3028] | 700 | enddo |
---|
[3143] | 701 | write(*,*) "Tot mass of CO2 in the regolith =", totmassco2_adsorbded |
---|
| 702 | write(*,*) "Tot mass of H2O in the regolith =", totmassh2o_adsorbded |
---|
[3028] | 703 | endif ! adsorption |
---|
[3149] | 704 | deallocate(tsurf_avg_yr1) |
---|
[2794] | 705 | |
---|
[2835] | 706 | !------------------------ |
---|
[3028] | 707 | ! I Initialization |
---|
[2835] | 708 | ! I_i Compute orbit criterion |
---|
[3028] | 709 | !------------------------ |
---|
[2842] | 710 | #ifndef CPP_STD |
---|
[3050] | 711 | call iniorbit(aphelie,periheli,year_day,peri_day,obliquit) |
---|
[2842] | 712 | #else |
---|
[3050] | 713 | call iniorbit(apoastr,periastr,year_day,peri_day,obliquit) |
---|
[2842] | 714 | #endif |
---|
[2794] | 715 | |
---|
[3498] | 716 | n_myear_leg = Max_iter_pem |
---|
| 717 | if (evol_orbit_pem) call orbit_param_criterion(i_myear,n_myear_leg) |
---|
[3403] | 718 | |
---|
[3028] | 719 | !-------------------------- END INITIALIZATION ------------------------- |
---|
[2794] | 720 | |
---|
[3028] | 721 | !-------------------------------- RUN ---------------------------------- |
---|
[2794] | 722 | !------------------------ |
---|
| 723 | ! II Run |
---|
[3065] | 724 | ! II_a Update pressure, ice and tracers |
---|
[2794] | 725 | !------------------------ |
---|
[3498] | 726 | i_myear_leg = 0 |
---|
[3149] | 727 | stopPEM = 0 |
---|
[3319] | 728 | if (layering_algo) then |
---|
| 729 | allocate(new_str(ngrid,nslope),new_lag1(ngrid,nslope),new_lag2(ngrid,nslope),current1(ngrid,nslope),current2(ngrid,nslope)) |
---|
| 730 | new_str = .true. |
---|
| 731 | new_lag1 = .true. |
---|
| 732 | new_lag2 = .true. |
---|
| 733 | do islope = 1,nslope |
---|
| 734 | do ig = 1,ngrid |
---|
| 735 | current1(ig,islope)%p => stratif(ig,islope)%top |
---|
| 736 | current2(ig,islope)%p => stratif(ig,islope)%top |
---|
| 737 | enddo |
---|
[3297] | 738 | enddo |
---|
[3319] | 739 | endif |
---|
[2794] | 740 | |
---|
[3498] | 741 | do while (i_myear_leg < n_myear_leg .and. i_myear < n_myear) |
---|
[2835] | 742 | ! II.a.1. Compute updated global pressure |
---|
[3028] | 743 | write(*,*) "Recomputing the new pressure..." |
---|
| 744 | do i = 1,ngrid |
---|
| 745 | do islope = 1,nslope |
---|
[3498] | 746 | global_avg_press_new = global_avg_press_new - CO2cond_ps*g*cell_area(i)*d_co2ice(i,islope)*subslope_dist(i,islope)/cos(pi*def_slope_mean(islope)/180.)/Total_surface |
---|
[3028] | 747 | enddo |
---|
| 748 | enddo |
---|
[3065] | 749 | |
---|
[3028] | 750 | if (adsorption_pem) then |
---|
| 751 | do i = 1,ngrid |
---|
[3149] | 752 | global_avg_press_new = global_avg_press_new - g*cell_area(i)*delta_co2_adsorbded(i)/Total_surface |
---|
[3050] | 753 | enddo |
---|
[3028] | 754 | endif |
---|
[3149] | 755 | write(*,*) 'Global average pressure old time step',global_avg_press_old |
---|
| 756 | write(*,*) 'Global average pressure new time step',global_avg_press_new |
---|
[2835] | 757 | |
---|
[3161] | 758 | ! II.a.2. Old pressure levels for the timeseries, this value is deleted when unused and recreated each time (big memory consumption) |
---|
[3070] | 759 | allocate(zplev_old_timeseries(ngrid,nlayer + 1,timelen)) |
---|
[3028] | 760 | write(*,*) "Recomputing the old pressure levels timeserie adapted to the old pressure..." |
---|
| 761 | do l = 1,nlayer + 1 |
---|
| 762 | do ig = 1,ngrid |
---|
| 763 | zplev_old_timeseries(ig,l,:) = ap(l) + bp(l)*ps_timeseries(ig,:) |
---|
| 764 | enddo |
---|
| 765 | enddo |
---|
[2779] | 766 | |
---|
[2835] | 767 | ! II.a.3. Surface pressure timeseries |
---|
[3028] | 768 | write(*,*) "Recomputing the surface pressure timeserie adapted to the new pressure..." |
---|
| 769 | do ig = 1,ngrid |
---|
[3149] | 770 | ps_timeseries(ig,:) = ps_timeseries(ig,:)*global_avg_press_new/global_avg_press_old |
---|
[3028] | 771 | enddo |
---|
[2779] | 772 | |
---|
[2835] | 773 | ! II.a.4. New pressure levels timeseries |
---|
[3149] | 774 | allocate(zplev_new_timeseries(ngrid,nlayer + 1,timelen)) |
---|
[3028] | 775 | write(*,*) "Recomputing the new pressure levels timeserie adapted to the new pressure..." |
---|
| 776 | do l = 1,nlayer + 1 |
---|
| 777 | do ig = 1,ngrid |
---|
| 778 | zplev_new_timeseries(ig,l,:) = ap(l) + bp(l)*ps_timeseries(ig,:) |
---|
| 779 | enddo |
---|
| 780 | enddo |
---|
[2779] | 781 | |
---|
[2835] | 782 | ! II.a.5. Tracers timeseries |
---|
[3028] | 783 | write(*,*) "Recomputing of tracer VMR timeseries for the new pressure..." |
---|
[2794] | 784 | |
---|
[3028] | 785 | l = 1 |
---|
| 786 | do ig = 1,ngrid |
---|
| 787 | do t = 1,timelen |
---|
| 788 | q_h2o_PEM_phys(ig,t) = q_h2o_PEM_phys(ig,t)*(zplev_old_timeseries(ig,l,t) - zplev_old_timeseries(ig,l + 1,t))/ & |
---|
| 789 | (zplev_new_timeseries(ig,l,t) - zplev_new_timeseries(ig,l + 1,t)) |
---|
[3143] | 790 | if (q_h2o_PEM_phys(ig,t) < 0) then |
---|
| 791 | q_h2o_PEM_phys(ig,t) = 1.e-30 |
---|
| 792 | else if (q_h2o_PEM_phys(ig,t) > 1) then |
---|
| 793 | q_h2o_PEM_phys(ig,t) = 1. |
---|
| 794 | endif |
---|
[3028] | 795 | enddo |
---|
| 796 | enddo |
---|
[2794] | 797 | |
---|
[3028] | 798 | do ig = 1,ngrid |
---|
[3065] | 799 | do t = 1,timelen |
---|
[3028] | 800 | q_co2_PEM_phys(ig,t) = q_co2_PEM_phys(ig,t)*(zplev_old_timeseries(ig,l,t) - zplev_old_timeseries(ig,l + 1,t))/ & |
---|
[3122] | 801 | (zplev_new_timeseries(ig,l,t) - zplev_new_timeseries(ig,l + 1,t)) & |
---|
| 802 | + ((zplev_new_timeseries(ig,l,t) - zplev_new_timeseries(ig,l + 1,t)) & |
---|
| 803 | - (zplev_old_timeseries(ig,l,t) - zplev_old_timeseries(ig,l + 1,t)))/ & |
---|
[3028] | 804 | (zplev_new_timeseries(ig,l,t) - zplev_new_timeseries(ig,l + 1,t)) |
---|
| 805 | if (q_co2_PEM_phys(ig,t) < 0) then |
---|
| 806 | q_co2_PEM_phys(ig,t) = 1.e-30 |
---|
[3143] | 807 | else if (q_co2_PEM_phys(ig,t) > 1) then |
---|
[3028] | 808 | q_co2_PEM_phys(ig,t) = 1. |
---|
| 809 | endif |
---|
| 810 | mmean=1/(A*q_co2_PEM_phys(ig,t) + B) |
---|
[3149] | 811 | vmr_co2_PEM_phys(ig,t) = q_co2_PEM_phys(ig,t)*mmean/m_co2 |
---|
[3028] | 812 | enddo |
---|
| 813 | enddo |
---|
[2794] | 814 | |
---|
[3028] | 815 | deallocate(zplev_new_timeseries,zplev_old_timeseries) |
---|
| 816 | |
---|
| 817 | !------------------------ |
---|
[2835] | 818 | ! II Run |
---|
[3149] | 819 | ! II_b Evolution of ice |
---|
[3028] | 820 | !------------------------ |
---|
[3498] | 821 | call evol_h2o_ice(ngrid,nslope,cell_area,delta_h2o_adsorbded,delta_h2o_icetablesublim,h2o_ice,d_h2oice,stopPEM) |
---|
| 822 | call evol_co2_ice(ngrid,nslope,co2_ice,d_co2ice) |
---|
[3319] | 823 | if (layering_algo) then |
---|
| 824 | do islope = 1,nslope |
---|
| 825 | do ig = 1,ngrid |
---|
[3498] | 826 | call make_layering(stratif(ig,islope),d_co2ice(ig,islope),d_h2oice(ig,islope),d_dust,new_str(ig,islope),new_lag1(ig,islope),new_lag2(ig,islope),stopPEM,current1(ig,islope)%p,current2(ig,islope)%p) |
---|
[3319] | 827 | enddo |
---|
[3297] | 828 | enddo |
---|
[3319] | 829 | endif |
---|
[2794] | 830 | |
---|
| 831 | !------------------------ |
---|
| 832 | ! II Run |
---|
[3149] | 833 | ! II_c Flow of glaciers |
---|
[2794] | 834 | !------------------------ |
---|
[3181] | 835 | if (co2ice_flow .and. nslope > 1) call flow_co2glaciers(timelen,ngrid,nslope,iflat,subslope_dist,def_slope_mean,vmr_co2_PEM_phys,ps_timeseries, & |
---|
[3498] | 836 | global_avg_press_PCM,global_avg_press_new,co2_ice,flag_co2flow,flag_co2flow_mesh) |
---|
[3367] | 837 | if (h2oice_flow .and. nslope > 1) call flow_h2oglaciers(timelen,ngrid,nslope,iflat,subslope_dist,def_slope_mean,tsurf_avg,h2o_ice,flag_h2oflow,flag_h2oflow_mesh) |
---|
[3065] | 838 | |
---|
[2794] | 839 | !------------------------ |
---|
| 840 | ! II Run |
---|
[2835] | 841 | ! II_d Update surface and soil temperatures |
---|
[2794] | 842 | !------------------------ |
---|
[2835] | 843 | ! II_d.1 Update Tsurf |
---|
[3028] | 844 | write(*,*) "Updating the new Tsurf" |
---|
| 845 | bool_sublim = .false. |
---|
[3367] | 846 | Tsurfavg_before_saved = tsurf_avg |
---|
[3028] | 847 | do ig = 1,ngrid |
---|
| 848 | do islope = 1,nslope |
---|
[3330] | 849 | if (is_co2ice_ini(ig,islope) .and. co2_ice(ig,islope) < 1.e-10 .and. .not. co2ice_disappeared(ig,islope)) then ! co2 ice disappeared, look for closest point without co2ice |
---|
[3331] | 850 | co2ice_disappeared(ig,islope) = .true. |
---|
[3028] | 851 | if (latitude_deg(ig) > 0) then |
---|
| 852 | do ig_loop = ig,ngrid |
---|
| 853 | do islope_loop = islope,iflat,-1 |
---|
[3330] | 854 | if (.not. is_co2ice_ini(ig_loop,islope_loop) .and. co2_ice(ig_loop,islope_loop) < 1.e-10) then |
---|
[3367] | 855 | tsurf_avg(ig,islope) = tsurf_avg(ig_loop,islope_loop) |
---|
[3028] | 856 | bool_sublim = .true. |
---|
| 857 | exit |
---|
| 858 | endif |
---|
| 859 | enddo |
---|
| 860 | if (bool_sublim) exit |
---|
| 861 | enddo |
---|
| 862 | else |
---|
| 863 | do ig_loop = ig,1,-1 |
---|
| 864 | do islope_loop = islope,iflat |
---|
[3330] | 865 | if (.not. is_co2ice_ini(ig_loop,islope_loop) .and. co2_ice(ig_loop,islope_loop) < 1.e-10) then |
---|
[3367] | 866 | tsurf_avg(ig,islope) = tsurf_avg(ig_loop,islope_loop) |
---|
[3028] | 867 | bool_sublim = .true. |
---|
| 868 | exit |
---|
| 869 | endif |
---|
| 870 | enddo |
---|
| 871 | if (bool_sublim) exit |
---|
| 872 | enddo |
---|
[2835] | 873 | endif |
---|
[3149] | 874 | if ((co2_ice(ig,islope) < 1.e-10) .and. (h2o_ice(ig,islope) > frost_albedo_threshold)) then |
---|
[3028] | 875 | albedo(ig,1,islope) = albedo_h2o_frost |
---|
| 876 | albedo(ig,2,islope) = albedo_h2o_frost |
---|
| 877 | else |
---|
| 878 | albedo(ig,1,islope) = albedodat(ig) |
---|
[3065] | 879 | albedo(ig,2,islope) = albedodat(ig) |
---|
[3028] | 880 | emis(ig,islope) = emissiv |
---|
| 881 | endif |
---|
[3498] | 882 | else if ((co2_ice(ig,islope) > 1.e-3) .and. (d_co2ice(ig,islope) > 1.e-10)) then ! Put tsurf as tcond co2 |
---|
[3028] | 883 | ave = 0. |
---|
| 884 | do t = 1,timelen |
---|
[3367] | 885 | ave = ave + beta_clap_co2/(alpha_clap_co2 - log(vmr_co2_PEM_phys(ig,t)*ps_timeseries(ig,t)/100.)) |
---|
[2794] | 886 | enddo |
---|
[3367] | 887 | tsurf_avg(ig,islope) = ave/timelen |
---|
[2835] | 888 | endif |
---|
| 889 | enddo |
---|
[3028] | 890 | enddo |
---|
[2794] | 891 | |
---|
[3028] | 892 | do t = 1,timelen |
---|
[3367] | 893 | tsurf_PCM_timeseries(:,:,t) = tsurf_PCM_timeseries(:,:,t) + tsurf_avg - Tsurfavg_before_saved |
---|
[3028] | 894 | enddo |
---|
| 895 | ! for the start |
---|
| 896 | do ig = 1,ngrid |
---|
[2835] | 897 | do islope = 1,nslope |
---|
[3367] | 898 | tsurf(ig,islope) = tsurf(ig,islope) - (Tsurfavg_before_saved(ig,islope) - tsurf_avg(ig,islope)) |
---|
[2794] | 899 | enddo |
---|
[3028] | 900 | enddo |
---|
[2794] | 901 | |
---|
[3028] | 902 | if (soil_pem) then |
---|
[2794] | 903 | |
---|
[2835] | 904 | ! II_d.2 Update soil temperature |
---|
[3426] | 905 | write(*,*)"Updating soil temperature" |
---|
[3028] | 906 | allocate(Tsoil_locslope(ngrid,nsoilmx_PEM)) |
---|
[3426] | 907 | do islope = 1,nslope |
---|
| 908 | call compute_tsoil_pem(ngrid,nsoilmx_PEM,.true.,TI_PEM(:,:,islope),timestep,tsurf_avg(:,islope),tsoil_PEM(:,:,islope)) |
---|
| 909 | call compute_tsoil_pem(ngrid,nsoilmx_PEM,.false.,TI_PEM(:,:,islope),timestep,tsurf_avg(:,islope),tsoil_PEM(:,:,islope)) |
---|
[2794] | 910 | |
---|
[3028] | 911 | do t = 1,timelen |
---|
[3426] | 912 | Tsoil_locslope(:,1:nsoilmx) = tsoil_PEM(:,1:nsoilmx,islope) + tsoil_anom(:,:,islope,t) |
---|
| 913 | Tsoil_locslope(:,nsoilmx + 1:) = tsoil_PEM(:,nsoilmx + 1:,islope) |
---|
[3028] | 914 | do ig = 1,ngrid |
---|
| 915 | do isoil = 1,nsoilmx_PEM |
---|
| 916 | watersoil_density_PEM_timeseries(ig,isoil,islope,t) = exp(beta_clap_h2o/Tsoil_locslope(ig,isoil) + alpha_clap_h2o)/Tsoil_locslope(ig,isoil)*mmol(igcm_h2o_vap)/(mugaz*r) |
---|
[3426] | 917 | if (isnan(tsoil_PEM(ig,isoil,islope))) call abort_pem("PEM - Update Tsoil","NaN detected in tsoil_PEM",1) |
---|
[3028] | 918 | enddo |
---|
| 919 | enddo |
---|
| 920 | enddo |
---|
| 921 | enddo |
---|
[3367] | 922 | watersoil_density_PEM_avg = sum(watersoil_density_PEM_timeseries,4)/timelen |
---|
[2794] | 923 | |
---|
[3028] | 924 | write(*,*) "Update of soil temperature done" |
---|
[2888] | 925 | |
---|
[3426] | 926 | deallocate(Tsoil_locslope) |
---|
[2849] | 927 | |
---|
[2835] | 928 | ! II_d.3 Update the ice table |
---|
[3170] | 929 | if (icetable_equilibrium) then |
---|
[3493] | 930 | write(*,*) "Compute ice table (equilibrium method)" |
---|
[3525] | 931 | icetable_thickness_old = icetable_thickness |
---|
[3493] | 932 | call computeice_table_equilibrium(ngrid,nslope,nsoilmx_PEM,watercaptag,watersurf_density_avg,watersoil_density_PEM_avg,TI_PEM(:,1,:),icetable_depth,icetable_thickness) |
---|
[3525] | 933 | call compute_massh2o_exchange_ssi(ngrid,nslope,nsoilmx_PEM,icetable_thickness_old,ice_porefilling_old,tsurf_avg,tsoil_PEM,delta_h2o_icetablesublim) ! Mass of H2O exchange between the ssi and the atmosphere |
---|
[3490] | 934 | else if (icetable_dynamic) then |
---|
[3493] | 935 | write(*,*) "Compute ice table (dynamic method)" |
---|
[3525] | 936 | ice_porefilling_old = ice_porefilling |
---|
[3493] | 937 | allocate(porefill(nsoilmx_PEM)) |
---|
| 938 | do ig = 1,ngrid |
---|
| 939 | do islope = 1,nslope |
---|
| 940 | call dyn_ss_ice_m(icetable_depth(ig,islope),tsurf_avg(ig,islope),tsoil_PEM(ig,:,islope),nsoilmx_PEM,TI_PEM(ig,1,nslope),ps(ig),sum(q_h2o_PEM_phys(ig,:))/size(q_h2o_PEM_phys,2),ice_porefilling(ig,:,islope),porefill,ssi_depth) |
---|
| 941 | icetable_depth(ig,islope) = ssi_depth |
---|
| 942 | ice_porefilling(ig,:,islope) = porefill |
---|
| 943 | enddo |
---|
| 944 | enddo |
---|
| 945 | deallocate(porefill) |
---|
[3525] | 946 | call compute_massh2o_exchange_ssi(ngrid,nslope,nsoilmx_PEM,icetable_thickness_old,ice_porefilling_old,tsurf_avg, tsoil_PEM,delta_h2o_icetablesublim) ! Mass of H2O exchange between the ssi and the atmosphere |
---|
[3486] | 947 | endif |
---|
| 948 | |
---|
[3122] | 949 | ! II_d.4 Update the soil thermal properties |
---|
[3525] | 950 | call update_soil_thermalproperties(ngrid,nslope,nsoilmx_PEM,d_h2oice,h2o_ice,global_avg_press_new,icetable_depth,icetable_thickness,ice_porefilling,icetable_equilibrium,icetable_dynamic,TI_PEM) |
---|
[2794] | 951 | |
---|
[3143] | 952 | ! II_d.5 Update the mass of the regolith adsorbed |
---|
[3028] | 953 | if (adsorption_pem) then |
---|
[3512] | 954 | call regolith_adsorption(ngrid,nslope,nsoilmx_PEM,timelen,d_h2oice,d_co2ice, & |
---|
[3149] | 955 | h2o_ice,co2_ice,tsoil_PEM,TI_PEM,ps_timeseries,q_co2_PEM_phys,q_h2o_PEM_phys, & |
---|
| 956 | h2o_adsorbded_phys,delta_h2o_adsorbded,co2_adsorbded_phys,delta_co2_adsorbded) |
---|
[2794] | 957 | |
---|
[3028] | 958 | totmassco2_adsorbded = 0. |
---|
| 959 | totmassh2o_adsorbded = 0. |
---|
| 960 | do ig = 1,ngrid |
---|
[3493] | 961 | do islope = 1,nslope |
---|
[3264] | 962 | do l = 1,nsoilmx_PEM |
---|
[3493] | 963 | if (l == 1) then |
---|
[3264] | 964 | totmassco2_adsorbded = totmassco2_adsorbded + co2_adsorbded_phys(ig,l,islope)*(layer_PEM(l))* & |
---|
| 965 | subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig) |
---|
| 966 | totmassh2o_adsorbded = totmassh2o_adsorbded + h2o_adsorbded_phys(ig,l,islope)*(layer_PEM(l))* & |
---|
| 967 | subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig) |
---|
| 968 | else |
---|
[3493] | 969 | totmassco2_adsorbded = totmassco2_adsorbded + co2_adsorbded_phys(ig,l,islope)*(layer_PEM(l) - layer_PEM(l - 1))* & |
---|
[3264] | 970 | subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig) |
---|
[3493] | 971 | totmassh2o_adsorbded = totmassh2o_adsorbded + h2o_adsorbded_phys(ig,l,islope)*(layer_PEM(l) - layer_PEM(l - 1))* & |
---|
[3264] | 972 | subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig) |
---|
| 973 | endif |
---|
[3028] | 974 | enddo |
---|
| 975 | enddo |
---|
| 976 | enddo |
---|
| 977 | write(*,*) "Tot mass of CO2 in the regolith=", totmassco2_adsorbded |
---|
| 978 | write(*,*) "Tot mass of H2O in the regolith=", totmassh2o_adsorbded |
---|
| 979 | endif |
---|
| 980 | endif !soil_pem |
---|
| 981 | |
---|
[2794] | 982 | !------------------------ |
---|
| 983 | ! II Run |
---|
[3088] | 984 | ! II_e Outputs |
---|
[2794] | 985 | !------------------------ |
---|
[3367] | 986 | call writediagpem(ngrid,'ps_avg','Global average pressure','Pa',0,(/global_avg_press_new/)) |
---|
[3088] | 987 | do islope = 1,nslope |
---|
| 988 | write(str2(1:2),'(i2.2)') islope |
---|
[3181] | 989 | call writediagpem(ngrid,'h2o_ice_slope'//str2,'H2O ice','kg.m-2',2,h2o_ice(:,islope)) |
---|
| 990 | call writediagpem(ngrid,'co2_ice_slope'//str2,'CO2 ice','kg.m-2',2,co2_ice(:,islope)) |
---|
[3498] | 991 | call writediagpem(ngrid,'d_h2oice_slope'//str2,'H2O ice tend','kg.m-2.year-1',2,d_h2oice(:,islope)) |
---|
| 992 | call writediagpem(ngrid,'d_co2ice_slope'//str2,'CO2 ice tend','kg.m-2.year-1',2,d_co2ice(:,islope)) |
---|
[3181] | 993 | call writediagpem(ngrid,'Flow_co2ice_slope'//str2,'CO2 ice flow','Boolean',2,flag_co2flow(:,islope)) |
---|
| 994 | call writediagpem(ngrid,'tsurf_slope'//str2,'tsurf','K',2,tsurf(:,islope)) |
---|
[3339] | 995 | if (icetable_equilibrium) then |
---|
[3493] | 996 | call writediagpem(ngrid,'ssi_depth_slope'//str2,'ice table depth','m',2,icetable_depth(:,islope)) |
---|
| 997 | call writediagpem(ngrid,'ssi_thick_slope'//str2,'ice table depth','m',2,icetable_thickness(:,islope)) |
---|
[3490] | 998 | else if (icetable_dynamic) then |
---|
[3493] | 999 | call writediagpem(ngrid,'ssi_depth_slope'//str2,'ice table depth','m',2,icetable_depth(:,islope)) |
---|
| 1000 | call writediagpem(ngrid,'ssi_thick_slope'//str2,'ice table depth','m',2,icetable_thickness(:,islope)) |
---|
[3486] | 1001 | endif |
---|
| 1002 | |
---|
[3339] | 1003 | if (soil_pem) then |
---|
[3171] | 1004 | call writediagsoilpem(ngrid,'tsoil_PEM_slope'//str2,'tsoil_PEM','K',3,tsoil_PEM(:,:,islope)) |
---|
| 1005 | call writediagsoilpem(ngrid,'inertiesoil_PEM_slope'//str2,'TI_PEM','K',3,TI_PEM(:,:,islope)) |
---|
| 1006 | if (adsorption_pem) then |
---|
| 1007 | call writediagsoilpem(ngrid,'co2_ads_slope'//str2,'co2_ads','K',3,co2_adsorbded_phys(:,:,islope)) |
---|
| 1008 | call writediagsoilpem(ngrid,'h2o_ads_slope'//str2,'h2o_ads','K',3,h2o_adsorbded_phys(:,:,islope)) |
---|
| 1009 | endif |
---|
| 1010 | endif |
---|
[3088] | 1011 | enddo |
---|
| 1012 | |
---|
| 1013 | !------------------------ |
---|
| 1014 | ! II Run |
---|
| 1015 | ! II_f Update the tendencies |
---|
| 1016 | !------------------------ |
---|
[3516] | 1017 | call recomp_tend_co2_slope(ngrid,nslope,timelen,d_co2ice,d_co2ice_ini,co2_ice,emis,vmr_co2_PCM,vmr_co2_PEM_phys,ps_timeseries,global_avg_press_PCM,global_avg_press_new) |
---|
[2794] | 1018 | |
---|
[2835] | 1019 | !------------------------ |
---|
| 1020 | ! II Run |
---|
[3088] | 1021 | ! II_g Checking the stopping criterion |
---|
[2835] | 1022 | !------------------------ |
---|
[3389] | 1023 | |
---|
| 1024 | write(*,*) "Checking the stopping criteria..." |
---|
[3327] | 1025 | call stopping_crit_h2o_ice(cell_area,h2oice_ini_surf,ini_h2oice_sublim,h2o_ice,stopPEM,ngrid) |
---|
| 1026 | call stopping_crit_co2(cell_area,co2ice_ini_surf,ini_co2ice_sublim,co2_ice,stopPEM,ngrid,global_avg_press_PCM,global_avg_press_new,nslope) |
---|
[3498] | 1027 | i_myear_leg = i_myear_leg + dt |
---|
| 1028 | i_myear = i_myear + dt |
---|
| 1029 | if (stopPEM <= 0 .and. i_myear_leg >= n_myear_leg) stopPEM = 5 |
---|
[3430] | 1030 | if (stopPEM <= 0 .and. i_myear >= n_myear) stopPEM = 6 |
---|
[3389] | 1031 | call system_clock(c2) |
---|
[3430] | 1032 | if (stopPEM <= 0 .and. timewall .and. real((c2 - c1)/cr) >= timelimit - antetime) stopPEM = 7 |
---|
[3432] | 1033 | if (stopPEM > 0) then |
---|
[3149] | 1034 | select case (stopPEM) |
---|
| 1035 | case(1) |
---|
[3159] | 1036 | write(*,*) "STOPPING because surface of h2o ice sublimating is too low:", stopPEM, "See message above." |
---|
[3149] | 1037 | case(2) |
---|
[3159] | 1038 | write(*,*) "STOPPING because tendencies on h2o ice = 0:", stopPEM, "See message above." |
---|
[3149] | 1039 | case(3) |
---|
| 1040 | write(*,*) "STOPPING because surface of co2 ice sublimating is too low:", stopPEM, "See message above." |
---|
| 1041 | case(4) |
---|
| 1042 | write(*,*) "STOPPING because surface global pressure changed too much:", stopPEM, "See message above." |
---|
| 1043 | case(5) |
---|
[3419] | 1044 | write(*,*) "STOPPING because maximum number of iterations is reached (possibly due to orbital parameters):", stopPEM |
---|
[3149] | 1045 | case(6) |
---|
| 1046 | write(*,*) "STOPPING because maximum number of Martian years to be simulated is reached:", stopPEM |
---|
[3363] | 1047 | case(7) |
---|
| 1048 | write(*,*) "STOPPING because the time limit for the PEM job will be reached soon:", stopPEM |
---|
[3430] | 1049 | case(8) |
---|
| 1050 | write(*,*) "STOPPING because the layering algorithm met an hasty end:", stopPEM |
---|
[3149] | 1051 | case default |
---|
| 1052 | write(*,*) "STOPPING with unknown stopping criterion code:", stopPEM |
---|
| 1053 | end select |
---|
[2779] | 1054 | exit |
---|
[3028] | 1055 | else |
---|
[3143] | 1056 | write(*,*) "The PEM can continue!" |
---|
[3498] | 1057 | write(*,*) "Number of iterations of the PEM: i_myear_leg =", i_myear_leg |
---|
[3039] | 1058 | write(*,*) "Number of simulated Martian years: i_myear =", i_myear |
---|
[3028] | 1059 | endif |
---|
[2779] | 1060 | |
---|
[3149] | 1061 | global_avg_press_old = global_avg_press_new |
---|
[2779] | 1062 | |
---|
[3149] | 1063 | enddo ! big time iteration loop of the pem |
---|
[3028] | 1064 | !------------------------------ END RUN -------------------------------- |
---|
[2779] | 1065 | |
---|
[3028] | 1066 | !------------------------------- OUTPUT -------------------------------- |
---|
[2794] | 1067 | !------------------------ |
---|
| 1068 | ! III Output |
---|
[2835] | 1069 | ! III_a Update surface value for the PCM start files |
---|
[2794] | 1070 | !------------------------ |
---|
[2835] | 1071 | ! III_a.1 Ice update (for startfi) |
---|
[2779] | 1072 | |
---|
[3149] | 1073 | watercap = 0. |
---|
[3159] | 1074 | perennial_co2ice = co2_ice |
---|
[3028] | 1075 | do ig = 1,ngrid |
---|
[3159] | 1076 | ! H2O ice metamorphism |
---|
[3161] | 1077 | if (metam_h2oice .and. sum(qsurf(ig,igcm_h2o_ice,:)*subslope_dist(ig,:)/cos(pi*def_slope_mean(:)/180.)) > metam_h2oice_threshold) then |
---|
[3308] | 1078 | h2o_ice(ig,:) = h2o_ice(ig,:) + qsurf(ig,igcm_h2o_ice,:) - metam_h2oice_threshold |
---|
| 1079 | qsurf(ig,igcm_h2o_ice,:) = metam_h2oice_threshold |
---|
[3159] | 1080 | endif |
---|
| 1081 | |
---|
| 1082 | ! Is H2O ice still considered as an infinite reservoir for the PCM? |
---|
[3149] | 1083 | if (sum(h2o_ice(ig,:)*subslope_dist(ig,:)/cos(pi*def_slope_mean(:)/180.)) > inf_h2oice_threshold) then |
---|
[3159] | 1084 | ! There is enough ice to be considered as an infinite reservoir |
---|
[3149] | 1085 | watercaptag(ig) = .true. |
---|
| 1086 | else |
---|
[3159] | 1087 | ! There too little ice to be considered as an infinite reservoir so ice is transferred to the frost |
---|
[3149] | 1088 | watercaptag(ig) = .false. |
---|
| 1089 | qsurf(ig,igcm_h2o_ice,:) = qsurf(ig,igcm_h2o_ice,:) + h2o_ice(ig,:) |
---|
| 1090 | h2o_ice(ig,:) = 0. |
---|
[3028] | 1091 | endif |
---|
[3159] | 1092 | |
---|
| 1093 | ! CO2 ice metamorphism |
---|
[3161] | 1094 | if (metam_co2ice .and. sum(qsurf(ig,igcm_co2,:)*subslope_dist(ig,:)/cos(pi*def_slope_mean(:)/180.)) > metam_co2ice_threshold) then |
---|
[3308] | 1095 | perennial_co2ice(ig,:) = perennial_co2ice(ig,:) + qsurf(ig,igcm_co2,:) - metam_co2ice_threshold |
---|
| 1096 | qsurf(ig,igcm_co2,:) = metam_co2ice_threshold |
---|
[3159] | 1097 | endif |
---|
[3028] | 1098 | enddo |
---|
[2888] | 1099 | |
---|
[3446] | 1100 | ! III_a.2 Tsoil update (for startfi) |
---|
[3028] | 1101 | if (soil_pem) then |
---|
[3149] | 1102 | call interpol_TI_PEM2PCM(ngrid,nslope,nsoilmx_PEM,nsoilmx,TI_PEM,inertiesoil) |
---|
[3426] | 1103 | tsoil = tsoil_PEM(:,1:nsoilmx,:) + tsoil_anom(:,:,:,timelen) |
---|
[3172] | 1104 | #ifndef CPP_STD |
---|
[3181] | 1105 | flux_geo = fluxgeo |
---|
[3172] | 1106 | #endif |
---|
[3028] | 1107 | endif |
---|
[3426] | 1108 | deallocate(tsoil_anom) |
---|
[2779] | 1109 | |
---|
[2835] | 1110 | ! III_a.4 Pressure (for start) |
---|
[3149] | 1111 | ps = ps*global_avg_press_new/global_avg_press_PCM |
---|
| 1112 | ps_start_PCM = ps_start_PCM*global_avg_press_new/global_avg_press_PCM |
---|
[2794] | 1113 | |
---|
[2835] | 1114 | ! III_a.5 Tracer (for start) |
---|
[3028] | 1115 | allocate(zplev_new(ngrid,nlayer + 1)) |
---|
[2835] | 1116 | |
---|
[3028] | 1117 | do l = 1,nlayer + 1 |
---|
[3149] | 1118 | zplev_new(:,l) = ap(l) + bp(l)*ps_start_PCM |
---|
[3028] | 1119 | enddo |
---|
[2835] | 1120 | |
---|
[3028] | 1121 | do nnq = 1,nqtot |
---|
| 1122 | if (noms(nnq) /= "co2") then |
---|
| 1123 | do l = 1,llm - 1 |
---|
| 1124 | do ig = 1,ngrid |
---|
[3149] | 1125 | q(ig,l,nnq) = q(ig,l,nnq)*(zplev_PCM(ig,l) - zplev_PCM(ig,l + 1))/(zplev_new(ig,l) - zplev_new(ig,l + 1)) |
---|
[3028] | 1126 | enddo |
---|
| 1127 | q(:,llm,nnq) = q(:,llm - 1,nnq) |
---|
| 1128 | enddo |
---|
| 1129 | else |
---|
| 1130 | do l = 1,llm - 1 |
---|
| 1131 | do ig = 1,ngrid |
---|
[3149] | 1132 | q(ig,l,nnq) = q(ig,l,nnq)*(zplev_PCM(ig,l) - zplev_PCM(ig,l + 1))/(zplev_new(ig,l) - zplev_new(ig,l + 1)) & |
---|
| 1133 | + ((zplev_new(ig,l) - zplev_new(ig,l + 1)) - (zplev_PCM(ig,l) - zplev_PCM(ig,l + 1)))/(zplev_new(ig,l) - zplev_new(ig,l + 1)) |
---|
[3028] | 1134 | enddo |
---|
| 1135 | q(:,llm,nnq) = q(:,llm - 1,nnq) |
---|
| 1136 | enddo |
---|
| 1137 | endif |
---|
| 1138 | enddo |
---|
[2835] | 1139 | |
---|
[3096] | 1140 | ! Conserving the tracers mass for PCM start files |
---|
[3028] | 1141 | do nnq = 1,nqtot |
---|
| 1142 | do ig = 1,ngrid |
---|
| 1143 | do l = 1,llm - 1 |
---|
| 1144 | if (q(ig,l,nnq) > 1 .and. (noms(nnq) /= "dust_number") .and. (noms(nnq) /= "ccn_number") .and. (noms(nnq) /= "stormdust_number") .and. (noms(nnq) /= "topdust_number")) then |
---|
[3065] | 1145 | extra_mass = (q(ig,l,nnq) - 1)*(zplev_new(ig,l) - zplev_new(ig,l + 1)) |
---|
| 1146 | q(ig,l,nnq) = 1. |
---|
| 1147 | q(ig,l + 1,nnq) = q(ig,l + 1,nnq) + extra_mass*(zplev_new(ig,l + 1) - zplev_new(ig,l + 2)) |
---|
[3028] | 1148 | write(*,*) 'extra ',noms(nnq),extra_mass, noms(nnq) /= "dust_number",noms(nnq) /= "ccn_number" |
---|
[2835] | 1149 | endif |
---|
[3028] | 1150 | if (q(ig,l,nnq) < 0) q(ig,l,nnq) = 1.e-30 |
---|
| 1151 | enddo |
---|
| 1152 | enddo |
---|
| 1153 | enddo |
---|
[2779] | 1154 | |
---|
[3498] | 1155 | if (evol_orbit_pem) call recomp_orb_param(i_myear,i_myear_leg) |
---|
[2779] | 1156 | |
---|
| 1157 | !------------------------ |
---|
[3028] | 1158 | ! III Output |
---|
[3317] | 1159 | ! III_b Write "restart.nc" and "restartfi.nc" |
---|
[3028] | 1160 | !------------------------ |
---|
[3317] | 1161 | ! III_b.1 Write "restart.nc" |
---|
[3042] | 1162 | ptimestep = iphysiq*daysec/real(day_step)/nsplit_phys ! dtphys/nsplit_phys |
---|
[3028] | 1163 | pday = day_ini |
---|
[3042] | 1164 | ztime_fin = time_phys |
---|
[2779] | 1165 | |
---|
[3028] | 1166 | allocate(p(ip1jmp1,nlayer + 1)) |
---|
[2980] | 1167 | #ifndef CPP_1D |
---|
[3442] | 1168 | ! Correction on teta due to surface pressure changes |
---|
| 1169 | do l = 1,nlayer |
---|
| 1170 | do i = 1,ip1jmp1 |
---|
[3492] | 1171 | teta(i,l)= teta(i,l)*(ps0(i)/ps(i))**kappa |
---|
[3442] | 1172 | enddo |
---|
| 1173 | enddo |
---|
| 1174 | ! Correction on atmospheric pressure |
---|
| 1175 | call pression(ip1jmp1,ap,bp,ps,p) |
---|
| 1176 | ! Correction on the mass of atmosphere |
---|
[3028] | 1177 | call massdair(p,masse) |
---|
[3317] | 1178 | call dynredem0("restart.nc",day_ini,phis) |
---|
| 1179 | call dynredem1("restart.nc",time_0,vcov,ucov,teta,q,masse,ps) |
---|
| 1180 | write(*,*) "restart.nc has been written" |
---|
[2980] | 1181 | #else |
---|
[3363] | 1182 | call writerestart1D('restart1D.txt',ps(1),tsurf(1,:),nlayer,size(tsurf,2),teta,ucov,vcov,nq,noms,qsurf(1,:,:),q) |
---|
| 1183 | write(*,*) "restart1D.txt has been written" |
---|
[2980] | 1184 | #endif |
---|
| 1185 | |
---|
[3317] | 1186 | ! III_b.2 Write the "restartfi.nc" |
---|
[2842] | 1187 | #ifndef CPP_STD |
---|
[3317] | 1188 | call physdem0("restartfi.nc",longitude,latitude,nsoilmx,ngrid, & |
---|
[3327] | 1189 | nlayer,nq,ptimestep,pday,0.,cell_area,albedodat, & |
---|
[3028] | 1190 | inertiedat,def_slope,subslope_dist) |
---|
[3327] | 1191 | call physdem1("restartfi.nc",nsoilmx,ngrid,nlayer,nq,nqsoil, & |
---|
[3114] | 1192 | ptimestep,ztime_fin,tsurf,tsoil,inertiesoil, & |
---|
| 1193 | albedo,emis,q2,qsurf,qsoil,tauscaling,totcloudfrac, & |
---|
[3130] | 1194 | wstar,watercap,perennial_co2ice) |
---|
[2842] | 1195 | #else |
---|
[3317] | 1196 | call physdem0("restartfi.nc",longitude,latitude,nsoilmx,ngrid, & |
---|
[3327] | 1197 | nlayer,nq,ptimestep,pday,time_phys,cell_area, & |
---|
[3028] | 1198 | albedo_bareground,inertiedat,zmea,zstd,zsig,zgam,zthe) |
---|
[3327] | 1199 | call physdem1("restartfi.nc",nsoilmx,ngrid,nlayer,nq,nqsoil, & |
---|
[3114] | 1200 | ptimestep,ztime_fin,tsurf,tsoil,emis,q2,qsurf,qsoil, & |
---|
| 1201 | cloudfrac,totcloudfrac,hice,rnat,pctsrf_sic,tslab, & |
---|
| 1202 | tsea_ice,sea_ice) |
---|
[2842] | 1203 | #endif |
---|
[3317] | 1204 | write(*,*) "restartfi.nc has been written" |
---|
[2842] | 1205 | |
---|
[2794] | 1206 | !------------------------ |
---|
| 1207 | ! III Output |
---|
[3161] | 1208 | ! III_c Write the "restartpem.nc" |
---|
[2794] | 1209 | !------------------------ |
---|
[3319] | 1210 | if (layering_algo) nb_str_max = get_nb_str_max(stratif,ngrid,nslope) ! Get the maximum number of "stratum" in the stratification (layerings) |
---|
[3206] | 1211 | call pemdem0("restartpem.nc",longitude,latitude,cell_area,ngrid,nslope,def_slope,subslope_dist) |
---|
[3088] | 1212 | call pemdem1("restartpem.nc",i_myear,nsoilmx_PEM,ngrid,nslope,tsoil_PEM, & |
---|
[3493] | 1213 | TI_PEM,icetable_depth,icetable_thickness,ice_porefilling, & |
---|
[3297] | 1214 | co2_adsorbded_phys,h2o_adsorbded_phys,h2o_ice,stratif) |
---|
[3088] | 1215 | write(*,*) "restartpem.nc has been written" |
---|
[2779] | 1216 | |
---|
[3498] | 1217 | call info_PEM(i_myear_leg,stopPEM,i_myear,n_myear) |
---|
[3149] | 1218 | |
---|
[3498] | 1219 | write(*,*) "The PEM has run for", i_myear_leg, "Martian years." |
---|
[3039] | 1220 | write(*,*) "The chained simulation has run for", i_myear, "Martian years =", i_myear*convert_years, "Earth years." |
---|
| 1221 | write(*,*) "The reached date is now", (year_bp_ini + i_myear)*convert_years, "Earth years." |
---|
[3498] | 1222 | write(*,*) "PEM: so far, so good!" |
---|
[2794] | 1223 | |
---|
[3319] | 1224 | if (layering_algo) then |
---|
| 1225 | do islope = 1,nslope |
---|
| 1226 | do i = 1,ngrid |
---|
| 1227 | call del_layering(stratif(i,islope)) |
---|
| 1228 | enddo |
---|
[3297] | 1229 | enddo |
---|
[3319] | 1230 | deallocate(new_str,new_lag1,new_lag2,current1,current2) |
---|
| 1231 | endif |
---|
[3149] | 1232 | deallocate(vmr_co2_PCM,ps_timeseries,tsurf_PCM_timeseries,q_co2_PEM_phys,q_h2o_PEM_phys) |
---|
[3367] | 1233 | deallocate(watersurf_density_avg,watersoil_density_timeseries,Tsurfavg_before_saved) |
---|
| 1234 | deallocate(tsoil_phys_PEM_timeseries,watersoil_density_PEM_timeseries,watersoil_density_PEM_avg) |
---|
[3525] | 1235 | deallocate(delta_co2_adsorbded,delta_h2o_adsorbded,vmr_co2_PEM_phys,delta_h2o_icetablesublim) |
---|
| 1236 | deallocate(icetable_thickness_old,ice_porefilling_old) |
---|
[3330] | 1237 | deallocate(is_co2ice_ini,co2ice_disappeared,ini_co2ice_sublim,ini_h2oice_sublim,stratif) |
---|
[3028] | 1238 | !----------------------------- END OUTPUT ------------------------------ |
---|
[2897] | 1239 | |
---|
[2779] | 1240 | END PROGRAM pem |
---|