source: trunk/LMDZ.COMMON/libf/evolution/pem.F90 @ 3327

Last change on this file since 3327 was 3327, checked in by jbclement, 14 months ago

PEM:

  • Update of some default parameters;
  • Correction of a bug when the ice table was too low for the PEM subsurface discretization;
  • Correction of the computation for the change of sublimating ice necessary to the stopping criteria (the mistake was introduced in r3149) + simplification of the algorithm + renaming of variables with more explicit names;
  • Cleaning of "soil_thermalproperties_mod.F90".

JBC

File size: 57.7 KB
RevLine 
[2779]1!------------------------
[3028]2! I   Initialization
[3161]3!    I_a Read the "run.def"
[3317]4!    I_b Read the "start.nc" and "startfi.nc"
[2835]5!    I_c Subslope parametrisation
[3161]6!    I_d Read the PCM data and convert them to the physical grid
[3028]7!    I_e Initialization of the PEM variable and soil
[3143]8!    I_f Compute tendencies
[2835]9!    I_g Save initial PCM situation
[3161]10!    I_h Read the "startpem.nc"
[2835]11!    I_i Compute orbit criterion
[2779]12
13! II  Run
[3028]14!    II_a Update pressure, ice and tracers
[3149]15!    II_b Evolution of ice
16!    II_c Flow of glaciers
[2835]17!    II_d Update surface and soil temperatures
[3088]18!    II_e Outputs
19!    II_f Update the tendencies
20!    II_g Checking the stopping criterion
[2779]21
22! III Output
[2835]23!    III_a Update surface value for the PCM start files
[3317]24!    III_b Write the "restart.nc" and "restartfi.nc"
[3161]25!    III_c Write the "restartpem.nc"
[2779]26!------------------------
27
28PROGRAM pem
29
[3161]30use phyetat0_mod,               only: phyetat0
31use phyredem,                   only: physdem0, physdem1
32use netcdf,                     only: nf90_open, NF90_NOWRITE, nf90_get_var, nf90_inq_varid, nf90_close
33use turb_mod,                   only: q2, wstar
[3206]34use comslope_mod,               only: nslope, def_slope, def_slope_mean, subslope_dist, iflat, ini_comslope_h
[3161]35use logic_mod,                  only: iflag_phys
36use mod_const_mpi,              only: COMM_LMDZ
[3028]37use infotrac
[3161]38use geometry_mod,               only: latitude_deg
39use conf_pem_mod,               only: conf_pem
40use pemredem,                   only: pemdem0, pemdem1
41use glaciers_mod,               only: flow_co2glaciers, flow_h2oglaciers, co2ice_flow, h2oice_flow, inf_h2oice_threshold, &
42                                      metam_h2oice_threshold, metam_co2ice_threshold, metam_h2oice, metam_co2ice
43use stopping_crit_mod,          only: stopping_crit_h2o_ice, stopping_crit_co2
44use constants_marspem_mod,      only: alpha_clap_co2, beta_clap_co2, alpha_clap_h2o, beta_clap_h2o, m_co2, m_noco2
45use evol_ice_mod,               only: evol_co2_ice, evol_h2o_ice
46use comsoil_h_PEM,              only: soil_pem, ini_comsoil_h_PEM, end_comsoil_h_PEM, nsoilmx_PEM, &
[3206]47                                      TI_PEM,                           & ! soil thermal inertia
[3297]48                                      tsoil_PEM, layer_PEM, &             ! Soil temp, number of subsurface layers, soil mid layer depths
[3161]49                                      fluxgeo                             ! Geothermal flux for the PEM and PCM
50use adsorption_mod,             only: regolith_adsorption, adsorption_pem,        & ! Bool to check if adsorption, main subroutine
51                                      ini_adsorption_h_PEM, end_adsorption_h_PEM, & ! Allocate arrays
52                                      co2_adsorbded_phys, h2o_adsorbded_phys        ! Mass of co2 and h2O adsorbded
53use time_evol_mod,              only: dt_pem, evol_orbit_pem, Max_iter_pem, convert_years, year_bp_ini
54use orbit_param_criterion_mod,  only: orbit_param_criterion
55use recomp_orb_param_mod,       only: recomp_orb_param
56use ice_table_mod,              only: porefillingice_depth, porefillingice_thickness, end_ice_table_porefilling, &
[3170]57                                      ini_ice_table_porefilling, icetable_equilibrium, computeice_table_equilibrium,compute_massh2o_exchange_ssi
[3161]58use soil_thermalproperties_mod, only: update_soil_thermalproperties
[3206]59use time_phylmdz_mod,           only: daysec, dtphys
[3161]60use abort_pem_mod,              only: abort_pem
61use soil_settings_PEM_mod,      only: soil_settings_PEM
62use compute_tend_mod,           only: compute_tend
63use info_PEM_mod,               only: info_PEM
64use interpol_TI_PEM2PCM_mod,    only: interpol_TI_PEM2PCM
65use nb_time_step_PCM_mod,       only: nb_time_step_PCM
66use pemetat0_mod,               only: pemetat0
67use read_data_PCM_mod,          only: read_data_PCM
68use recomp_tend_co2_slope_mod,  only: recomp_tend_co2_slope
[3178]69use compute_soiltemp_mod,       only: compute_tsoil_pem
[3181]70use writediagpem_mod,           only: writediagpem, writediagsoilpem
[3207]71use co2condens_mod,             only: CO2cond_ps
[3319]72use layering_mod,               only: tend_dust, ptrarray, stratum, layering, ini_layering, del_layering, make_layering, get_nb_str_max, nb_str_max, layering_algo
[2985]73
[2842]74#ifndef CPP_STD
[3206]75    use comsoil_h,          only: tsoil, nsoilmx, ini_comsoil_h, inertiedat, mlayer, inertiesoil, flux_geo, nqsoil, qsoil
[3028]76    use surfdat_h,          only: tsurf, emis, qsurf, watercap, ini_surfdat_h, &
77                                  albedodat, zmea, zstd, zsig, zgam, zthe,     &
[3206]78                                  albedo_h2o_frost,frost_albedo_threshold,     &
79                                  emissiv, watercaptag, perennial_co2ice, emisice, albedice
[3028]80    use dimradmars_mod,     only: totcloudfrac, albedo
81    use dust_param_mod,     only: tauscaling
[3149]82    use tracer_mod,         only: noms, igcm_h2o_ice, igcm_co2, mmol, igcm_h2o_vap ! Tracer names and molar masses
[3028]83    use mod_phys_lmdz_para, only: is_parallel, is_sequential, is_mpi_root, is_omp_root, is_master
[3096]84    use planete_h,          only: aphelie, periheli, year_day, peri_day, obliquit, iniorbit
[3287]85    use comcstfi_h,         only: pi, rad, g, cpp, mugaz, r
[3143]86    use surfini_mod,        only: surfini
[2842]87#else
[3028]88    use tracer_h,           only: noms, igcm_h2o_ice, igcm_co2 ! Tracer names
89    use phys_state_var_mod, only: cloudfrac, totcloudfrac, albedo_snow_SPECTV,HICE,RNAT,   &
90                                  PCTSRF_SIC, TSLAB, TSEA_ICE, SEA_ICE, ALBEDO_BAREGROUND, &
91                                  ALBEDO_CO2_ICE_SPECTV, phys_state_var_init
[3039]92    use aerosol_mod,        only: iniaerosol
93    use planete_mod,        only: apoastr, periastr, year_day, peri_day, obliquit
[3287]94    use comcstfi_mod,       only: pi, rad, g, cpp, mugaz, r
[2842]95#endif
[2985]96
[3028]97#ifndef CPP_1D
[3076]98    use iniphysiq_mod,            only: iniphysiq
99    use control_mod,              only: iphysiq, day_step, nsplit_phys
[3019]100#else
[3076]101    use time_phylmdz_mod,         only: iphysiq, day_step
[3028]102    use regular_lonlat_mod,       only: init_regular_lonlat
103    use physics_distribution_mod, only: init_physics_distribution
104    use mod_grid_phy_lmdz,        only: regular_lonlat
[3065]105    use init_testphys1d_mod,      only: init_testphys1d
106    use comvert_mod,              only: ap, bp
[3076]107    use writerestart1D_mod,       only: writerestart1D
[2980]108#endif
[2835]109
[3076]110implicit none
[2980]111
[3028]112include "dimensions.h"
113include "paramet.h"
114include "comgeom.h"
115include "iniprint.h"
[3039]116include "callkeys.h"
[2779]117
[3028]118integer ngridmx
119parameter(ngridmx = 2 + (jjm - 1)*iim - 1/jjm)
[2794]120
[3096]121! Same variable names as in the PCM
[3065]122integer, parameter :: nlayer = llm ! Number of vertical layer
123integer            :: ngrid        ! Number of physical grid points
124integer            :: nq           ! Number of tracer
125integer            :: day_ini      ! First day of the simulation
126real               :: pday         ! Physical day
[3149]127real               :: time_phys    ! Same as in PCM
128real               :: ptimestep    ! Same as in PCM
[3297]129real               :: ztime_fin     ! Same as in PCM
[2794]130
[3028]131! Variables to read start.nc
[3317]132character(*), parameter :: start_name = "start.nc" ! Name of the file used to initialize the PEM
[2779]133
[3028]134! Dynamic variables
[3065]135real, dimension(ip1jm,llm)          :: vcov          ! vents covariants
136real, dimension(ip1jmp1,llm)        :: ucov          ! vents covariants
137real, dimension(ip1jmp1,llm)        :: teta          ! temperature potentielle
138real, dimension(:,:,:), allocatable :: q             ! champs advectes
[3143]139real, dimension(ip1jmp1)            :: ps            ! pression au sol
[3149]140real, dimension(:),     allocatable :: ps_start_PCM  ! (ngrid) surface pressure
141real, dimension(:,:),   allocatable :: ps_timeseries ! (ngrid x timelen) instantaneous surface pressure
[3065]142real, dimension(ip1jmp1,llm)        :: masse         ! masse d'air
143real, dimension(ip1jmp1)            :: phis          ! geopotentiel au sol
[3028]144real                                :: time_0
[2779]145
[3028]146! Variables to read starfi.nc
[3317]147character(*), parameter :: startfi_name = "startfi.nc" ! Name of the file used to initialize the PEM
[3143]148character(2)            :: str2
[3206]149integer                 :: ncid, status                           ! Variable for handling opening of files
150integer                 :: lonvarid, latvarid, areavarid, sdvarid ! Variable ID for Netcdf files
151integer                 :: apvarid, bpvarid                       ! Variable ID for Netcdf files
[2794]152
[3028]153! Variables to read starfi.nc and write restartfi.nc
[3143]154real, dimension(:), allocatable :: longitude     ! Longitude read in startfi_name and written in restartfi
155real, dimension(:), allocatable :: latitude      ! Latitude read in startfi_name and written in restartfi
156real, dimension(:), allocatable :: cell_area     ! Cell_area read in startfi_name and written in restartfi
[3028]157real                            :: Total_surface ! Total surface of the planet
[2897]158
[3028]159! Variables for h2o_ice evolution
[3327]160real, dimension(:,:),    allocatable  :: h2o_ice              ! h2o ice in the PEM
161real, dimension(:,:,:),  allocatable  :: min_h2o_ice          ! Minima of h2o ice at each point for the PCM years [kg/m^2]
162real                                  :: h2oice_ini_surf      ! Initial surface of sublimating h2o ice
163logical, dimension(:,:), allocatable  :: ini_h2oice_sublim    ! Logical array to know if h2o ice is sublimating
164real                                  :: global_avg_press_PCM ! constant: global average pressure retrieved in the PCM [Pa]
165real                                  :: global_avg_press_old ! constant: Global average pressure of initial/previous time step
166real                                  :: global_avg_press_new ! constant: Global average pressure of current time step
167real,   dimension(:,:),   allocatable :: zplev_new            ! Physical x Atmospheric field: mass of the atmospheric  layers in the pem at current time step [kg/m^2]
168real,   dimension(:,:),   allocatable :: zplev_PCM            ! same but retrieved from the PCM [kg/m^2]
169real,   dimension(:,:,:), allocatable :: zplev_new_timeseries ! Physical x Atmospheric x Time: same as zplev_new, but in times series [kg/m ^2]
170real,   dimension(:,:,:), allocatable :: zplev_old_timeseries ! same but with the time series, for oldest time step
171integer                               :: stopPEM              ! which criterion is reached? 0 = no stopping; 1 = h2o ice surf; 2 = no h2o ice; 3 = co2 ice surf; 4 = ps; 5 = orb param; 6 = end of simu
172real, save                            :: A, B, mmean          ! Molar mass: intermediate A, B for computations of the  mean molar mass of the layer [mol/kg]
173real,   dimension(:,:),   allocatable :: q_h2o_PEM_phys       ! Physics x Times: h2o mass mixing ratio computed in the PEM, first value comes from PCM [kg/kg]
174integer                               :: timelen              ! # time samples
175real                                  :: ave                  ! intermediate varibale to compute average
176real,   dimension(:,:),   allocatable :: p                    ! Physics x Atmosphere: pressure to recompute and write in restart (ngrid,llmp1)
177real                                  :: extra_mass           ! Intermediate variables Extra mass of a tracer if it is greater than 1
[2779]178
[3130]179! Variables for co2_ice evolution
[3327]180real,  dimension(:,:),   allocatable :: co2_ice           ! co2 ice in the PEM
181real,  dimension(:,:),   allocatable :: co2_ice_ini       ! Initial amount of co2 ice in the PEM
182real,  dimension(:,:,:), allocatable :: min_co2_ice       ! Minimum of co2 ice at each point for the first year [kg/m^2]
183real                                 :: co2ice_ini_surf   ! Initial surface of sublimating co2 ice
184logical, dimension(:,:), allocatable :: ini_co2ice_sublim ! Logical array to know if co2 ice is sublimating
185real,   dimension(:,:),  allocatable :: vmr_co2_PCM       ! Physics x Times co2 volume mixing ratio retrieve from the PCM [m^3/m^3]
186real,   dimension(:,:),  allocatable :: vmr_co2_PEM_phys  ! Physics x Times co2 volume mixing ratio used in the PEM
187real,   dimension(:,:),  allocatable :: q_co2_PEM_phys    ! Physics x Times co2 mass mixing ratio in the first layer computed in the PEM, first value comes from PCM [kg/kg]
[3130]188
[3297]189! Variables for stratification (layering) evolution
190type(layering), dimension(:,:), allocatable :: stratif                     ! Layering (linked list of "stratum") for each grid point and slope
191type(ptrarray), dimension(:,:), allocatable :: current1, current2          ! Current active stratum in the layering
192logical,        dimension(:,:), allocatable :: new_str, new_lag1, new_lag2 ! Flags for the layering algorithm
193
[3028]194! Variables for slopes
[3149]195real, dimension(:,:,:), allocatable :: co2_ice_PCM        ! Physics x NSLOPE x Times field: co2 ice given by the PCM [kg/m^2]
196real, dimension(:,:),   allocatable :: tend_co2_ice       ! physical point x slope field: Tendency of evolution of perennial co2 ice over a year
197real, dimension(:,:),   allocatable :: tend_co2_ice_ini   ! physical point x slope field x nslope: Tendency of evolution of perennial co2 ice over a year in the PCM
198real, dimension(:,:),   allocatable :: tend_h2o_ice       ! physical point x slope  field: Tendency of evolution of perennial h2o ice
199real, dimension(:,:),   allocatable :: flag_co2flow       ! (ngrid,nslope): Flag where there is a CO2 glacier flow
200real, dimension(:),     allocatable :: flag_co2flow_mesh  ! (ngrid)       : Flag where there is a CO2 glacier flow
201real, dimension(:,:),   allocatable :: flag_h2oflow       ! (ngrid,nslope): Flag where there is a H2O glacier flow
202real, dimension(:),     allocatable :: flag_h2oflow_mesh  ! (ngrid)       : Flag where there is a H2O glacier flow
[2779]203
[3028]204! Variables for surface and soil
[3149]205real, dimension(:,:),     allocatable :: tsurf_ave                          ! Physic x SLOPE field: Averaged Surface Temperature [K]
206real, dimension(:,:,:),   allocatable :: tsoil_ave                          ! Physic x SOIL x SLOPE field: Averaged Soil Temperature [K]
[3189]207real, dimension(:,:,:),   allocatable :: tsoil_anom                         ! Amplitude between instataneous and yearly average soil temperature [K]
[3149]208real, dimension(:,:,:),   allocatable :: tsurf_PCM_timeseries               ! ngrid x SLOPE XTULES field: Surface Temperature in timeseries [K]
209real, dimension(:,:,:,:), allocatable :: tsoil_phys_PEM_timeseries          ! IG x SLOPE XTULES field: Non averaged Soil Temperature [K]
210real, dimension(:,:,:,:), allocatable :: tsoil_PCM_timeseries               ! IG x SLOPE XTULES field: Non averaged Soil Temperature [K]
211real, dimension(:,:),     allocatable :: tsurf_avg_yr1                      ! Physic x SLOPE field: Averaged Surface Temperature of first call of the PCM [K]
[3065]212real, dimension(:,:),     allocatable :: TI_locslope                        ! Physic x Soil: Intermediate thermal inertia  to compute Tsoil [SI]
213real, dimension(:,:),     allocatable :: Tsoil_locslope                     ! Physic x Soil: intermediate when computing Tsoil [K]
[3149]214real, dimension(:),       allocatable :: Tsurf_locslope                     ! Physic x Soil: Intermediate surface temperature to compute Tsoil [K]
[3065]215real, dimension(:,:,:,:), allocatable :: watersoil_density_timeseries       ! Physic x Soil x Slope x Times water soil density, time series [kg /m^3]
216real, dimension(:,:),     allocatable :: watersurf_density_ave              ! Physic x Slope, water surface density, yearly averaged [kg/m^3]
217real, dimension(:,:,:,:), allocatable :: watersoil_density_PEM_timeseries   ! Physic x Soil x Slope x Times, water soil density, time series [kg/m^3]
218real, dimension(:,:,:),   allocatable :: watersoil_density_PEM_ave          ! Physic x Soil x SLopes, water soil density, yearly averaged [kg/m^3]
[3149]219real, dimension(:,:),     allocatable :: Tsurfavg_before_saved              ! Surface temperature saved from previous time step [K]
[3065]220real, dimension(:),       allocatable :: delta_co2_adsorbded                ! Physics: quantity of CO2 that is exchanged because of adsorption / desorption [kg/m^2]
221real, dimension(:),       allocatable :: delta_h2o_adsorbded                ! Physics: quantity of H2O that is exchanged because of adsorption / desorption [kg/m^2]
222real                                  :: totmassco2_adsorbded               ! Total mass of CO2 that is exchanged because of adsorption / desoprtion over the planets [kg]
223real                                  :: totmassh2o_adsorbded               ! Total mass of H2O that is exchanged because of adsorption / desoprtion over the planets [kg]
224logical                               :: bool_sublim                        ! logical to check if there is sublimation or not
225real, dimension(:,:),     allocatable :: porefillingice_thickness_prev_iter ! ngrid x nslope: Thickness of the ice table at the previous iteration [m]
[3181]226real, dimension(:),       allocatable :: delta_h2o_icetablesublim           ! ngrid x Total mass of the H2O that has sublimated / condenses from the ice table [kg]
[3065]227
[3028]228! Some variables for the PEM run
229real, parameter :: year_step = 1 ! timestep for the pem
230integer         :: year_iter     ! number of iteration
231integer         :: year_iter_max ! maximum number of iterations before stopping
[3039]232integer         :: i_myear       ! Global number of Martian years of the chained simulations
233integer         :: n_myear       ! Maximum number of Martian years of the chained simulations
[3028]234real            :: timestep      ! timestep [s]
[2779]235
[2842]236#ifdef CPP_STD
[3065]237    real                                :: frost_albedo_threshold = 0.05 ! frost albedo threeshold to convert fresh frost to old ice
238    real                                :: albedo_h2o_frost              ! albedo of h2o frost
[3143]239    real, dimension(:),     allocatable :: tsurf_read_generic            ! Temporary variable to do the subslope transfert dimension when reading form generic
240    real, dimension(:,:),   allocatable :: qsurf_read_generic            ! Temporary variable to do the subslope transfert dimension when reading form generic
241    real, dimension(:,:),   allocatable :: tsoil_read_generic            ! Temporary variable to do the subslope transfert dimension when reading form generic
242    real, dimension(:),     allocatable :: emis_read_generic             ! Temporary variable to do the subslope transfert dimension when reading form generic
243    real, dimension(:,:),   allocatable :: albedo_read_generic           ! Temporary variable to do the subslope transfert dimension when reading form generic
[3065]244    real, dimension(:,:),   allocatable :: tsurf                         ! Subslope variable, only needed in the GENERIC case
245    real, dimension(:,:,:), allocatable :: qsurf                         ! Subslope variable, only needed in the GENERIC case
246    real, dimension(:,:,:), allocatable :: tsoil                         ! Subslope variable, only needed in the GENERIC case
247    real, dimension(:,:),   allocatable :: emis                          ! Subslope variable, only needed in the GENERIC case
248    real, dimension(:,:),   allocatable :: watercap                      ! Subslope variable, only needed in the GENERIC case =0 no watercap in generic model
[3068]249    logical, dimension(:),  allocatable :: watercaptag                   ! Subslope variable, only needed in the GENERIC case =false no watercaptag in generic model
[3065]250    real, dimension(:,:,:), allocatable :: albedo                        ! Subslope variable, only needed in the GENERIC case
251    real, dimension(:,:,:), allocatable :: inertiesoil                   ! Subslope variable, only needed in the GENERIC case
[2842]252#endif
253
[2980]254#ifdef CPP_1D
[3143]255    integer            :: nsplit_phys
256    integer, parameter :: jjm_value = jjm - 1
[3065]257
258    ! Dummy variables to use the subroutine 'init_testphys1d'
[3129]259    logical                             :: therestart1D, therestartfi
[3068]260    integer                             :: ndt, day0
261    real                                :: ptif, pks, day, gru, grv, atm_wat_profile, atm_wat_tau
262    real, dimension(:),     allocatable :: zqsat
263    real, dimension(:,:,:), allocatable :: dq, dqdyn
264    real, dimension(nlayer)             :: play, w
265    real, dimension(nlayer + 1)         :: plev
[2980]266#else
[3143]267    integer, parameter              :: jjm_value = jjm
268    real, dimension(:), allocatable :: ap ! Coefficient ap read in start_name and written in restart
269    real, dimension(:), allocatable :: bp ! Coefficient bp read in start_name and written in restart
[2980]270#endif
271
[3028]272! Loop variables
[3206]273integer :: i, l, ig, nnq, t, islope, ig_loop, islope_loop, isoil, icap
[2779]274
[3028]275! Parallel variables
[2842]276#ifndef CPP_STD
[3028]277    is_sequential = .true.
278    is_parallel = .false.
279    is_mpi_root = .true.
280    is_omp_root = .true.
281    is_master = .true.
[2842]282#endif
[2779]283
[3065]284! Some constants
[3028]285day_ini = 0    ! test
286time_phys = 0. ! test
287ngrid = ngridmx
288A = (1/m_co2 - 1/m_noco2)
289B = 1/m_noco2
290year_day = 669
291daysec = 88775.
292timestep = year_day*daysec/year_step
[2794]293
[3028]294!----------------------------- INITIALIZATION --------------------------
[2779]295!------------------------
[3028]296! I   Initialization
[3161]297!    I_a Read the "run.def"
[2779]298!------------------------
[2980]299#ifndef CPP_1D
[3028]300    dtphys = 0
301    call conf_gcm(99,.true.)
302    call infotrac_init
303    nq = nqtot
304    allocate(q(ip1jmp1,llm,nqtot))
[3065]305    allocate(longitude(ngrid),latitude(ngrid),cell_area(ngrid))
[2980]306#else
[3068]307    allocate(q(1,llm,nqtot))
[3065]308    allocate(longitude(1),latitude(1),cell_area(1))
[3129]309
[3143]310    therestart1D = .false. ! Default value
[3129]311    inquire(file = 'start1D_evol.txt',exist = therestart1D)
312    if (.not. therestart1D) then
313        write(*,*) 'There is no "start1D_evol.txt" file!'
314        error stop 'Initialization cannot be done for the 1D PEM.'
315    endif
[3143]316    therestartfi = .false. ! Default value
[3317]317    inquire(file = 'startfi.nc',exist = therestartfi)
[3129]318    if (.not. therestartfi) then
[3317]319        write(*,*) 'There is no "startfi.nc" file!'
[3129]320        error stop 'Initialization cannot be done for the 1D PEM.'
321    endif
322
[3317]323    call init_testphys1d('start1D_evol.txt','startfi.nc',therestart1D,therestartfi,ngrid,nlayer,610.,nq,q, &
[3203]324                         time_0,ps(1),ucov,vcov,teta,ndt,ptif,pks,dtphys,zqsat,dq,dqdyn,day0,day,gru,grv,w,     &
[3207]325                         play,plev,latitude,longitude,cell_area,atm_wat_profile,atm_wat_tau)
[3065]326    ps(2) = ps(1)
[3028]327    nsplit_phys = 1
[2980]328#endif
[2779]329
[3039]330call conf_pem(i_myear,n_myear)
[2779]331
[2835]332!------------------------
[3028]333! I   Initialization
[3317]334!    I_b Read of the "start.nc" and starfi_evol.nc
[3028]335!------------------------
[3317]336! I_b.1 Read "start.nc"
[3149]337allocate(ps_start_PCM(ngrid))
[2980]338#ifndef CPP_1D
[3143]339    call dynetat0(start_name,vcov,ucov,teta,q,masse,ps,phis,time_0)
[2779]340
[3149]341    call gr_dyn_fi(1,iip1,jjp1,ngridmx,ps,ps_start_PCM)
[2897]342
[3028]343    call iniconst !new
344    call inigeom
[2980]345
[3028]346    allocate(ap(nlayer + 1))
347    allocate(bp(nlayer + 1))
[3143]348    status = nf90_open(start_name,NF90_NOWRITE,ncid)
[3028]349    status = nf90_inq_varid(ncid,"ap",apvarid)
350    status = nf90_get_var(ncid,apvarid,ap)
351    status = nf90_inq_varid(ncid,"bp",bpvarid)
352    status = nf90_get_var(ncid,bpvarid,bp)
353    status = nf90_close(ncid)
[2779]354
[3319]355    call iniphysiq(iim,jjm,llm,(jjm-1)*iim+2,comm_lmdz,daysec,day_ini,dtphys/nsplit_phys,rlatu,rlatv,rlonu,rlonv,aire,cu,cv,rad,g,r,cpp,iflag_phys)
[2980]356#else
[3149]357    ps_start_PCM(1) = ps(1)
[2980]358#endif
359
[3096]360! In the PCM, these values are given to the physic by the dynamic.
[3317]361! Here we simply read them in the "startfi.nc" file
[3143]362status = nf90_open(startfi_name, NF90_NOWRITE, ncid)
[2963]363
[3028]364status = nf90_inq_varid(ncid,"longitude",lonvarid)
365status = nf90_get_var(ncid,lonvarid,longitude)
[2963]366
[3028]367status = nf90_inq_varid(ncid,"latitude",latvarid)
368status = nf90_get_var(ncid,latvarid,latitude)
[2963]369
[3028]370status = nf90_inq_varid(ncid,"area",areavarid)
371status = nf90_get_var(ncid,areavarid,cell_area)
[2963]372
[3028]373status = nf90_inq_varid(ncid,"soildepth",sdvarid)
374status = nf90_get_var(ncid,sdvarid,mlayer)
[2963]375
[3028]376status = nf90_close(ncid)
[2963]377
[3317]378! I_b.2 Read the "startfi.nc"
[2779]379! First we read the initial state (starfi.nc)
[2842]380#ifndef CPP_STD
[3143]381    call phyetat0(startfi_name,0,0,nsoilmx,ngrid,nlayer,nq,nqsoil,day_ini,time_phys,tsurf, &
[3149]382                  tsoil,albedo,emis,q2,qsurf,qsoil,tauscaling,totcloudfrac,wstar,          &
[3130]383                  watercap,perennial_co2ice,def_slope,def_slope_mean,subslope_dist)
[2779]384
[3070]385    ! Remove unphysical values of surface tracer
386    where (qsurf < 0.) qsurf = 0.
[2885]387
[3143]388    call surfini(ngrid,nslope,qsurf)
[2842]389#else
[3028]390    call phys_state_var_init(nq)
391    if (.not. allocated(noms)) allocate(noms(nq)) ! (because noms is an argument of physdem1 whether or not tracer is on)
392    call initracer(ngrid,nq)
393    call iniaerosol()
394    allocate(tsurf_read_generic(ngrid))
395    allocate(qsurf_read_generic(ngrid,nq))
396    allocate(tsoil_read_generic(ngrid,nsoilmx))
[3114]397    allocate(qsoil_read_generic(ngrid,nsoilmx,nqsoil,nslope))
[3028]398    allocate(emis_read_generic(ngrid))
399    allocate(tsurf(ngrid,1))
400    allocate(qsurf(ngrid,nq,1))
401    allocate(tsoil(ngrid,nsoilmx,1))
402    allocate(emis(ngrid,1))
403    allocate(watercap(ngrid,1))
404    allocate(watercaptag(ngrid))
405    allocate(albedo_read_generic(ngrid,2))
406    allocate(albedo(ngrid,2,1))
407    allocate(inertiesoil(ngrid,nsoilmx,1))
[3143]408    call phyetat0(.true.,ngrid,nlayer,startfi_name,0,0,nsoilmx,nq,nqsoil,day_ini,time_phys, &
[3149]409                  tsurf_read_generic,tsoil_read_generic,emis_read_generic,q2,               &
410                  qsurf_read_generic,qsoil_read_generic,cloudfrac,totcloudfrac,hice,        &
[3114]411                  rnat,pctsrf_sic,tslab,tsea_ice,sea_ice)
[3065]412    call surfini(ngrid,nq,qsurf_read_generic,albedo_read_generic,albedo_bareground,albedo_snow_SPECTV,albedo_co2_ice_SPECTV)
[2842]413
[3028]414    nslope = 1
415    call ini_comslope_h(ngrid,1)
[2842]416
[3149]417    qsurf(:,:,1) = qsurf_read_generic
418    tsurf(:,1) = tsurf_read_generic
419    tsoil(:,:,1) = tsoil_read_generic
420    emis(:,1) = emis_read_generic
[3028]421    watercap(:,1) = 0.
422    watercaptag(:) = .false.
423    albedo(:,1,1) = albedo_read_generic(:,1)
424    albedo(:,2,1) = albedo_read_generic(:,2)
[3149]425    inertiesoil(:,:,1) = inertiedat
[2842]426
[3028]427    if (nslope == 1) then
428        def_slope(1) = 0
429        def_slope(2) = 0
430        def_slope_mean = 0
431        subslope_dist(:,1) = 1.
432    endif
[2842]433
[3070]434    ! Remove unphysical values of surface tracer
[3149]435    qsurf(:,:,1) = qsurf_read_generic
[3070]436    where (qsurf < 0.) qsurf = 0.
[2842]437#endif
438
[3028]439do nnq = 1,nqtot  ! Why not using ini_tracer ?
440    if (noms(nnq) == "h2o_ice") igcm_h2o_ice = nnq
441    if (noms(nnq) == "h2o_vap") then
442        igcm_h2o_vap = nnq
[3143]443        mmol(igcm_h2o_vap) = 18.
[3028]444    endif
445    if (noms(nnq) == "co2") igcm_co2 = nnq
[3065]446enddo
[3039]447r = 8.314511*1000./mugaz
[3028]448
[2835]449!------------------------
[3028]450! I   Initialization
[2835]451!    I_c Subslope parametrisation
452!------------------------
[3028]453! Define some slope statistics
454iflat = 1
455do islope = 2,nslope
456    if (abs(def_slope_mean(islope)) < abs(def_slope_mean(iflat))) iflat = islope
457enddo
[2794]458
[3028]459write(*,*) 'Flat slope for islope = ',iflat
460write(*,*) 'corresponding criterium = ',def_slope_mean(iflat)
[2794]461
[3028]462allocate(flag_co2flow(ngrid,nslope))
463allocate(flag_co2flow_mesh(ngrid))
464allocate(flag_h2oflow(ngrid,nslope))
465allocate(flag_h2oflow_mesh(ngrid))
[2835]466
[3149]467flag_co2flow = 0
468flag_co2flow_mesh = 0
469flag_h2oflow = 0
470flag_h2oflow_mesh = 0
[2835]471
[2794]472!------------------------
[3028]473! I   Initialization
[3161]474!    I_d Read the PCM data and convert them to the physical grid
[3028]475!------------------------
[3096]476! First we read the evolution of water and co2 ice (and the mass mixing ratio) over the first year of the PCM run, saving only the minimum value
477call nb_time_step_PCM("data_PCM_Y1.nc",timelen)
[2794]478
[3028]479allocate(tsoil_ave(ngrid,nsoilmx,nslope))
480allocate(watersoil_density_PEM_ave(ngrid,nsoilmx_PEM,nslope))
[3149]481allocate(vmr_co2_PCM(ngrid,timelen))
[3028]482allocate(ps_timeseries(ngrid,timelen))
[3149]483allocate(min_co2_ice(ngrid,nslope,2))
484allocate(min_h2o_ice(ngrid,nslope,2))
485allocate(tsurf_avg_yr1(ngrid,nslope))
[3028]486allocate(tsurf_ave(ngrid,nslope))
[3149]487allocate(tsurf_PCM_timeseries(ngrid,nslope,timelen))
488allocate(tsoil_PCM_timeseries(ngrid,nsoilmx,nslope,timelen))
[3028]489allocate(q_co2_PEM_phys(ngrid,timelen))
490allocate(q_h2o_PEM_phys(ngrid,timelen))
[3149]491allocate(co2_ice_PCM(ngrid,nslope,timelen))
[3028]492allocate(watersurf_density_ave(ngrid,nslope))
493allocate(watersoil_density_timeseries(ngrid,nsoilmx,nslope,timelen))
[3149]494allocate(Tsurfavg_before_saved(ngrid,nslope))
[3028]495allocate(tsoil_phys_PEM_timeseries(ngrid,nsoilmx_PEM,nslope,timelen))
496allocate(watersoil_density_PEM_timeseries(ngrid,nsoilmx_PEM,nslope,timelen))
497allocate(delta_co2_adsorbded(ngrid))
[3031]498allocate(porefillingice_thickness_prev_iter(ngrid,nslope))
499allocate(delta_h2o_icetablesublim(ngrid))
[3028]500allocate(delta_h2o_adsorbded(ngrid))
[3149]501allocate(vmr_co2_PEM_phys(ngrid,timelen))
[2794]502
[3028]503write(*,*) "Downloading data Y1..."
[3199]504call read_data_PCM("data_PCM_Y1.nc",timelen,iim,jjm_value,ngrid,nslope,vmr_co2_PCM,ps_timeseries,min_co2_ice(:,:,1),min_h2o_ice(:,:,1), &
[3149]505                   tsurf_avg_yr1,tsoil_ave,tsurf_PCM_timeseries,tsoil_PCM_timeseries,q_co2_PEM_phys,q_h2o_PEM_phys,                      &
506                   co2_ice_PCM,watersurf_density_ave,watersoil_density_timeseries)
[3199]507write(*,*) "Downloading data Y1 done!"
[2985]508
[3096]509! Then we read the evolution of water and co2 ice (and the mass mixing ratio) over the second year of the PCM run, saving only the minimum value
[3199]510write(*,*) "Downloading data Y2..."
[3149]511call read_data_PCM("data_PCM_Y2.nc",timelen,iim,jjm_value,ngrid,nslope,vmr_co2_PCM,ps_timeseries,min_co2_ice(:,:,2),min_h2o_ice(:,:,2), &
512                   tsurf_ave,tsoil_ave,tsurf_PCM_timeseries,tsoil_PCM_timeseries,q_co2_PEM_phys,q_h2o_PEM_phys,                         &
513                   co2_ice_PCM,watersurf_density_ave,watersoil_density_timeseries)
[3199]514write(*,*) "Downloading data Y2 done!"
[2794]515
[2835]516!------------------------
[3028]517! I   Initialization
518!    I_e Initialization of the PEM variables and soil
[2835]519!------------------------
[3028]520call end_comsoil_h_PEM
521call ini_comsoil_h_PEM(ngrid,nslope)
522call end_adsorption_h_PEM
523call ini_adsorption_h_PEM(ngrid,nslope,nsoilmx_PEM)
524call end_ice_table_porefilling
525call ini_ice_table_porefilling(ngrid,nslope)
[2794]526
[3028]527if (soil_pem) then
[3199]528    allocate(tsoil_anom(ngrid,nsoilmx,nslope))
529    tsoil_anom = tsoil - tsoil_ave ! compute anomaly between Tsoil(t) in the startfi - <Tsoil> to recompute properly tsoil in the restart
[3028]530    call soil_settings_PEM(ngrid,nslope,nsoilmx_PEM,nsoilmx,inertiesoil,TI_PEM)
[3149]531    tsoil_PEM(:,1:nsoilmx,:) = tsoil_ave
532    tsoil_phys_PEM_timeseries(:,1:nsoilmx,:,:) = tsoil_PCM_timeseries
533    watersoil_density_PEM_timeseries(:,1:nsoilmx,:,:) = watersoil_density_timeseries
[3070]534    do l = nsoilmx + 1,nsoilmx_PEM
535        tsoil_PEM(:,l,:) = tsoil_ave(:,nsoilmx,:)
536        watersoil_density_PEM_timeseries(:,l,:,:) = watersoil_density_timeseries(:,nsoilmx,:,:)
[3028]537    enddo
[3149]538    watersoil_density_PEM_ave = sum(watersoil_density_PEM_timeseries,4)/timelen
[3028]539endif !soil_pem
[3149]540deallocate(tsoil_ave,tsoil_PCM_timeseries)
[2794]541
[2779]542!------------------------
[3028]543! I   Initialization
[3143]544!    I_f Compute tendencies
[3028]545!------------------------
[3149]546allocate(tend_co2_ice(ngrid,nslope),tend_h2o_ice(ngrid,nslope))
547allocate(tend_co2_ice_ini(ngrid,nslope))
[2779]548
[3028]549! Compute the tendencies of the evolution of ice over the years
[3149]550call compute_tend(ngrid,nslope,min_co2_ice,tend_co2_ice)
551call compute_tend(ngrid,nslope,min_h2o_ice,tend_h2o_ice)
552tend_co2_ice_ini = tend_co2_ice
[2895]553
[2835]554!------------------------
[3028]555! I   Initialization
[2835]556!    I_g Save initial PCM situation
[3028]557!------------------------
[3159]558! We save the places where h2o ice is sublimating
559! We compute the surface of h2o ice sublimating
[3327]560allocate(ini_co2ice_sublim(ngrid,nslope),ini_h2oice_sublim(ngrid,nslope))
561co2ice_ini_surf = 0.
562h2oice_ini_surf = 0.
[3028]563Total_surface = 0.
[3327]564ini_co2ice_sublim = .false.
565ini_h2oice_sublim = .false.
[3028]566do i = 1,ngrid
[3070]567    Total_surface = Total_surface + cell_area(i)
[3028]568    do islope = 1,nslope
[3327]569        if (tend_co2_ice(i,islope) < 0.) then
570            ini_co2ice_sublim(i,islope) = .true.
571            co2ice_ini_surf = co2ice_ini_surf + cell_area(i)*subslope_dist(i,islope)
572        endif
573        if (tend_h2o_ice(i,islope) < 0.) then
574            ini_h2oice_sublim(i,islope) = .true.
575            h2oice_ini_surf = h2oice_ini_surf + cell_area(i)*subslope_dist(i,islope)
576        endif
[2779]577    enddo
[3028]578enddo
[2779]579
[3327]580write(*,*) "Total initial surface of co2 ice sublimating (slope) =", co2ice_ini_surf
581write(*,*) "Total initial surface of h2o ice sublimating (slope) =", h2oice_ini_surf
[3143]582write(*,*) "Total surface of the planet =", Total_surface
[3149]583allocate(zplev_PCM(ngrid,nlayer + 1))
[2779]584
[3070]585do ig = 1,ngrid
[3149]586    zplev_PCM(ig,:) = ap + bp*ps_start_PCM(ig)
[3028]587enddo
[2779]588
[3149]589global_avg_press_old = sum(cell_area*ps_start_PCM)/Total_surface
590global_avg_press_PCM = global_avg_press_old
591global_avg_press_new = global_avg_press_old
592write(*,*) "Initial global average pressure =", global_avg_press_PCM
[2779]593
594!------------------------
[3028]595! I   Initialization
[3161]596!    I_h Read the "startpem.nc"
[3028]597!------------------------
[3149]598allocate(co2_ice(ngrid,nslope),h2o_ice(ngrid,nslope))
599deallocate(min_co2_ice,min_h2o_ice)
600
[3297]601allocate(stratif(ngrid,nslope))
[3319]602if (layering_algo) then
603    do islope = 1,nslope
604        do i = 1,ngrid
605            call ini_layering(stratif(i,islope))
606        enddo
[3297]607    enddo
[3319]608endif
[3297]609
[3088]610call pemetat0("startpem.nc",ngrid,nsoilmx,nsoilmx_PEM,nslope,timelen,timestep,TI_PEM,tsoil_PEM,porefillingice_depth, &
[3149]611              porefillingice_thickness,tsurf_avg_yr1,tsurf_ave,q_co2_PEM_phys,q_h2o_PEM_phys,ps_timeseries,          &
612              tsoil_phys_PEM_timeseries,tend_h2o_ice,tend_co2_ice,co2_ice,h2o_ice,global_avg_press_PCM,              &
613              watersurf_density_ave,watersoil_density_PEM_ave,co2_adsorbded_phys,delta_co2_adsorbded,                &
[3297]614              h2o_adsorbded_phys,delta_h2o_adsorbded,stratif)
[2779]615
[3149]616allocate(co2_ice_ini(ngrid,nslope))
617co2_ice_ini = co2_ice
[3031]618
[3149]619delta_h2o_icetablesublim = 0.
[3130]620
[3028]621if (adsorption_pem) then
622    totmassco2_adsorbded = 0.
623    totmassh2o_adsorbded = 0.
624    do ig = 1,ngrid
[3070]625        do islope = 1,nslope
[3028]626            do l = 1,nsoilmx_PEM - 1
[3264]627                if (l==1) then
628                   totmassco2_adsorbded = totmassco2_adsorbded + co2_adsorbded_phys(ig,l,islope)*(layer_PEM(l))* &
[3028]629                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
[3264]630                   totmassh2o_adsorbded = totmassh2o_adsorbded + h2o_adsorbded_phys(ig,l,islope)*(layer_PEM(l))* &
[3028]631                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
[3264]632                else
633                   totmassco2_adsorbded = totmassco2_adsorbded + co2_adsorbded_phys(ig,l,islope)*(layer_PEM(l) - layer_PEM(l-1))* &
634                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
635                   totmassh2o_adsorbded = totmassh2o_adsorbded + h2o_adsorbded_phys(ig,l,islope)*(layer_PEM(l) - layer_PEM(l-1))* &
636                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
637                endif
[3028]638            enddo
[2961]639        enddo
[3028]640    enddo
[3143]641    write(*,*) "Tot mass of CO2 in the regolith =", totmassco2_adsorbded
642    write(*,*) "Tot mass of H2O in the regolith =", totmassh2o_adsorbded
[3028]643endif ! adsorption
[3149]644deallocate(tsurf_avg_yr1)
[2794]645
[2835]646!------------------------
[3028]647! I   Initialization
[2835]648!    I_i Compute orbit criterion
[3028]649!------------------------
[2842]650#ifndef CPP_STD
[3050]651    call iniorbit(aphelie,periheli,year_day,peri_day,obliquit)
[2842]652#else
[3050]653    call iniorbit(apoastr,periastr,year_day,peri_day,obliquit)
[2842]654#endif
[2794]655
[3028]656if (evol_orbit_pem) then
[3039]657    call orbit_param_criterion(i_myear,year_iter_max)
[3028]658else
659    year_iter_max = Max_iter_pem
660endif
661!-------------------------- END INITIALIZATION -------------------------
[2794]662
[3028]663!-------------------------------- RUN ----------------------------------
[2794]664!------------------------
665! II  Run
[3065]666!    II_a Update pressure, ice and tracers
[2794]667!------------------------
[3028]668year_iter = 0
[3149]669stopPEM = 0
[3319]670if (layering_algo) then
671    allocate(new_str(ngrid,nslope),new_lag1(ngrid,nslope),new_lag2(ngrid,nslope),current1(ngrid,nslope),current2(ngrid,nslope))
672    new_str = .true.
673    new_lag1 = .true.
674    new_lag2 = .true.
675    do islope = 1,nslope
676        do ig = 1,ngrid
677            current1(ig,islope)%p => stratif(ig,islope)%top
678            current2(ig,islope)%p => stratif(ig,islope)%top
679        enddo
[3297]680    enddo
[3319]681endif
[2794]682
[3297]683do while (year_iter < 10 .and. i_myear < n_myear)
[2835]684! II.a.1. Compute updated global pressure
[3028]685    write(*,*) "Recomputing the new pressure..."
686    do i = 1,ngrid
687        do islope = 1,nslope
[3188]688            global_avg_press_new = global_avg_press_new - CO2cond_ps*g*cell_area(i)*tend_co2_ice(i,islope)*subslope_dist(i,islope)/cos(pi*def_slope_mean(islope)/180.)/Total_surface
[3028]689        enddo
690    enddo
[3065]691
[3028]692    if (adsorption_pem) then
693        do i = 1,ngrid
[3149]694            global_avg_press_new = global_avg_press_new - g*cell_area(i)*delta_co2_adsorbded(i)/Total_surface
[3050]695        enddo
[3028]696    endif
[3149]697    write(*,*) 'Global average pressure old time step',global_avg_press_old
698    write(*,*) 'Global average pressure new time step',global_avg_press_new
[2835]699
[3161]700! II.a.2. Old pressure levels for the timeseries, this value is deleted when unused and recreated each time (big memory consumption)
[3070]701    allocate(zplev_old_timeseries(ngrid,nlayer + 1,timelen))
[3028]702    write(*,*) "Recomputing the old pressure levels timeserie adapted to the old pressure..."
703    do l = 1,nlayer + 1
704        do ig = 1,ngrid
705            zplev_old_timeseries(ig,l,:) = ap(l) + bp(l)*ps_timeseries(ig,:)
706        enddo
707    enddo
[2779]708
[2835]709! II.a.3. Surface pressure timeseries
[3028]710    write(*,*) "Recomputing the surface pressure timeserie adapted to the new pressure..."
711    do ig = 1,ngrid
[3149]712        ps_timeseries(ig,:) = ps_timeseries(ig,:)*global_avg_press_new/global_avg_press_old
[3028]713    enddo
[2779]714
[2835]715! II.a.4. New pressure levels timeseries
[3149]716    allocate(zplev_new_timeseries(ngrid,nlayer + 1,timelen))
[3028]717    write(*,*) "Recomputing the new pressure levels timeserie adapted to the new pressure..."
718    do l = 1,nlayer + 1
719        do ig = 1,ngrid
720            zplev_new_timeseries(ig,l,:) = ap(l) + bp(l)*ps_timeseries(ig,:)
721        enddo
722    enddo
[2779]723
[2835]724! II.a.5. Tracers timeseries
[3028]725    write(*,*) "Recomputing of tracer VMR timeseries for the new pressure..."
[2794]726
[3028]727    l = 1
728    do ig = 1,ngrid
729        do t = 1,timelen
730            q_h2o_PEM_phys(ig,t) = q_h2o_PEM_phys(ig,t)*(zplev_old_timeseries(ig,l,t) - zplev_old_timeseries(ig,l + 1,t))/ &
731                                   (zplev_new_timeseries(ig,l,t) - zplev_new_timeseries(ig,l + 1,t))
[3143]732            if (q_h2o_PEM_phys(ig,t) < 0) then
733                q_h2o_PEM_phys(ig,t) = 1.e-30
734            else if (q_h2o_PEM_phys(ig,t) > 1) then
735                q_h2o_PEM_phys(ig,t) = 1.
736            endif
[3028]737        enddo
738    enddo
[2794]739
[3028]740    do ig = 1,ngrid
[3065]741        do t = 1,timelen
[3028]742            q_co2_PEM_phys(ig,t) = q_co2_PEM_phys(ig,t)*(zplev_old_timeseries(ig,l,t) - zplev_old_timeseries(ig,l + 1,t))/ &
[3122]743                                   (zplev_new_timeseries(ig,l,t) - zplev_new_timeseries(ig,l + 1,t))                       &
744                                + ((zplev_new_timeseries(ig,l,t) - zplev_new_timeseries(ig,l + 1,t))                       &
745                                -  (zplev_old_timeseries(ig,l,t) - zplev_old_timeseries(ig,l + 1,t)))/                     &
[3028]746                                   (zplev_new_timeseries(ig,l,t) - zplev_new_timeseries(ig,l + 1,t))
747            if (q_co2_PEM_phys(ig,t) < 0) then
748                q_co2_PEM_phys(ig,t) = 1.e-30
[3143]749            else if (q_co2_PEM_phys(ig,t) > 1) then
[3028]750                q_co2_PEM_phys(ig,t) = 1.
751            endif
752            mmean=1/(A*q_co2_PEM_phys(ig,t) + B)
[3149]753            vmr_co2_PEM_phys(ig,t) = q_co2_PEM_phys(ig,t)*mmean/m_co2
[3028]754        enddo
755    enddo
[2794]756
[3028]757    deallocate(zplev_new_timeseries,zplev_old_timeseries)
758
759!------------------------
[2835]760! II  Run
[3149]761!    II_b Evolution of ice
[3028]762!------------------------
[3149]763    call evol_h2o_ice(ngrid,nslope,cell_area,delta_h2o_adsorbded,delta_h2o_icetablesublim,h2o_ice,tend_h2o_ice,stopPEM)
764    call evol_co2_ice(ngrid,nslope,co2_ice,tend_co2_ice)
[3319]765    if (layering_algo) then
766        do islope = 1,nslope
767            do ig = 1,ngrid
768                call make_layering(stratif(ig,islope),tend_co2_ice(ig,islope),tend_h2o_ice(ig,islope),tend_dust,new_str(ig,islope),new_lag1(ig,islope),new_lag2(ig,islope),stopPEM,current1(ig,islope)%p,current2(ig,islope)%p)
769            enddo
[3297]770        enddo
[3319]771    endif
[2794]772
773!------------------------
774! II  Run
[3149]775!    II_c Flow of glaciers
[2794]776!------------------------
[3181]777    if (co2ice_flow .and. nslope > 1) call flow_co2glaciers(timelen,ngrid,nslope,iflat,subslope_dist,def_slope_mean,vmr_co2_PEM_phys,ps_timeseries, &
[3149]778                                            global_avg_press_PCM,global_avg_press_new,co2_ice,flag_co2flow,flag_co2flow_mesh)
[3181]779    if (h2oice_flow .and. nslope > 1) call flow_h2oglaciers(timelen,ngrid,nslope,iflat,subslope_dist,def_slope_mean,tsurf_ave,h2o_ice,flag_h2oflow,flag_h2oflow_mesh)
[3065]780
[2794]781!------------------------
782! II  Run
[2835]783!    II_d Update surface and soil temperatures
[2794]784!------------------------
[2835]785! II_d.1 Update Tsurf
[3028]786    write(*,*) "Updating the new Tsurf"
787    bool_sublim = .false.
[3149]788    Tsurfavg_before_saved = tsurf_ave
[3028]789    do ig = 1,ngrid
790        do islope = 1,nslope
[3327]791            if (co2_ice_ini(ig,islope) > 0. .and. co2_ice(ig,islope) < 1.e-10) then ! co2 ice disappeared, look for closest point without co2ice
[3028]792                if (latitude_deg(ig) > 0) then
793                    do ig_loop = ig,ngrid
794                        do islope_loop = islope,iflat,-1
[3327]795                            if (co2_ice_ini(ig_loop,islope_loop) < 1.e-10 .and. co2_ice(ig_loop,islope_loop) < 1.e-10) then
[3028]796                                tsurf_ave(ig,islope) = tsurf_ave(ig_loop,islope_loop)
797                                bool_sublim = .true.
798                                exit
799                            endif
800                        enddo
801                        if (bool_sublim) exit
802                    enddo
803                else
804                    do ig_loop = ig,1,-1
805                        do islope_loop = islope,iflat
[3327]806                            if (co2_ice_ini(ig_loop,islope_loop) < 1.e-10 .and. co2_ice(ig_loop,islope_loop) < 1.e-10) then
[3028]807                                tsurf_ave(ig,islope) = tsurf_ave(ig_loop,islope_loop)
808                                bool_sublim = .true.
809                                exit
810                            endif
811                        enddo
812                        if (bool_sublim) exit
813                    enddo
[2835]814                endif
[3327]815                co2_ice_ini(ig,islope) = 0.
[3149]816                if ((co2_ice(ig,islope) < 1.e-10) .and. (h2o_ice(ig,islope) > frost_albedo_threshold)) then
[3028]817                    albedo(ig,1,islope) = albedo_h2o_frost
818                    albedo(ig,2,islope) = albedo_h2o_frost
819                else
820                    albedo(ig,1,islope) = albedodat(ig)
[3065]821                    albedo(ig,2,islope) = albedodat(ig)
[3028]822                    emis(ig,islope) = emissiv
823                endif
[3149]824            else if ((co2_ice(ig,islope) > 1.e-3) .and. (tend_co2_ice(ig,islope) > 1.e-10)) then ! Put tsurf as tcond co2
[3028]825                ave = 0.
826                do t = 1,timelen
[3149]827                    if (co2_ice_PCM(ig,islope,t) > 1.e-3) then
[3181]828                        ave = ave + beta_clap_co2/(alpha_clap_co2 - log(vmr_co2_PEM_phys(ig,t)*ps_timeseries(ig,t)/100.))
[3028]829                    else
[3149]830                        ave = ave + tsurf_PCM_timeseries(ig,islope,t)
[3028]831                    endif
[2794]832                enddo
[3028]833                tsurf_ave(ig,islope) = ave/timelen
[3032]834                ! set the surface albedo to be the ice albedo
[3324]835!                if (latitude_deg(ig) > 0) then
836!                   icap = 1
837!                else
838!                   icap = 2
839!                endif
840!                albedo(ig,1,islope) = albedice(icap)
841!                albedo(ig,2,islope) = albedice(icap)
842!                emis(ig,islope) = emisice(icap)
[2835]843            endif
844        enddo
[3028]845    enddo
[2794]846
[3028]847    do t = 1,timelen
[3149]848        tsurf_PCM_timeseries(:,:,t) = tsurf_PCM_timeseries(:,:,t) + tsurf_ave - Tsurfavg_before_saved
[3028]849    enddo
850    ! for the start
851    do ig = 1,ngrid
[2835]852        do islope = 1,nslope
[3149]853            tsurf(ig,islope) =  tsurf(ig,islope) - (Tsurfavg_before_saved(ig,islope) - tsurf_ave(ig,islope))
[2794]854        enddo
[3028]855    enddo
[2794]856
[3028]857    if (soil_pem) then
[2794]858
[2835]859! II_d.2 Update soil temperature
[3028]860        allocate(TI_locslope(ngrid,nsoilmx_PEM))
861        allocate(Tsoil_locslope(ngrid,nsoilmx_PEM))
862        allocate(Tsurf_locslope(ngrid))
863        write(*,*)"Updating soil temperature"
[2794]864
[3028]865        ! Soil averaged
866        do islope = 1,nslope
[3149]867            TI_locslope = TI_PEM(:,:,islope)
[3028]868            do t = 1,timelen
[3149]869                Tsoil_locslope = tsoil_phys_PEM_timeseries(:,:,islope,t)
870                Tsurf_locslope = tsurf_PCM_timeseries(:,islope,t)
[3178]871                call compute_tsoil_pem(ngrid,nsoilmx_PEM,.true.,TI_locslope,timestep/timelen,Tsurf_locslope,Tsoil_locslope)
872                call compute_tsoil_pem(ngrid,nsoilmx_PEM,.false.,TI_locslope,timestep/timelen,Tsurf_locslope,Tsoil_locslope)
[3149]873                tsoil_phys_PEM_timeseries(:,:,islope,t) = Tsoil_locslope
[3028]874                do ig = 1,ngrid
875                    do isoil = 1,nsoilmx_PEM
876                        watersoil_density_PEM_timeseries(ig,isoil,islope,t) = exp(beta_clap_h2o/Tsoil_locslope(ig,isoil) + alpha_clap_h2o)/Tsoil_locslope(ig,isoil)*mmol(igcm_h2o_vap)/(mugaz*r)
[3065]877                        if (isnan(Tsoil_locslope(ig,isoil))) call abort_pem("PEM - Update Tsoil","NaN detected in Tsoil ",1)
[3028]878                    enddo
879                enddo
880            enddo
881        enddo
[3149]882        tsoil_PEM = sum(tsoil_phys_PEM_timeseries,4)/timelen
883        watersoil_density_PEM_ave = sum(watersoil_density_PEM_timeseries,4)/timelen
[2794]884
[3028]885        write(*,*) "Update of soil temperature done"
[2888]886
[3028]887        deallocate(TI_locslope,Tsoil_locslope,Tsurf_locslope)
[2849]888
[2835]889! II_d.3 Update the ice table
[3170]890        if (icetable_equilibrium) then
891            write(*,*) "Compute ice table"
892            porefillingice_thickness_prev_iter = porefillingice_thickness
893            call computeice_table_equilibrium(ngrid,nslope,nsoilmx_PEM,watercaptag,watersurf_density_ave,watersoil_density_PEM_ave,TI_PEM(:,1,:),porefillingice_depth,porefillingice_thickness)
[3264]894            call compute_massh2o_exchange_ssi(ngrid,nslope,nsoilmx_PEM,porefillingice_thickness_prev_iter,porefillingice_thickness,porefillingice_depth,tsurf_ave, tsoil_PEM,delta_h2o_icetablesublim) ! Mass of H2O exchange between the ssi and the atmosphere
[3170]895        endif
[3122]896! II_d.4 Update the soil thermal properties
[3149]897        call update_soil_thermalproperties(ngrid,nslope,nsoilmx_PEM,tend_h2o_ice,h2o_ice,global_avg_press_new,porefillingice_depth,porefillingice_thickness,TI_PEM)
[2794]898
[3143]899! II_d.5 Update the mass of the regolith adsorbed
[3028]900        if (adsorption_pem) then
[3159]901            call regolith_adsorption(ngrid,nslope,nsoilmx_PEM,timelen,tend_h2o_ice,tend_co2_ice,                   &
[3149]902                                     h2o_ice,co2_ice,tsoil_PEM,TI_PEM,ps_timeseries,q_co2_PEM_phys,q_h2o_PEM_phys, &
903                                     h2o_adsorbded_phys,delta_h2o_adsorbded,co2_adsorbded_phys,delta_co2_adsorbded)
[2794]904
[3028]905            totmassco2_adsorbded = 0.
906            totmassh2o_adsorbded = 0.
907            do ig = 1,ngrid
908                do islope =1, nslope
[3264]909                    do l = 1,nsoilmx_PEM
910                        if (l==1) then
911                            totmassco2_adsorbded = totmassco2_adsorbded + co2_adsorbded_phys(ig,l,islope)*(layer_PEM(l))* &
912                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
913                            totmassh2o_adsorbded = totmassh2o_adsorbded + h2o_adsorbded_phys(ig,l,islope)*(layer_PEM(l))* &
914                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
915                        else
916                            totmassco2_adsorbded = totmassco2_adsorbded + co2_adsorbded_phys(ig,l,islope)*(layer_PEM(l) - layer_PEM(l-1))* &
917                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
918                            totmassh2o_adsorbded = totmassh2o_adsorbded + h2o_adsorbded_phys(ig,l,islope)*(layer_PEM(l) - layer_PEM(l-1))* &
919                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
920                        endif
[3028]921                    enddo
922                enddo
923            enddo
924            write(*,*) "Tot mass of CO2 in the regolith=", totmassco2_adsorbded
925            write(*,*) "Tot mass of H2O in the regolith=", totmassh2o_adsorbded
926        endif
927    endif !soil_pem
928
[2794]929!------------------------
930! II  Run
[3088]931!    II_e Outputs
[2794]932!------------------------
[3181]933    call writediagpem(ngrid,'ps_ave','Global average pressure','Pa',0,(/global_avg_press_new/))
[3088]934    do islope = 1,nslope
935        write(str2(1:2),'(i2.2)') islope
[3181]936        call writediagpem(ngrid,'h2o_ice_slope'//str2,'H2O ice','kg.m-2',2,h2o_ice(:,islope))
937        call writediagpem(ngrid,'co2_ice_slope'//str2,'CO2 ice','kg.m-2',2,co2_ice(:,islope))
938        call writediagpem(ngrid,'tend_h2o_ice_slope'//str2,'H2O ice tend','kg.m-2.year-1',2,tend_h2o_ice(:,islope))
939        call writediagpem(ngrid,'tend_co2_ice_slope'//str2,'CO2 ice tend','kg.m-2.year-1',2,tend_co2_ice(:,islope))
940        call writediagpem(ngrid,'Flow_co2ice_slope'//str2,'CO2 ice flow','Boolean',2,flag_co2flow(:,islope))
941        call writediagpem(ngrid,'tsurf_slope'//str2,'tsurf','K',2,tsurf(:,islope))
[3171]942        if(icetable_equilibrium) then
[3181]943            call writediagpem(ngrid,'ssi_depth_slope'//str2,'ice table depth','m',2,porefillingice_depth(:,islope))
944            call writediagpem(ngrid,'ssi_thick_slope'//str2,'ice table depth','m',2,porefillingice_thickness(:,islope))
[3171]945        endif
946        if(soil_pem) then
947            call writediagsoilpem(ngrid,'tsoil_PEM_slope'//str2,'tsoil_PEM','K',3,tsoil_PEM(:,:,islope))
948            call writediagsoilpem(ngrid,'inertiesoil_PEM_slope'//str2,'TI_PEM','K',3,TI_PEM(:,:,islope))
949            if (adsorption_pem) then
950                call writediagsoilpem(ngrid,'co2_ads_slope'//str2,'co2_ads','K',3,co2_adsorbded_phys(:,:,islope))
951                call writediagsoilpem(ngrid,'h2o_ads_slope'//str2,'h2o_ads','K',3,h2o_adsorbded_phys(:,:,islope))
952            endif                       
953        endif
[3088]954    enddo
955
956!------------------------
957! II  Run
958!    II_f Update the tendencies
959!------------------------
[3149]960    call recomp_tend_co2_slope(ngrid,nslope,timelen,tend_co2_ice,tend_co2_ice_ini,co2_ice,emis,vmr_co2_PCM,vmr_co2_PEM_phys,ps_timeseries, &
961                               global_avg_press_PCM,global_avg_press_new)
[2794]962
[2835]963!------------------------
964! II  Run
[3088]965!    II_g Checking the stopping criterion
[2835]966!------------------------
[3327]967    call stopping_crit_h2o_ice(cell_area,h2oice_ini_surf,ini_h2oice_sublim,h2o_ice,stopPEM,ngrid)
968    call stopping_crit_co2(cell_area,co2ice_ini_surf,ini_co2ice_sublim,co2_ice,stopPEM,ngrid,global_avg_press_PCM,global_avg_press_new,nslope)
[2779]969
[3028]970    year_iter = year_iter + dt_pem
[3039]971    i_myear = i_myear + dt_pem
[2794]972
[3149]973    write(*,*) "Checking the stopping criteria..."
974    if (year_iter >= year_iter_max) stopPEM = 5
975    if (i_myear >= n_myear) stopPEM = 6
976    if (stopPEM > 0) then
977        select case (stopPEM)
978            case(1)
[3159]979                write(*,*) "STOPPING because surface of h2o ice sublimating is too low:", stopPEM, "See message above."
[3149]980            case(2)
[3159]981                write(*,*) "STOPPING because tendencies on h2o ice = 0:", stopPEM, "See message above."
[3149]982            case(3)
983                write(*,*) "STOPPING because surface of co2 ice sublimating is too low:", stopPEM, "See message above."
984            case(4)
985                write(*,*) "STOPPING because surface global pressure changed too much:", stopPEM, "See message above."
986            case(5)
987                write(*,*) "STOPPING because maximum number of iterations due to orbital parameters is reached:", stopPEM
988            case(6)
989                write(*,*) "STOPPING because maximum number of Martian years to be simulated is reached:", stopPEM
990            case default
991                write(*,*) "STOPPING with unknown stopping criterion code:", stopPEM
992        end select
[2779]993        exit
[3028]994    else
[3143]995        write(*,*) "The PEM can continue!"
[3039]996        write(*,*) "Number of iterations of the PEM: year_iter =", year_iter
997        write(*,*) "Number of simulated Martian years: i_myear =", i_myear
[3028]998    endif
[2779]999
[3149]1000    global_avg_press_old = global_avg_press_new
[2779]1001
[3149]1002enddo ! big time iteration loop of the pem
[3028]1003!------------------------------ END RUN --------------------------------
[2779]1004
[3028]1005!------------------------------- OUTPUT --------------------------------
[2794]1006!------------------------
1007! III Output
[2835]1008!    III_a Update surface value for the PCM start files
[2794]1009!------------------------
[2835]1010! III_a.1 Ice update (for startfi)
[2779]1011
[3149]1012watercap = 0.
[3159]1013perennial_co2ice = co2_ice
[3028]1014do ig = 1,ngrid
[3159]1015    ! H2O ice metamorphism
[3161]1016    if (metam_h2oice .and. sum(qsurf(ig,igcm_h2o_ice,:)*subslope_dist(ig,:)/cos(pi*def_slope_mean(:)/180.)) > metam_h2oice_threshold) then
[3308]1017        h2o_ice(ig,:) = h2o_ice(ig,:) + qsurf(ig,igcm_h2o_ice,:) - metam_h2oice_threshold
1018        qsurf(ig,igcm_h2o_ice,:) = metam_h2oice_threshold
[3159]1019    endif
1020
1021    ! Is H2O ice still considered as an infinite reservoir for the PCM?
[3149]1022    if (sum(h2o_ice(ig,:)*subslope_dist(ig,:)/cos(pi*def_slope_mean(:)/180.)) > inf_h2oice_threshold) then
[3159]1023        ! There is enough ice to be considered as an infinite reservoir
[3149]1024        watercaptag(ig) = .true.
1025    else
[3159]1026        ! There too little ice to be considered as an infinite reservoir so ice is transferred to the frost
[3149]1027        watercaptag(ig) = .false.
1028        qsurf(ig,igcm_h2o_ice,:) = qsurf(ig,igcm_h2o_ice,:) + h2o_ice(ig,:)
1029        h2o_ice(ig,:) = 0.
[3028]1030    endif
[3159]1031
1032    ! CO2 ice metamorphism
[3161]1033    if (metam_co2ice .and. sum(qsurf(ig,igcm_co2,:)*subslope_dist(ig,:)/cos(pi*def_slope_mean(:)/180.)) > metam_co2ice_threshold) then
[3308]1034        perennial_co2ice(ig,:) = perennial_co2ice(ig,:) + qsurf(ig,igcm_co2,:) - metam_co2ice_threshold
1035        qsurf(ig,igcm_co2,:) = metam_co2ice_threshold
[3159]1036    endif
[3028]1037enddo
[2888]1038
[2849]1039! III_a.2  Tsoil update (for startfi)
[3028]1040if (soil_pem) then
[3149]1041    call interpol_TI_PEM2PCM(ngrid,nslope,nsoilmx_PEM,nsoilmx,TI_PEM,inertiesoil)
[3189]1042    tsoil = tsoil_PEM(:,1:nsoilmx,:) + tsoil_anom
[3199]1043    deallocate(tsoil_anom)
[3172]1044#ifndef CPP_STD
[3181]1045    flux_geo = fluxgeo
[3172]1046#endif
[3028]1047endif
[2779]1048
[2835]1049! III_a.4 Pressure (for start)
[3149]1050ps = ps*global_avg_press_new/global_avg_press_PCM
1051ps_start_PCM = ps_start_PCM*global_avg_press_new/global_avg_press_PCM
[2794]1052
[2835]1053! III_a.5 Tracer (for start)
[3028]1054allocate(zplev_new(ngrid,nlayer + 1))
[2835]1055
[3028]1056do l = 1,nlayer + 1
[3149]1057    zplev_new(:,l) = ap(l) + bp(l)*ps_start_PCM
[3028]1058enddo
[2835]1059
[3028]1060do nnq = 1,nqtot
1061    if (noms(nnq) /= "co2") then
1062        do l = 1,llm - 1
1063            do ig = 1,ngrid
[3149]1064                q(ig,l,nnq) = q(ig,l,nnq)*(zplev_PCM(ig,l) - zplev_PCM(ig,l + 1))/(zplev_new(ig,l) - zplev_new(ig,l + 1))
[3028]1065            enddo
1066            q(:,llm,nnq) = q(:,llm - 1,nnq)
1067        enddo
1068    else
1069        do l = 1,llm - 1
1070            do ig = 1,ngrid
[3149]1071                q(ig,l,nnq) = q(ig,l,nnq)*(zplev_PCM(ig,l) - zplev_PCM(ig,l + 1))/(zplev_new(ig,l) - zplev_new(ig,l + 1)) &
1072                              + ((zplev_new(ig,l) - zplev_new(ig,l + 1)) - (zplev_PCM(ig,l) - zplev_PCM(ig,l + 1)))/(zplev_new(ig,l) - zplev_new(ig,l + 1))
[3028]1073            enddo
1074            q(:,llm,nnq) = q(:,llm - 1,nnq)
1075        enddo
1076    endif
1077enddo
[2835]1078
[3096]1079! Conserving the tracers mass for PCM start files
[3028]1080do nnq = 1,nqtot
1081    do ig = 1,ngrid
1082        do l = 1,llm - 1
1083            if (q(ig,l,nnq) > 1 .and. (noms(nnq) /= "dust_number") .and. (noms(nnq) /= "ccn_number") .and. (noms(nnq) /= "stormdust_number") .and. (noms(nnq) /= "topdust_number")) then
[3065]1084                extra_mass = (q(ig,l,nnq) - 1)*(zplev_new(ig,l) - zplev_new(ig,l + 1))
1085                q(ig,l,nnq) = 1.
1086                q(ig,l + 1,nnq) = q(ig,l + 1,nnq) + extra_mass*(zplev_new(ig,l + 1) - zplev_new(ig,l + 2))
[3028]1087                write(*,*) 'extra ',noms(nnq),extra_mass, noms(nnq) /= "dust_number",noms(nnq) /= "ccn_number"
[2835]1088           endif
[3028]1089            if (q(ig,l,nnq) < 0) q(ig,l,nnq) = 1.e-30
1090        enddo
1091    enddo
1092enddo
[2779]1093
[3039]1094if (evol_orbit_pem) call recomp_orb_param(i_myear,year_iter)
[2779]1095
1096!------------------------
[3028]1097! III Output
[3317]1098!    III_b Write "restart.nc" and "restartfi.nc"
[3028]1099!------------------------
[3317]1100! III_b.1 Write "restart.nc"
[3042]1101ptimestep = iphysiq*daysec/real(day_step)/nsplit_phys ! dtphys/nsplit_phys
[3028]1102pday = day_ini
[3042]1103ztime_fin = time_phys
[2779]1104
[3028]1105allocate(p(ip1jmp1,nlayer + 1))
[2980]1106#ifndef CPP_1D
[3028]1107    call pression (ip1jmp1,ap,bp,ps,p)
1108    call massdair(p,masse)
[3317]1109    call dynredem0("restart.nc",day_ini,phis)
1110    call dynredem1("restart.nc",time_0,vcov,ucov,teta,q,masse,ps)
1111    write(*,*) "restart.nc has been written"
[2980]1112#else
[3069]1113    call writerestart1D('restart1D_evol.txt',ps(1),tsurf(1,:),nlayer,size(tsurf,2),teta,ucov,vcov,nq,noms,qsurf(1,:,:),q)
[3065]1114    write(*,*) "restart1D_evol.txt has been written"
[2980]1115#endif
1116
[3317]1117! III_b.2 Write the "restartfi.nc"
[2842]1118#ifndef CPP_STD
[3317]1119    call physdem0("restartfi.nc",longitude,latitude,nsoilmx,ngrid, &
[3327]1120                  nlayer,nq,ptimestep,pday,0.,cell_area,albedodat, &
[3028]1121                  inertiedat,def_slope,subslope_dist)
[3327]1122    call physdem1("restartfi.nc",nsoilmx,ngrid,nlayer,nq,nqsoil,      &
[3114]1123                  ptimestep,ztime_fin,tsurf,tsoil,inertiesoil,        &
1124                  albedo,emis,q2,qsurf,qsoil,tauscaling,totcloudfrac, &
[3130]1125                  wstar,watercap,perennial_co2ice)
[2842]1126#else
[3317]1127    call physdem0("restartfi.nc",longitude,latitude,nsoilmx,ngrid, &
[3327]1128                  nlayer,nq,ptimestep,pday,time_phys,cell_area,    &
[3028]1129                  albedo_bareground,inertiedat,zmea,zstd,zsig,zgam,zthe)
[3327]1130    call physdem1("restartfi.nc",nsoilmx,ngrid,nlayer,nq,nqsoil,       &
[3114]1131                  ptimestep,ztime_fin,tsurf,tsoil,emis,q2,qsurf,qsoil, &
1132                  cloudfrac,totcloudfrac,hice,rnat,pctsrf_sic,tslab,   &
1133                  tsea_ice,sea_ice)
[2842]1134#endif
[3317]1135write(*,*) "restartfi.nc has been written"
[2842]1136
[2794]1137!------------------------
1138! III Output
[3161]1139!    III_c Write the "restartpem.nc"
[2794]1140!------------------------
[3319]1141if (layering_algo) nb_str_max = get_nb_str_max(stratif,ngrid,nslope) ! Get the maximum number of "stratum" in the stratification (layerings)
[3206]1142call pemdem0("restartpem.nc",longitude,latitude,cell_area,ngrid,nslope,def_slope,subslope_dist)
[3088]1143call pemdem1("restartpem.nc",i_myear,nsoilmx_PEM,ngrid,nslope,tsoil_PEM, &
[3297]1144             TI_PEM,porefillingice_depth,porefillingice_thickness,       &
1145             co2_adsorbded_phys,h2o_adsorbded_phys,h2o_ice,stratif)
[3088]1146write(*,*) "restartpem.nc has been written"
[2779]1147
[3149]1148call info_PEM(year_iter,stopPEM,i_myear,n_myear)
1149
[3039]1150write(*,*) "The PEM has run for", year_iter, "Martian years."
1151write(*,*) "The chained simulation has run for", i_myear, "Martian years =", i_myear*convert_years, "Earth years."
1152write(*,*) "The reached date is now", (year_bp_ini + i_myear)*convert_years, "Earth years."
1153write(*,*) "LL & RV & JBC: so far, so good!"
[2794]1154
[3319]1155if (layering_algo) then
1156    do islope = 1,nslope
1157        do i = 1,ngrid
1158            call del_layering(stratif(i,islope))
1159        enddo
[3297]1160    enddo
[3319]1161    deallocate(new_str,new_lag1,new_lag2,current1,current2)
1162endif
[3149]1163deallocate(vmr_co2_PCM,ps_timeseries,tsurf_PCM_timeseries,q_co2_PEM_phys,q_h2o_PEM_phys)
1164deallocate(co2_ice_PCM,watersurf_density_ave,watersoil_density_timeseries,Tsurfavg_before_saved)
[3028]1165deallocate(tsoil_phys_PEM_timeseries,watersoil_density_PEM_timeseries,watersoil_density_PEM_ave)
[3149]1166deallocate(delta_co2_adsorbded,delta_h2o_adsorbded,vmr_co2_PEM_phys,delta_h2o_icetablesublim,porefillingice_thickness_prev_iter)
[3327]1167deallocate(co2_ice_ini,ini_co2ice_sublim,ini_h2oice_sublim,stratif)
[3028]1168!----------------------------- END OUTPUT ------------------------------
[2897]1169
[2779]1170END PROGRAM pem
Note: See TracBrowser for help on using the repository browser.