[2779] | 1 | !------------------------ |
---|
[3028] | 2 | ! I Initialization |
---|
[3161] | 3 | ! I_a Read the "run.def" |
---|
| 4 | ! I_b Read the "start_evol.nc" and "startfi_evol.nc" |
---|
[2835] | 5 | ! I_c Subslope parametrisation |
---|
[3161] | 6 | ! I_d Read the PCM data and convert them to the physical grid |
---|
[3028] | 7 | ! I_e Initialization of the PEM variable and soil |
---|
[3143] | 8 | ! I_f Compute tendencies |
---|
[2835] | 9 | ! I_g Save initial PCM situation |
---|
[3161] | 10 | ! I_h Read the "startpem.nc" |
---|
[2835] | 11 | ! I_i Compute orbit criterion |
---|
[2779] | 12 | |
---|
| 13 | ! II Run |
---|
[3028] | 14 | ! II_a Update pressure, ice and tracers |
---|
[3149] | 15 | ! II_b Evolution of ice |
---|
| 16 | ! II_c Flow of glaciers |
---|
[2835] | 17 | ! II_d Update surface and soil temperatures |
---|
[3088] | 18 | ! II_e Outputs |
---|
| 19 | ! II_f Update the tendencies |
---|
| 20 | ! II_g Checking the stopping criterion |
---|
[2779] | 21 | |
---|
| 22 | ! III Output |
---|
[2835] | 23 | ! III_a Update surface value for the PCM start files |
---|
[3161] | 24 | ! III_b Write the "restart_evol.nc" and "restartfi_evol.nc" |
---|
| 25 | ! III_c Write the "restartpem.nc" |
---|
[2779] | 26 | !------------------------ |
---|
| 27 | |
---|
| 28 | PROGRAM pem |
---|
| 29 | |
---|
[3161] | 30 | use phyetat0_mod, only: phyetat0 |
---|
| 31 | use phyredem, only: physdem0, physdem1 |
---|
| 32 | use netcdf, only: nf90_open, NF90_NOWRITE, nf90_get_var, nf90_inq_varid, nf90_close |
---|
| 33 | use turb_mod, only: q2, wstar |
---|
[3206] | 34 | use comslope_mod, only: nslope, def_slope, def_slope_mean, subslope_dist, iflat, ini_comslope_h |
---|
[3161] | 35 | use logic_mod, only: iflag_phys |
---|
| 36 | use mod_const_mpi, only: COMM_LMDZ |
---|
[3028] | 37 | use infotrac |
---|
[3161] | 38 | use geometry_mod, only: latitude_deg |
---|
| 39 | use conf_pem_mod, only: conf_pem |
---|
| 40 | use pemredem, only: pemdem0, pemdem1 |
---|
| 41 | use glaciers_mod, only: flow_co2glaciers, flow_h2oglaciers, co2ice_flow, h2oice_flow, inf_h2oice_threshold, & |
---|
| 42 | metam_h2oice_threshold, metam_co2ice_threshold, metam_h2oice, metam_co2ice |
---|
| 43 | use stopping_crit_mod, only: stopping_crit_h2o_ice, stopping_crit_co2 |
---|
| 44 | use constants_marspem_mod, only: alpha_clap_co2, beta_clap_co2, alpha_clap_h2o, beta_clap_h2o, m_co2, m_noco2 |
---|
| 45 | use evol_ice_mod, only: evol_co2_ice, evol_h2o_ice |
---|
| 46 | use comsoil_h_PEM, only: soil_pem, ini_comsoil_h_PEM, end_comsoil_h_PEM, nsoilmx_PEM, & |
---|
[3206] | 47 | TI_PEM, & ! soil thermal inertia |
---|
| 48 | tsoil_PEM, layer_PEM, & ! Soil temp, number of subsurface layers, soil mid layer depths |
---|
[3161] | 49 | fluxgeo ! Geothermal flux for the PEM and PCM |
---|
| 50 | use adsorption_mod, only: regolith_adsorption, adsorption_pem, & ! Bool to check if adsorption, main subroutine |
---|
| 51 | ini_adsorption_h_PEM, end_adsorption_h_PEM, & ! Allocate arrays |
---|
| 52 | co2_adsorbded_phys, h2o_adsorbded_phys ! Mass of co2 and h2O adsorbded |
---|
| 53 | use time_evol_mod, only: dt_pem, evol_orbit_pem, Max_iter_pem, convert_years, year_bp_ini |
---|
| 54 | use orbit_param_criterion_mod, only: orbit_param_criterion |
---|
| 55 | use recomp_orb_param_mod, only: recomp_orb_param |
---|
| 56 | use ice_table_mod, only: porefillingice_depth, porefillingice_thickness, end_ice_table_porefilling, & |
---|
[3170] | 57 | ini_ice_table_porefilling, icetable_equilibrium, computeice_table_equilibrium,compute_massh2o_exchange_ssi |
---|
[3161] | 58 | use soil_thermalproperties_mod, only: update_soil_thermalproperties |
---|
[3206] | 59 | use time_phylmdz_mod, only: daysec, dtphys |
---|
[3161] | 60 | use abort_pem_mod, only: abort_pem |
---|
| 61 | use soil_settings_PEM_mod, only: soil_settings_PEM |
---|
| 62 | use compute_tend_mod, only: compute_tend |
---|
| 63 | use info_PEM_mod, only: info_PEM |
---|
| 64 | use interpol_TI_PEM2PCM_mod, only: interpol_TI_PEM2PCM |
---|
| 65 | use nb_time_step_PCM_mod, only: nb_time_step_PCM |
---|
| 66 | use pemetat0_mod, only: pemetat0 |
---|
| 67 | use read_data_PCM_mod, only: read_data_PCM |
---|
| 68 | use recomp_tend_co2_slope_mod, only: recomp_tend_co2_slope |
---|
[3178] | 69 | use compute_soiltemp_mod, only: compute_tsoil_pem |
---|
[3181] | 70 | use writediagpem_mod, only: writediagpem, writediagsoilpem |
---|
[3207] | 71 | use co2condens_mod, only: CO2cond_ps |
---|
[2985] | 72 | |
---|
[2842] | 73 | #ifndef CPP_STD |
---|
[3206] | 74 | use comsoil_h, only: tsoil, nsoilmx, ini_comsoil_h, inertiedat, mlayer, inertiesoil, flux_geo, nqsoil, qsoil |
---|
[3028] | 75 | use surfdat_h, only: tsurf, emis, qsurf, watercap, ini_surfdat_h, & |
---|
| 76 | albedodat, zmea, zstd, zsig, zgam, zthe, & |
---|
[3206] | 77 | albedo_h2o_frost,frost_albedo_threshold, & |
---|
| 78 | emissiv, watercaptag, perennial_co2ice, emisice, albedice |
---|
[3028] | 79 | use dimradmars_mod, only: totcloudfrac, albedo |
---|
| 80 | use dust_param_mod, only: tauscaling |
---|
[3149] | 81 | use tracer_mod, only: noms, igcm_h2o_ice, igcm_co2, mmol, igcm_h2o_vap ! Tracer names and molar masses |
---|
[3028] | 82 | use mod_phys_lmdz_para, only: is_parallel, is_sequential, is_mpi_root, is_omp_root, is_master |
---|
[3096] | 83 | use planete_h, only: aphelie, periheli, year_day, peri_day, obliquit, iniorbit |
---|
[3287] | 84 | use comcstfi_h, only: pi, rad, g, cpp, mugaz, r |
---|
[3143] | 85 | use surfini_mod, only: surfini |
---|
[2842] | 86 | #else |
---|
[3028] | 87 | use tracer_h, only: noms, igcm_h2o_ice, igcm_co2 ! Tracer names |
---|
| 88 | use phys_state_var_mod, only: cloudfrac, totcloudfrac, albedo_snow_SPECTV,HICE,RNAT, & |
---|
| 89 | PCTSRF_SIC, TSLAB, TSEA_ICE, SEA_ICE, ALBEDO_BAREGROUND, & |
---|
| 90 | ALBEDO_CO2_ICE_SPECTV, phys_state_var_init |
---|
[3039] | 91 | use aerosol_mod, only: iniaerosol |
---|
| 92 | use planete_mod, only: apoastr, periastr, year_day, peri_day, obliquit |
---|
[3287] | 93 | use comcstfi_mod, only: pi, rad, g, cpp, mugaz, r |
---|
[2842] | 94 | #endif |
---|
[2985] | 95 | |
---|
[3028] | 96 | #ifndef CPP_1D |
---|
[3076] | 97 | use iniphysiq_mod, only: iniphysiq |
---|
| 98 | use control_mod, only: iphysiq, day_step, nsplit_phys |
---|
[3019] | 99 | #else |
---|
[3076] | 100 | use time_phylmdz_mod, only: iphysiq, day_step |
---|
[3028] | 101 | use regular_lonlat_mod, only: init_regular_lonlat |
---|
| 102 | use physics_distribution_mod, only: init_physics_distribution |
---|
| 103 | use mod_grid_phy_lmdz, only: regular_lonlat |
---|
[3065] | 104 | use init_testphys1d_mod, only: init_testphys1d |
---|
| 105 | use comvert_mod, only: ap, bp |
---|
[3076] | 106 | use writerestart1D_mod, only: writerestart1D |
---|
[2980] | 107 | #endif |
---|
[2835] | 108 | |
---|
[3076] | 109 | implicit none |
---|
[2980] | 110 | |
---|
[3028] | 111 | include "dimensions.h" |
---|
| 112 | include "paramet.h" |
---|
| 113 | include "comgeom.h" |
---|
| 114 | include "iniprint.h" |
---|
[3039] | 115 | include "callkeys.h" |
---|
[2779] | 116 | |
---|
[3028] | 117 | integer ngridmx |
---|
| 118 | parameter(ngridmx = 2 + (jjm - 1)*iim - 1/jjm) |
---|
[2794] | 119 | |
---|
[3096] | 120 | ! Same variable names as in the PCM |
---|
[3065] | 121 | integer, parameter :: nlayer = llm ! Number of vertical layer |
---|
| 122 | integer :: ngrid ! Number of physical grid points |
---|
| 123 | integer :: nq ! Number of tracer |
---|
| 124 | integer :: day_ini ! First day of the simulation |
---|
| 125 | real :: pday ! Physical day |
---|
[3149] | 126 | real :: time_phys ! Same as in PCM |
---|
| 127 | real :: ptimestep ! Same as in PCM |
---|
| 128 | real :: ztime_fin ! Same as in PCM |
---|
[2794] | 129 | |
---|
[3028] | 130 | ! Variables to read start.nc |
---|
[3143] | 131 | character(*), parameter :: start_name = "start_evol.nc" ! Name of the file used to initialize the PEM |
---|
[2779] | 132 | |
---|
[3028] | 133 | ! Dynamic variables |
---|
[3065] | 134 | real, dimension(ip1jm,llm) :: vcov ! vents covariants |
---|
| 135 | real, dimension(ip1jmp1,llm) :: ucov ! vents covariants |
---|
| 136 | real, dimension(ip1jmp1,llm) :: teta ! temperature potentielle |
---|
| 137 | real, dimension(:,:,:), allocatable :: q ! champs advectes |
---|
[3143] | 138 | real, dimension(ip1jmp1) :: ps ! pression au sol |
---|
[3149] | 139 | real, dimension(:), allocatable :: ps_start_PCM ! (ngrid) surface pressure |
---|
| 140 | real, dimension(:,:), allocatable :: ps_timeseries ! (ngrid x timelen) instantaneous surface pressure |
---|
[3065] | 141 | real, dimension(ip1jmp1,llm) :: masse ! masse d'air |
---|
| 142 | real, dimension(ip1jmp1) :: phis ! geopotentiel au sol |
---|
[3028] | 143 | real :: time_0 |
---|
[2779] | 144 | |
---|
[3028] | 145 | ! Variables to read starfi.nc |
---|
[3143] | 146 | character(*), parameter :: startfi_name = "startfi_evol.nc" ! Name of the file used to initialize the PEM |
---|
| 147 | character(2) :: str2 |
---|
[3206] | 148 | integer :: ncid, status ! Variable for handling opening of files |
---|
| 149 | integer :: lonvarid, latvarid, areavarid, sdvarid ! Variable ID for Netcdf files |
---|
| 150 | integer :: apvarid, bpvarid ! Variable ID for Netcdf files |
---|
[2794] | 151 | |
---|
[3028] | 152 | ! Variables to read starfi.nc and write restartfi.nc |
---|
[3143] | 153 | real, dimension(:), allocatable :: longitude ! Longitude read in startfi_name and written in restartfi |
---|
| 154 | real, dimension(:), allocatable :: latitude ! Latitude read in startfi_name and written in restartfi |
---|
| 155 | real, dimension(:), allocatable :: cell_area ! Cell_area read in startfi_name and written in restartfi |
---|
[3028] | 156 | real :: Total_surface ! Total surface of the planet |
---|
[2897] | 157 | |
---|
[3028] | 158 | ! Variables for h2o_ice evolution |
---|
[3149] | 159 | real, dimension(:,:), allocatable :: h2o_ice ! h2o ice in the PEM |
---|
| 160 | real, dimension(:,:,:), allocatable :: min_h2o_ice ! Minima of h2o ice at each point for the PCM years [kg/m^2] |
---|
| 161 | real :: h2o_surf_ini ! Initial surface of sublimating h2o ice |
---|
| 162 | real :: global_avg_press_PCM ! constant: global average pressure retrieved in the PCM [Pa] |
---|
| 163 | real :: global_avg_press_old ! constant: Global average pressure of initial/previous time step |
---|
| 164 | real :: global_avg_press_new ! constant: Global average pressure of current time step |
---|
| 165 | real, dimension(:,:), allocatable :: zplev_new ! Physical x Atmospheric field: mass of the atmospheric layers in the pem at current time step [kg/m^2] |
---|
| 166 | real, dimension(:,:), allocatable :: zplev_PCM ! same but retrieved from the PCM [kg/m^2] |
---|
[3065] | 167 | real, dimension(:,:,:), allocatable :: zplev_new_timeseries ! Physical x Atmospheric x Time: same as zplev_new, but in times series [kg/m ^2] |
---|
| 168 | real, dimension(:,:,:), allocatable :: zplev_old_timeseries ! same but with the time series, for oldest time step |
---|
[3149] | 169 | integer :: stopPEM ! which criterion is reached? 0 = no stopping; 1 = h2o ice surf; 2 = no h2o ice; 3 = co2 ice surf; 4 = ps; 5 = orb param; 6 = end of simu |
---|
[3068] | 170 | real, save :: A, B, mmean ! Molar mass: intermediate A, B for computations of the mean molar mass of the layer [mol/kg] |
---|
[3096] | 171 | real, dimension(:,:), allocatable :: q_h2o_PEM_phys ! Physics x Times: h2o mass mixing ratio computed in the PEM, first value comes from PCM [kg/kg] |
---|
[3065] | 172 | integer :: timelen ! # time samples |
---|
| 173 | real :: ave ! intermediate varibale to compute average |
---|
| 174 | real, dimension(:,:), allocatable :: p ! Physics x Atmosphere: pressure to recompute and write in restart (ngrid,llmp1) |
---|
| 175 | real :: extra_mass ! Intermediate variables Extra mass of a tracer if it is greater than 1 |
---|
[2779] | 176 | |
---|
[3130] | 177 | ! Variables for co2_ice evolution |
---|
[3149] | 178 | real, dimension(:,:), allocatable :: co2_ice ! co2 ice in the PEM |
---|
| 179 | real, dimension(:,:), allocatable :: co2_ice_ini ! Initial amount of co2 ice in the PEM |
---|
| 180 | real, dimension(:,:,:), allocatable :: min_co2_ice ! Minimum of co2 ice at each point for the first year [kg/m^2] |
---|
| 181 | real :: co2_surf_ini ! Initial surface of sublimating co2 ice |
---|
| 182 | real, dimension(:,:), allocatable :: vmr_co2_PCM ! Physics x Times co2 volume mixing ratio retrieve from the PCM [m^3/m^3] |
---|
| 183 | real, dimension(:,:), allocatable :: vmr_co2_PEM_phys ! Physics x Times co2 volume mixing ratio used in the PEM |
---|
| 184 | real, dimension(:,:), allocatable :: q_co2_PEM_phys ! Physics x Times co2 mass mixing ratio in the first layer computed in the PEM, first value comes from PCM [kg/kg] |
---|
[3130] | 185 | |
---|
[3028] | 186 | ! Variables for slopes |
---|
[3149] | 187 | real, dimension(:,:,:), allocatable :: co2_ice_PCM ! Physics x NSLOPE x Times field: co2 ice given by the PCM [kg/m^2] |
---|
| 188 | real, dimension(:,:), allocatable :: tend_co2_ice ! physical point x slope field: Tendency of evolution of perennial co2 ice over a year |
---|
| 189 | real, dimension(:,:), allocatable :: tend_co2_ice_ini ! physical point x slope field x nslope: Tendency of evolution of perennial co2 ice over a year in the PCM |
---|
| 190 | real, dimension(:,:), allocatable :: tend_h2o_ice ! physical point x slope field: Tendency of evolution of perennial h2o ice |
---|
| 191 | real, dimension(:,:), allocatable :: flag_co2flow ! (ngrid,nslope): Flag where there is a CO2 glacier flow |
---|
| 192 | real, dimension(:), allocatable :: flag_co2flow_mesh ! (ngrid) : Flag where there is a CO2 glacier flow |
---|
| 193 | real, dimension(:,:), allocatable :: flag_h2oflow ! (ngrid,nslope): Flag where there is a H2O glacier flow |
---|
| 194 | real, dimension(:), allocatable :: flag_h2oflow_mesh ! (ngrid) : Flag where there is a H2O glacier flow |
---|
[2779] | 195 | |
---|
[3028] | 196 | ! Variables for surface and soil |
---|
[3149] | 197 | real, dimension(:,:), allocatable :: tsurf_ave ! Physic x SLOPE field: Averaged Surface Temperature [K] |
---|
| 198 | real, dimension(:,:,:), allocatable :: tsoil_ave ! Physic x SOIL x SLOPE field: Averaged Soil Temperature [K] |
---|
[3189] | 199 | real, dimension(:,:,:), allocatable :: tsoil_anom ! Amplitude between instataneous and yearly average soil temperature [K] |
---|
[3149] | 200 | real, dimension(:,:,:), allocatable :: tsurf_PCM_timeseries ! ngrid x SLOPE XTULES field: Surface Temperature in timeseries [K] |
---|
| 201 | real, dimension(:,:,:,:), allocatable :: tsoil_phys_PEM_timeseries ! IG x SLOPE XTULES field: Non averaged Soil Temperature [K] |
---|
| 202 | real, dimension(:,:,:,:), allocatable :: tsoil_PCM_timeseries ! IG x SLOPE XTULES field: Non averaged Soil Temperature [K] |
---|
| 203 | real, dimension(:,:), allocatable :: tsurf_avg_yr1 ! Physic x SLOPE field: Averaged Surface Temperature of first call of the PCM [K] |
---|
[3065] | 204 | real, dimension(:,:), allocatable :: TI_locslope ! Physic x Soil: Intermediate thermal inertia to compute Tsoil [SI] |
---|
| 205 | real, dimension(:,:), allocatable :: Tsoil_locslope ! Physic x Soil: intermediate when computing Tsoil [K] |
---|
[3149] | 206 | real, dimension(:), allocatable :: Tsurf_locslope ! Physic x Soil: Intermediate surface temperature to compute Tsoil [K] |
---|
[3065] | 207 | real, dimension(:,:,:,:), allocatable :: watersoil_density_timeseries ! Physic x Soil x Slope x Times water soil density, time series [kg /m^3] |
---|
| 208 | real, dimension(:,:), allocatable :: watersurf_density_ave ! Physic x Slope, water surface density, yearly averaged [kg/m^3] |
---|
| 209 | real, dimension(:,:,:,:), allocatable :: watersoil_density_PEM_timeseries ! Physic x Soil x Slope x Times, water soil density, time series [kg/m^3] |
---|
| 210 | real, dimension(:,:,:), allocatable :: watersoil_density_PEM_ave ! Physic x Soil x SLopes, water soil density, yearly averaged [kg/m^3] |
---|
[3149] | 211 | real, dimension(:,:), allocatable :: Tsurfavg_before_saved ! Surface temperature saved from previous time step [K] |
---|
[3065] | 212 | real, dimension(:), allocatable :: delta_co2_adsorbded ! Physics: quantity of CO2 that is exchanged because of adsorption / desorption [kg/m^2] |
---|
| 213 | real, dimension(:), allocatable :: delta_h2o_adsorbded ! Physics: quantity of H2O that is exchanged because of adsorption / desorption [kg/m^2] |
---|
| 214 | real :: totmassco2_adsorbded ! Total mass of CO2 that is exchanged because of adsorption / desoprtion over the planets [kg] |
---|
| 215 | real :: totmassh2o_adsorbded ! Total mass of H2O that is exchanged because of adsorption / desoprtion over the planets [kg] |
---|
| 216 | logical :: bool_sublim ! logical to check if there is sublimation or not |
---|
| 217 | real, dimension(:,:), allocatable :: porefillingice_thickness_prev_iter ! ngrid x nslope: Thickness of the ice table at the previous iteration [m] |
---|
[3181] | 218 | real, dimension(:), allocatable :: delta_h2o_icetablesublim ! ngrid x Total mass of the H2O that has sublimated / condenses from the ice table [kg] |
---|
[3065] | 219 | |
---|
[3028] | 220 | ! Some variables for the PEM run |
---|
| 221 | real, parameter :: year_step = 1 ! timestep for the pem |
---|
| 222 | integer :: year_iter ! number of iteration |
---|
| 223 | integer :: year_iter_max ! maximum number of iterations before stopping |
---|
[3039] | 224 | integer :: i_myear ! Global number of Martian years of the chained simulations |
---|
| 225 | integer :: n_myear ! Maximum number of Martian years of the chained simulations |
---|
[3028] | 226 | real :: timestep ! timestep [s] |
---|
[2779] | 227 | |
---|
[2842] | 228 | #ifdef CPP_STD |
---|
[3065] | 229 | real :: frost_albedo_threshold = 0.05 ! frost albedo threeshold to convert fresh frost to old ice |
---|
| 230 | real :: albedo_h2o_frost ! albedo of h2o frost |
---|
[3143] | 231 | real, dimension(:), allocatable :: tsurf_read_generic ! Temporary variable to do the subslope transfert dimension when reading form generic |
---|
| 232 | real, dimension(:,:), allocatable :: qsurf_read_generic ! Temporary variable to do the subslope transfert dimension when reading form generic |
---|
| 233 | real, dimension(:,:), allocatable :: tsoil_read_generic ! Temporary variable to do the subslope transfert dimension when reading form generic |
---|
| 234 | real, dimension(:), allocatable :: emis_read_generic ! Temporary variable to do the subslope transfert dimension when reading form generic |
---|
| 235 | real, dimension(:,:), allocatable :: albedo_read_generic ! Temporary variable to do the subslope transfert dimension when reading form generic |
---|
[3065] | 236 | real, dimension(:,:), allocatable :: tsurf ! Subslope variable, only needed in the GENERIC case |
---|
| 237 | real, dimension(:,:,:), allocatable :: qsurf ! Subslope variable, only needed in the GENERIC case |
---|
| 238 | real, dimension(:,:,:), allocatable :: tsoil ! Subslope variable, only needed in the GENERIC case |
---|
| 239 | real, dimension(:,:), allocatable :: emis ! Subslope variable, only needed in the GENERIC case |
---|
| 240 | real, dimension(:,:), allocatable :: watercap ! Subslope variable, only needed in the GENERIC case =0 no watercap in generic model |
---|
[3068] | 241 | logical, dimension(:), allocatable :: watercaptag ! Subslope variable, only needed in the GENERIC case =false no watercaptag in generic model |
---|
[3065] | 242 | real, dimension(:,:,:), allocatable :: albedo ! Subslope variable, only needed in the GENERIC case |
---|
| 243 | real, dimension(:,:,:), allocatable :: inertiesoil ! Subslope variable, only needed in the GENERIC case |
---|
[2842] | 244 | #endif |
---|
| 245 | |
---|
[2980] | 246 | #ifdef CPP_1D |
---|
[3143] | 247 | integer :: nsplit_phys |
---|
| 248 | integer, parameter :: jjm_value = jjm - 1 |
---|
[3065] | 249 | |
---|
| 250 | ! Dummy variables to use the subroutine 'init_testphys1d' |
---|
[3129] | 251 | logical :: therestart1D, therestartfi |
---|
[3068] | 252 | integer :: ndt, day0 |
---|
| 253 | real :: ptif, pks, day, gru, grv, atm_wat_profile, atm_wat_tau |
---|
| 254 | real, dimension(:), allocatable :: zqsat |
---|
| 255 | real, dimension(:,:,:), allocatable :: dq, dqdyn |
---|
| 256 | real, dimension(nlayer) :: play, w |
---|
| 257 | real, dimension(nlayer + 1) :: plev |
---|
[2980] | 258 | #else |
---|
[3143] | 259 | integer, parameter :: jjm_value = jjm |
---|
| 260 | real, dimension(:), allocatable :: ap ! Coefficient ap read in start_name and written in restart |
---|
| 261 | real, dimension(:), allocatable :: bp ! Coefficient bp read in start_name and written in restart |
---|
[2980] | 262 | #endif |
---|
| 263 | |
---|
[3028] | 264 | ! Loop variables |
---|
[3206] | 265 | integer :: i, l, ig, nnq, t, islope, ig_loop, islope_loop, isoil, icap |
---|
[2779] | 266 | |
---|
[3028] | 267 | ! Parallel variables |
---|
[2842] | 268 | #ifndef CPP_STD |
---|
[3028] | 269 | is_sequential = .true. |
---|
| 270 | is_parallel = .false. |
---|
| 271 | is_mpi_root = .true. |
---|
| 272 | is_omp_root = .true. |
---|
| 273 | is_master = .true. |
---|
[2842] | 274 | #endif |
---|
[2779] | 275 | |
---|
[3065] | 276 | ! Some constants |
---|
[3028] | 277 | day_ini = 0 ! test |
---|
| 278 | time_phys = 0. ! test |
---|
| 279 | ngrid = ngridmx |
---|
| 280 | A = (1/m_co2 - 1/m_noco2) |
---|
| 281 | B = 1/m_noco2 |
---|
| 282 | year_day = 669 |
---|
| 283 | daysec = 88775. |
---|
| 284 | timestep = year_day*daysec/year_step |
---|
[2794] | 285 | |
---|
[3028] | 286 | !----------------------------- INITIALIZATION -------------------------- |
---|
[2779] | 287 | !------------------------ |
---|
[3028] | 288 | ! I Initialization |
---|
[3161] | 289 | ! I_a Read the "run.def" |
---|
[2779] | 290 | !------------------------ |
---|
[2980] | 291 | #ifndef CPP_1D |
---|
[3028] | 292 | dtphys = 0 |
---|
| 293 | call conf_gcm(99,.true.) |
---|
| 294 | call infotrac_init |
---|
| 295 | nq = nqtot |
---|
| 296 | allocate(q(ip1jmp1,llm,nqtot)) |
---|
[3065] | 297 | allocate(longitude(ngrid),latitude(ngrid),cell_area(ngrid)) |
---|
[2980] | 298 | #else |
---|
[3068] | 299 | allocate(q(1,llm,nqtot)) |
---|
[3065] | 300 | allocate(longitude(1),latitude(1),cell_area(1)) |
---|
[3129] | 301 | |
---|
[3143] | 302 | therestart1D = .false. ! Default value |
---|
[3129] | 303 | inquire(file = 'start1D_evol.txt',exist = therestart1D) |
---|
| 304 | if (.not. therestart1D) then |
---|
| 305 | write(*,*) 'There is no "start1D_evol.txt" file!' |
---|
| 306 | error stop 'Initialization cannot be done for the 1D PEM.' |
---|
| 307 | endif |
---|
[3143] | 308 | therestartfi = .false. ! Default value |
---|
[3129] | 309 | inquire(file = 'startfi_evol.nc',exist = therestartfi) |
---|
| 310 | if (.not. therestartfi) then |
---|
| 311 | write(*,*) 'There is no "startfi_evol.nc" file!' |
---|
| 312 | error stop 'Initialization cannot be done for the 1D PEM.' |
---|
| 313 | endif |
---|
| 314 | |
---|
[3203] | 315 | call init_testphys1d('start1D_evol.txt','startfi_evol.nc',therestart1D,therestartfi,ngrid,nlayer,610.,nq,q, & |
---|
| 316 | time_0,ps(1),ucov,vcov,teta,ndt,ptif,pks,dtphys,zqsat,dq,dqdyn,day0,day,gru,grv,w, & |
---|
[3207] | 317 | play,plev,latitude,longitude,cell_area,atm_wat_profile,atm_wat_tau) |
---|
[3065] | 318 | ps(2) = ps(1) |
---|
[3028] | 319 | nsplit_phys = 1 |
---|
[2980] | 320 | #endif |
---|
[2779] | 321 | |
---|
[3039] | 322 | call conf_pem(i_myear,n_myear) |
---|
[2779] | 323 | |
---|
[2835] | 324 | !------------------------ |
---|
[3028] | 325 | ! I Initialization |
---|
[3161] | 326 | ! I_b Read of the "start_evol.nc" and starfi_evol.nc |
---|
[3028] | 327 | !------------------------ |
---|
[3161] | 328 | ! I_b.1 Read "start_evol.nc" |
---|
[3149] | 329 | allocate(ps_start_PCM(ngrid)) |
---|
[2980] | 330 | #ifndef CPP_1D |
---|
[3143] | 331 | call dynetat0(start_name,vcov,ucov,teta,q,masse,ps,phis,time_0) |
---|
[2779] | 332 | |
---|
[3149] | 333 | call gr_dyn_fi(1,iip1,jjp1,ngridmx,ps,ps_start_PCM) |
---|
[2897] | 334 | |
---|
[3028] | 335 | call iniconst !new |
---|
| 336 | call inigeom |
---|
[2980] | 337 | |
---|
[3028] | 338 | allocate(ap(nlayer + 1)) |
---|
| 339 | allocate(bp(nlayer + 1)) |
---|
[3143] | 340 | status = nf90_open(start_name,NF90_NOWRITE,ncid) |
---|
[3028] | 341 | status = nf90_inq_varid(ncid,"ap",apvarid) |
---|
| 342 | status = nf90_get_var(ncid,apvarid,ap) |
---|
| 343 | status = nf90_inq_varid(ncid,"bp",bpvarid) |
---|
| 344 | status = nf90_get_var(ncid,bpvarid,bp) |
---|
| 345 | status = nf90_close(ncid) |
---|
[2779] | 346 | |
---|
[3149] | 347 | call iniphysiq(iim,jjm,llm,(jjm-1)*iim+2,comm_lmdz,daysec,day_ini,dtphys/nsplit_phys,rlatu,rlatv,rlonu,rlonv,aire,cu,cv,rad,g,r,cpp,iflag_phys) |
---|
[2980] | 348 | #else |
---|
[3149] | 349 | ps_start_PCM(1) = ps(1) |
---|
[2980] | 350 | #endif |
---|
| 351 | |
---|
[3096] | 352 | ! In the PCM, these values are given to the physic by the dynamic. |
---|
[3161] | 353 | ! Here we simply read them in the "startfi_evol.nc" file |
---|
[3143] | 354 | status = nf90_open(startfi_name, NF90_NOWRITE, ncid) |
---|
[2963] | 355 | |
---|
[3028] | 356 | status = nf90_inq_varid(ncid,"longitude",lonvarid) |
---|
| 357 | status = nf90_get_var(ncid,lonvarid,longitude) |
---|
[2963] | 358 | |
---|
[3028] | 359 | status = nf90_inq_varid(ncid,"latitude",latvarid) |
---|
| 360 | status = nf90_get_var(ncid,latvarid,latitude) |
---|
[2963] | 361 | |
---|
[3028] | 362 | status = nf90_inq_varid(ncid,"area",areavarid) |
---|
| 363 | status = nf90_get_var(ncid,areavarid,cell_area) |
---|
[2963] | 364 | |
---|
[3028] | 365 | status = nf90_inq_varid(ncid,"soildepth",sdvarid) |
---|
| 366 | status = nf90_get_var(ncid,sdvarid,mlayer) |
---|
[2963] | 367 | |
---|
[3028] | 368 | status = nf90_close(ncid) |
---|
[2963] | 369 | |
---|
[3161] | 370 | ! I_b.2 Read the "startfi_evol.nc" |
---|
[2779] | 371 | ! First we read the initial state (starfi.nc) |
---|
[2842] | 372 | #ifndef CPP_STD |
---|
[3143] | 373 | call phyetat0(startfi_name,0,0,nsoilmx,ngrid,nlayer,nq,nqsoil,day_ini,time_phys,tsurf, & |
---|
[3149] | 374 | tsoil,albedo,emis,q2,qsurf,qsoil,tauscaling,totcloudfrac,wstar, & |
---|
[3130] | 375 | watercap,perennial_co2ice,def_slope,def_slope_mean,subslope_dist) |
---|
[2779] | 376 | |
---|
[3070] | 377 | ! Remove unphysical values of surface tracer |
---|
| 378 | where (qsurf < 0.) qsurf = 0. |
---|
[2885] | 379 | |
---|
[3143] | 380 | call surfini(ngrid,nslope,qsurf) |
---|
[2842] | 381 | #else |
---|
[3028] | 382 | call phys_state_var_init(nq) |
---|
| 383 | if (.not. allocated(noms)) allocate(noms(nq)) ! (because noms is an argument of physdem1 whether or not tracer is on) |
---|
| 384 | call initracer(ngrid,nq) |
---|
| 385 | call iniaerosol() |
---|
| 386 | allocate(tsurf_read_generic(ngrid)) |
---|
| 387 | allocate(qsurf_read_generic(ngrid,nq)) |
---|
| 388 | allocate(tsoil_read_generic(ngrid,nsoilmx)) |
---|
[3114] | 389 | allocate(qsoil_read_generic(ngrid,nsoilmx,nqsoil,nslope)) |
---|
[3028] | 390 | allocate(emis_read_generic(ngrid)) |
---|
| 391 | allocate(tsurf(ngrid,1)) |
---|
| 392 | allocate(qsurf(ngrid,nq,1)) |
---|
| 393 | allocate(tsoil(ngrid,nsoilmx,1)) |
---|
| 394 | allocate(emis(ngrid,1)) |
---|
| 395 | allocate(watercap(ngrid,1)) |
---|
| 396 | allocate(watercaptag(ngrid)) |
---|
| 397 | allocate(albedo_read_generic(ngrid,2)) |
---|
| 398 | allocate(albedo(ngrid,2,1)) |
---|
| 399 | allocate(inertiesoil(ngrid,nsoilmx,1)) |
---|
[3143] | 400 | call phyetat0(.true.,ngrid,nlayer,startfi_name,0,0,nsoilmx,nq,nqsoil,day_ini,time_phys, & |
---|
[3149] | 401 | tsurf_read_generic,tsoil_read_generic,emis_read_generic,q2, & |
---|
| 402 | qsurf_read_generic,qsoil_read_generic,cloudfrac,totcloudfrac,hice, & |
---|
[3114] | 403 | rnat,pctsrf_sic,tslab,tsea_ice,sea_ice) |
---|
[3065] | 404 | call surfini(ngrid,nq,qsurf_read_generic,albedo_read_generic,albedo_bareground,albedo_snow_SPECTV,albedo_co2_ice_SPECTV) |
---|
[2842] | 405 | |
---|
[3028] | 406 | nslope = 1 |
---|
| 407 | call ini_comslope_h(ngrid,1) |
---|
[2842] | 408 | |
---|
[3149] | 409 | qsurf(:,:,1) = qsurf_read_generic |
---|
| 410 | tsurf(:,1) = tsurf_read_generic |
---|
| 411 | tsoil(:,:,1) = tsoil_read_generic |
---|
| 412 | emis(:,1) = emis_read_generic |
---|
[3028] | 413 | watercap(:,1) = 0. |
---|
| 414 | watercaptag(:) = .false. |
---|
| 415 | albedo(:,1,1) = albedo_read_generic(:,1) |
---|
| 416 | albedo(:,2,1) = albedo_read_generic(:,2) |
---|
[3149] | 417 | inertiesoil(:,:,1) = inertiedat |
---|
[2842] | 418 | |
---|
[3028] | 419 | if (nslope == 1) then |
---|
| 420 | def_slope(1) = 0 |
---|
| 421 | def_slope(2) = 0 |
---|
| 422 | def_slope_mean = 0 |
---|
| 423 | subslope_dist(:,1) = 1. |
---|
| 424 | endif |
---|
[2842] | 425 | |
---|
[3070] | 426 | ! Remove unphysical values of surface tracer |
---|
[3149] | 427 | qsurf(:,:,1) = qsurf_read_generic |
---|
[3070] | 428 | where (qsurf < 0.) qsurf = 0. |
---|
[2842] | 429 | #endif |
---|
| 430 | |
---|
[3028] | 431 | do nnq = 1,nqtot ! Why not using ini_tracer ? |
---|
| 432 | if (noms(nnq) == "h2o_ice") igcm_h2o_ice = nnq |
---|
| 433 | if (noms(nnq) == "h2o_vap") then |
---|
| 434 | igcm_h2o_vap = nnq |
---|
[3143] | 435 | mmol(igcm_h2o_vap) = 18. |
---|
[3028] | 436 | endif |
---|
| 437 | if (noms(nnq) == "co2") igcm_co2 = nnq |
---|
[3065] | 438 | enddo |
---|
[3039] | 439 | r = 8.314511*1000./mugaz |
---|
[3028] | 440 | |
---|
[2835] | 441 | !------------------------ |
---|
[3028] | 442 | ! I Initialization |
---|
[2835] | 443 | ! I_c Subslope parametrisation |
---|
| 444 | !------------------------ |
---|
[3028] | 445 | ! Define some slope statistics |
---|
| 446 | iflat = 1 |
---|
| 447 | do islope = 2,nslope |
---|
| 448 | if (abs(def_slope_mean(islope)) < abs(def_slope_mean(iflat))) iflat = islope |
---|
| 449 | enddo |
---|
[2794] | 450 | |
---|
[3028] | 451 | write(*,*) 'Flat slope for islope = ',iflat |
---|
| 452 | write(*,*) 'corresponding criterium = ',def_slope_mean(iflat) |
---|
[2794] | 453 | |
---|
[3028] | 454 | allocate(flag_co2flow(ngrid,nslope)) |
---|
| 455 | allocate(flag_co2flow_mesh(ngrid)) |
---|
| 456 | allocate(flag_h2oflow(ngrid,nslope)) |
---|
| 457 | allocate(flag_h2oflow_mesh(ngrid)) |
---|
[2835] | 458 | |
---|
[3149] | 459 | flag_co2flow = 0 |
---|
| 460 | flag_co2flow_mesh = 0 |
---|
| 461 | flag_h2oflow = 0 |
---|
| 462 | flag_h2oflow_mesh = 0 |
---|
[2835] | 463 | |
---|
[2794] | 464 | !------------------------ |
---|
[3028] | 465 | ! I Initialization |
---|
[3161] | 466 | ! I_d Read the PCM data and convert them to the physical grid |
---|
[3028] | 467 | !------------------------ |
---|
[3096] | 468 | ! First we read the evolution of water and co2 ice (and the mass mixing ratio) over the first year of the PCM run, saving only the minimum value |
---|
| 469 | call nb_time_step_PCM("data_PCM_Y1.nc",timelen) |
---|
[2794] | 470 | |
---|
[3028] | 471 | allocate(tsoil_ave(ngrid,nsoilmx,nslope)) |
---|
| 472 | allocate(watersoil_density_PEM_ave(ngrid,nsoilmx_PEM,nslope)) |
---|
[3149] | 473 | allocate(vmr_co2_PCM(ngrid,timelen)) |
---|
[3028] | 474 | allocate(ps_timeseries(ngrid,timelen)) |
---|
[3149] | 475 | allocate(min_co2_ice(ngrid,nslope,2)) |
---|
| 476 | allocate(min_h2o_ice(ngrid,nslope,2)) |
---|
| 477 | allocate(tsurf_avg_yr1(ngrid,nslope)) |
---|
[3028] | 478 | allocate(tsurf_ave(ngrid,nslope)) |
---|
[3149] | 479 | allocate(tsurf_PCM_timeseries(ngrid,nslope,timelen)) |
---|
| 480 | allocate(tsoil_PCM_timeseries(ngrid,nsoilmx,nslope,timelen)) |
---|
[3028] | 481 | allocate(q_co2_PEM_phys(ngrid,timelen)) |
---|
| 482 | allocate(q_h2o_PEM_phys(ngrid,timelen)) |
---|
[3149] | 483 | allocate(co2_ice_PCM(ngrid,nslope,timelen)) |
---|
[3028] | 484 | allocate(watersurf_density_ave(ngrid,nslope)) |
---|
| 485 | allocate(watersoil_density_timeseries(ngrid,nsoilmx,nslope,timelen)) |
---|
[3149] | 486 | allocate(Tsurfavg_before_saved(ngrid,nslope)) |
---|
[3028] | 487 | allocate(tsoil_phys_PEM_timeseries(ngrid,nsoilmx_PEM,nslope,timelen)) |
---|
| 488 | allocate(watersoil_density_PEM_timeseries(ngrid,nsoilmx_PEM,nslope,timelen)) |
---|
| 489 | allocate(delta_co2_adsorbded(ngrid)) |
---|
[3031] | 490 | allocate(porefillingice_thickness_prev_iter(ngrid,nslope)) |
---|
| 491 | allocate(delta_h2o_icetablesublim(ngrid)) |
---|
[3028] | 492 | allocate(delta_h2o_adsorbded(ngrid)) |
---|
[3149] | 493 | allocate(vmr_co2_PEM_phys(ngrid,timelen)) |
---|
[2794] | 494 | |
---|
[3028] | 495 | write(*,*) "Downloading data Y1..." |
---|
[3199] | 496 | call read_data_PCM("data_PCM_Y1.nc",timelen,iim,jjm_value,ngrid,nslope,vmr_co2_PCM,ps_timeseries,min_co2_ice(:,:,1),min_h2o_ice(:,:,1), & |
---|
[3149] | 497 | tsurf_avg_yr1,tsoil_ave,tsurf_PCM_timeseries,tsoil_PCM_timeseries,q_co2_PEM_phys,q_h2o_PEM_phys, & |
---|
| 498 | co2_ice_PCM,watersurf_density_ave,watersoil_density_timeseries) |
---|
[3199] | 499 | write(*,*) "Downloading data Y1 done!" |
---|
[2985] | 500 | |
---|
[3096] | 501 | ! Then we read the evolution of water and co2 ice (and the mass mixing ratio) over the second year of the PCM run, saving only the minimum value |
---|
[3199] | 502 | write(*,*) "Downloading data Y2..." |
---|
[3149] | 503 | call read_data_PCM("data_PCM_Y2.nc",timelen,iim,jjm_value,ngrid,nslope,vmr_co2_PCM,ps_timeseries,min_co2_ice(:,:,2),min_h2o_ice(:,:,2), & |
---|
| 504 | tsurf_ave,tsoil_ave,tsurf_PCM_timeseries,tsoil_PCM_timeseries,q_co2_PEM_phys,q_h2o_PEM_phys, & |
---|
| 505 | co2_ice_PCM,watersurf_density_ave,watersoil_density_timeseries) |
---|
[3199] | 506 | write(*,*) "Downloading data Y2 done!" |
---|
[2794] | 507 | |
---|
[2835] | 508 | !------------------------ |
---|
[3028] | 509 | ! I Initialization |
---|
| 510 | ! I_e Initialization of the PEM variables and soil |
---|
[2835] | 511 | !------------------------ |
---|
[3028] | 512 | call end_comsoil_h_PEM |
---|
| 513 | call ini_comsoil_h_PEM(ngrid,nslope) |
---|
| 514 | call end_adsorption_h_PEM |
---|
| 515 | call ini_adsorption_h_PEM(ngrid,nslope,nsoilmx_PEM) |
---|
| 516 | call end_ice_table_porefilling |
---|
| 517 | call ini_ice_table_porefilling(ngrid,nslope) |
---|
[2794] | 518 | |
---|
[3028] | 519 | if (soil_pem) then |
---|
[3199] | 520 | allocate(tsoil_anom(ngrid,nsoilmx,nslope)) |
---|
| 521 | tsoil_anom = tsoil - tsoil_ave ! compute anomaly between Tsoil(t) in the startfi - <Tsoil> to recompute properly tsoil in the restart |
---|
[3028] | 522 | call soil_settings_PEM(ngrid,nslope,nsoilmx_PEM,nsoilmx,inertiesoil,TI_PEM) |
---|
[3149] | 523 | tsoil_PEM(:,1:nsoilmx,:) = tsoil_ave |
---|
| 524 | tsoil_phys_PEM_timeseries(:,1:nsoilmx,:,:) = tsoil_PCM_timeseries |
---|
| 525 | watersoil_density_PEM_timeseries(:,1:nsoilmx,:,:) = watersoil_density_timeseries |
---|
[3070] | 526 | do l = nsoilmx + 1,nsoilmx_PEM |
---|
| 527 | tsoil_PEM(:,l,:) = tsoil_ave(:,nsoilmx,:) |
---|
| 528 | watersoil_density_PEM_timeseries(:,l,:,:) = watersoil_density_timeseries(:,nsoilmx,:,:) |
---|
[3028] | 529 | enddo |
---|
[3149] | 530 | watersoil_density_PEM_ave = sum(watersoil_density_PEM_timeseries,4)/timelen |
---|
[3028] | 531 | endif !soil_pem |
---|
[3149] | 532 | deallocate(tsoil_ave,tsoil_PCM_timeseries) |
---|
[2794] | 533 | |
---|
[2779] | 534 | !------------------------ |
---|
[3028] | 535 | ! I Initialization |
---|
[3143] | 536 | ! I_f Compute tendencies |
---|
[3028] | 537 | !------------------------ |
---|
[3149] | 538 | allocate(tend_co2_ice(ngrid,nslope),tend_h2o_ice(ngrid,nslope)) |
---|
| 539 | allocate(tend_co2_ice_ini(ngrid,nslope)) |
---|
[2779] | 540 | |
---|
[3028] | 541 | ! Compute the tendencies of the evolution of ice over the years |
---|
[3149] | 542 | call compute_tend(ngrid,nslope,min_co2_ice,tend_co2_ice) |
---|
| 543 | call compute_tend(ngrid,nslope,min_h2o_ice,tend_h2o_ice) |
---|
| 544 | tend_co2_ice_ini = tend_co2_ice |
---|
[2895] | 545 | |
---|
[2835] | 546 | !------------------------ |
---|
[3028] | 547 | ! I Initialization |
---|
[2835] | 548 | ! I_g Save initial PCM situation |
---|
[3028] | 549 | !------------------------ |
---|
[3159] | 550 | ! We save the places where h2o ice is sublimating |
---|
| 551 | ! We compute the surface of h2o ice sublimating |
---|
[3149] | 552 | co2_surf_ini = 0. |
---|
| 553 | h2o_surf_ini = 0. |
---|
[3028] | 554 | Total_surface = 0. |
---|
| 555 | do i = 1,ngrid |
---|
[3070] | 556 | Total_surface = Total_surface + cell_area(i) |
---|
[3028] | 557 | do islope = 1,nslope |
---|
[3149] | 558 | if (tend_co2_ice(i,islope) < 0.) co2_surf_ini = co2_surf_ini + cell_area(i)*subslope_dist(i,islope) |
---|
| 559 | if (tend_h2o_ice(i,islope) < 0.) h2o_surf_ini = h2o_surf_ini + cell_area(i)*subslope_dist(i,islope) |
---|
[2779] | 560 | enddo |
---|
[3028] | 561 | enddo |
---|
[2779] | 562 | |
---|
[3149] | 563 | write(*,*) "Total initial surface of co2 ice sublimating (slope) =", co2_surf_ini |
---|
| 564 | write(*,*) "Total initial surface of h2o ice sublimating (slope) =", h2o_surf_ini |
---|
[3143] | 565 | write(*,*) "Total surface of the planet =", Total_surface |
---|
[3149] | 566 | allocate(zplev_PCM(ngrid,nlayer + 1)) |
---|
[2779] | 567 | |
---|
[3070] | 568 | do ig = 1,ngrid |
---|
[3149] | 569 | zplev_PCM(ig,:) = ap + bp*ps_start_PCM(ig) |
---|
[3028] | 570 | enddo |
---|
[2779] | 571 | |
---|
[3149] | 572 | global_avg_press_old = sum(cell_area*ps_start_PCM)/Total_surface |
---|
| 573 | global_avg_press_PCM = global_avg_press_old |
---|
| 574 | global_avg_press_new = global_avg_press_old |
---|
| 575 | write(*,*) "Initial global average pressure =", global_avg_press_PCM |
---|
[2779] | 576 | |
---|
| 577 | !------------------------ |
---|
[3028] | 578 | ! I Initialization |
---|
[3161] | 579 | ! I_h Read the "startpem.nc" |
---|
[3028] | 580 | !------------------------ |
---|
[3149] | 581 | allocate(co2_ice(ngrid,nslope),h2o_ice(ngrid,nslope)) |
---|
| 582 | deallocate(min_co2_ice,min_h2o_ice) |
---|
| 583 | |
---|
[3088] | 584 | call pemetat0("startpem.nc",ngrid,nsoilmx,nsoilmx_PEM,nslope,timelen,timestep,TI_PEM,tsoil_PEM,porefillingice_depth, & |
---|
[3149] | 585 | porefillingice_thickness,tsurf_avg_yr1,tsurf_ave,q_co2_PEM_phys,q_h2o_PEM_phys,ps_timeseries, & |
---|
| 586 | tsoil_phys_PEM_timeseries,tend_h2o_ice,tend_co2_ice,co2_ice,h2o_ice,global_avg_press_PCM, & |
---|
| 587 | watersurf_density_ave,watersoil_density_PEM_ave,co2_adsorbded_phys,delta_co2_adsorbded, & |
---|
| 588 | h2o_adsorbded_phys,delta_h2o_adsorbded) |
---|
[2779] | 589 | |
---|
[3149] | 590 | allocate(co2_ice_ini(ngrid,nslope)) |
---|
| 591 | co2_ice_ini = co2_ice |
---|
[3031] | 592 | |
---|
[3149] | 593 | delta_h2o_icetablesublim = 0. |
---|
[3130] | 594 | |
---|
[3028] | 595 | if (adsorption_pem) then |
---|
| 596 | totmassco2_adsorbded = 0. |
---|
| 597 | totmassh2o_adsorbded = 0. |
---|
| 598 | do ig = 1,ngrid |
---|
[3070] | 599 | do islope = 1,nslope |
---|
[3028] | 600 | do l = 1,nsoilmx_PEM - 1 |
---|
[3264] | 601 | if (l==1) then |
---|
| 602 | totmassco2_adsorbded = totmassco2_adsorbded + co2_adsorbded_phys(ig,l,islope)*(layer_PEM(l))* & |
---|
[3028] | 603 | subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig) |
---|
[3264] | 604 | totmassh2o_adsorbded = totmassh2o_adsorbded + h2o_adsorbded_phys(ig,l,islope)*(layer_PEM(l))* & |
---|
[3028] | 605 | subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig) |
---|
[3264] | 606 | else |
---|
| 607 | totmassco2_adsorbded = totmassco2_adsorbded + co2_adsorbded_phys(ig,l,islope)*(layer_PEM(l) - layer_PEM(l-1))* & |
---|
| 608 | subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig) |
---|
| 609 | totmassh2o_adsorbded = totmassh2o_adsorbded + h2o_adsorbded_phys(ig,l,islope)*(layer_PEM(l) - layer_PEM(l-1))* & |
---|
| 610 | subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig) |
---|
| 611 | endif |
---|
[3028] | 612 | enddo |
---|
[2961] | 613 | enddo |
---|
[3028] | 614 | enddo |
---|
[3143] | 615 | write(*,*) "Tot mass of CO2 in the regolith =", totmassco2_adsorbded |
---|
| 616 | write(*,*) "Tot mass of H2O in the regolith =", totmassh2o_adsorbded |
---|
[3028] | 617 | endif ! adsorption |
---|
[3149] | 618 | deallocate(tsurf_avg_yr1) |
---|
[2794] | 619 | |
---|
[2835] | 620 | !------------------------ |
---|
[3028] | 621 | ! I Initialization |
---|
[2835] | 622 | ! I_i Compute orbit criterion |
---|
[3028] | 623 | !------------------------ |
---|
[2842] | 624 | #ifndef CPP_STD |
---|
[3050] | 625 | call iniorbit(aphelie,periheli,year_day,peri_day,obliquit) |
---|
[2842] | 626 | #else |
---|
[3050] | 627 | call iniorbit(apoastr,periastr,year_day,peri_day,obliquit) |
---|
[2842] | 628 | #endif |
---|
[2794] | 629 | |
---|
[3028] | 630 | if (evol_orbit_pem) then |
---|
[3039] | 631 | call orbit_param_criterion(i_myear,year_iter_max) |
---|
[3028] | 632 | else |
---|
| 633 | year_iter_max = Max_iter_pem |
---|
| 634 | endif |
---|
| 635 | !-------------------------- END INITIALIZATION ------------------------- |
---|
[2794] | 636 | |
---|
[3028] | 637 | !-------------------------------- RUN ---------------------------------- |
---|
[2794] | 638 | !------------------------ |
---|
| 639 | ! II Run |
---|
[3065] | 640 | ! II_a Update pressure, ice and tracers |
---|
[2794] | 641 | !------------------------ |
---|
[3028] | 642 | year_iter = 0 |
---|
[3149] | 643 | stopPEM = 0 |
---|
[2794] | 644 | |
---|
[3039] | 645 | do while (year_iter < year_iter_max .and. i_myear < n_myear) |
---|
[2835] | 646 | ! II.a.1. Compute updated global pressure |
---|
[3028] | 647 | write(*,*) "Recomputing the new pressure..." |
---|
| 648 | do i = 1,ngrid |
---|
| 649 | do islope = 1,nslope |
---|
[3188] | 650 | global_avg_press_new = global_avg_press_new - CO2cond_ps*g*cell_area(i)*tend_co2_ice(i,islope)*subslope_dist(i,islope)/cos(pi*def_slope_mean(islope)/180.)/Total_surface |
---|
[3028] | 651 | enddo |
---|
| 652 | enddo |
---|
[3065] | 653 | |
---|
[3028] | 654 | if (adsorption_pem) then |
---|
| 655 | do i = 1,ngrid |
---|
[3149] | 656 | global_avg_press_new = global_avg_press_new - g*cell_area(i)*delta_co2_adsorbded(i)/Total_surface |
---|
[3050] | 657 | enddo |
---|
[3028] | 658 | endif |
---|
[3149] | 659 | write(*,*) 'Global average pressure old time step',global_avg_press_old |
---|
| 660 | write(*,*) 'Global average pressure new time step',global_avg_press_new |
---|
[2835] | 661 | |
---|
[3161] | 662 | ! II.a.2. Old pressure levels for the timeseries, this value is deleted when unused and recreated each time (big memory consumption) |
---|
[3070] | 663 | allocate(zplev_old_timeseries(ngrid,nlayer + 1,timelen)) |
---|
[3028] | 664 | write(*,*) "Recomputing the old pressure levels timeserie adapted to the old pressure..." |
---|
| 665 | do l = 1,nlayer + 1 |
---|
| 666 | do ig = 1,ngrid |
---|
| 667 | zplev_old_timeseries(ig,l,:) = ap(l) + bp(l)*ps_timeseries(ig,:) |
---|
| 668 | enddo |
---|
| 669 | enddo |
---|
[2779] | 670 | |
---|
[2835] | 671 | ! II.a.3. Surface pressure timeseries |
---|
[3028] | 672 | write(*,*) "Recomputing the surface pressure timeserie adapted to the new pressure..." |
---|
| 673 | do ig = 1,ngrid |
---|
[3149] | 674 | ps_timeseries(ig,:) = ps_timeseries(ig,:)*global_avg_press_new/global_avg_press_old |
---|
[3028] | 675 | enddo |
---|
[2779] | 676 | |
---|
[2835] | 677 | ! II.a.4. New pressure levels timeseries |
---|
[3149] | 678 | allocate(zplev_new_timeseries(ngrid,nlayer + 1,timelen)) |
---|
[3028] | 679 | write(*,*) "Recomputing the new pressure levels timeserie adapted to the new pressure..." |
---|
| 680 | do l = 1,nlayer + 1 |
---|
| 681 | do ig = 1,ngrid |
---|
| 682 | zplev_new_timeseries(ig,l,:) = ap(l) + bp(l)*ps_timeseries(ig,:) |
---|
| 683 | enddo |
---|
| 684 | enddo |
---|
[2779] | 685 | |
---|
[2835] | 686 | ! II.a.5. Tracers timeseries |
---|
[3028] | 687 | write(*,*) "Recomputing of tracer VMR timeseries for the new pressure..." |
---|
[2794] | 688 | |
---|
[3028] | 689 | l = 1 |
---|
| 690 | do ig = 1,ngrid |
---|
| 691 | do t = 1,timelen |
---|
| 692 | q_h2o_PEM_phys(ig,t) = q_h2o_PEM_phys(ig,t)*(zplev_old_timeseries(ig,l,t) - zplev_old_timeseries(ig,l + 1,t))/ & |
---|
| 693 | (zplev_new_timeseries(ig,l,t) - zplev_new_timeseries(ig,l + 1,t)) |
---|
[3143] | 694 | if (q_h2o_PEM_phys(ig,t) < 0) then |
---|
| 695 | q_h2o_PEM_phys(ig,t) = 1.e-30 |
---|
| 696 | else if (q_h2o_PEM_phys(ig,t) > 1) then |
---|
| 697 | q_h2o_PEM_phys(ig,t) = 1. |
---|
| 698 | endif |
---|
[3028] | 699 | enddo |
---|
| 700 | enddo |
---|
[2794] | 701 | |
---|
[3028] | 702 | do ig = 1,ngrid |
---|
[3065] | 703 | do t = 1,timelen |
---|
[3028] | 704 | q_co2_PEM_phys(ig,t) = q_co2_PEM_phys(ig,t)*(zplev_old_timeseries(ig,l,t) - zplev_old_timeseries(ig,l + 1,t))/ & |
---|
[3122] | 705 | (zplev_new_timeseries(ig,l,t) - zplev_new_timeseries(ig,l + 1,t)) & |
---|
| 706 | + ((zplev_new_timeseries(ig,l,t) - zplev_new_timeseries(ig,l + 1,t)) & |
---|
| 707 | - (zplev_old_timeseries(ig,l,t) - zplev_old_timeseries(ig,l + 1,t)))/ & |
---|
[3028] | 708 | (zplev_new_timeseries(ig,l,t) - zplev_new_timeseries(ig,l + 1,t)) |
---|
| 709 | if (q_co2_PEM_phys(ig,t) < 0) then |
---|
| 710 | q_co2_PEM_phys(ig,t) = 1.e-30 |
---|
[3143] | 711 | else if (q_co2_PEM_phys(ig,t) > 1) then |
---|
[3028] | 712 | q_co2_PEM_phys(ig,t) = 1. |
---|
| 713 | endif |
---|
| 714 | mmean=1/(A*q_co2_PEM_phys(ig,t) + B) |
---|
[3149] | 715 | vmr_co2_PEM_phys(ig,t) = q_co2_PEM_phys(ig,t)*mmean/m_co2 |
---|
[3028] | 716 | enddo |
---|
| 717 | enddo |
---|
[2794] | 718 | |
---|
[3028] | 719 | deallocate(zplev_new_timeseries,zplev_old_timeseries) |
---|
| 720 | |
---|
| 721 | !------------------------ |
---|
[2835] | 722 | ! II Run |
---|
[3149] | 723 | ! II_b Evolution of ice |
---|
[3028] | 724 | !------------------------ |
---|
[3149] | 725 | call evol_h2o_ice(ngrid,nslope,cell_area,delta_h2o_adsorbded,delta_h2o_icetablesublim,h2o_ice,tend_h2o_ice,stopPEM) |
---|
| 726 | call evol_co2_ice(ngrid,nslope,co2_ice,tend_co2_ice) |
---|
[2794] | 727 | |
---|
| 728 | !------------------------ |
---|
| 729 | ! II Run |
---|
[3149] | 730 | ! II_c Flow of glaciers |
---|
[2794] | 731 | !------------------------ |
---|
[3181] | 732 | if (co2ice_flow .and. nslope > 1) call flow_co2glaciers(timelen,ngrid,nslope,iflat,subslope_dist,def_slope_mean,vmr_co2_PEM_phys,ps_timeseries, & |
---|
[3149] | 733 | global_avg_press_PCM,global_avg_press_new,co2_ice,flag_co2flow,flag_co2flow_mesh) |
---|
[3181] | 734 | if (h2oice_flow .and. nslope > 1) call flow_h2oglaciers(timelen,ngrid,nslope,iflat,subslope_dist,def_slope_mean,tsurf_ave,h2o_ice,flag_h2oflow,flag_h2oflow_mesh) |
---|
[3065] | 735 | |
---|
[2794] | 736 | !------------------------ |
---|
| 737 | ! II Run |
---|
[2835] | 738 | ! II_d Update surface and soil temperatures |
---|
[2794] | 739 | !------------------------ |
---|
[2835] | 740 | ! II_d.1 Update Tsurf |
---|
[3028] | 741 | write(*,*) "Updating the new Tsurf" |
---|
| 742 | bool_sublim = .false. |
---|
[3149] | 743 | Tsurfavg_before_saved = tsurf_ave |
---|
[3028] | 744 | do ig = 1,ngrid |
---|
| 745 | do islope = 1,nslope |
---|
[3149] | 746 | if (co2_ice_ini(ig,islope) > 0.5 .and. co2_ice(ig,islope) < 1.e-10) then ! co2 ice disappeared, look for closest point without co2ice |
---|
[3028] | 747 | if (latitude_deg(ig) > 0) then |
---|
| 748 | do ig_loop = ig,ngrid |
---|
| 749 | do islope_loop = islope,iflat,-1 |
---|
[3149] | 750 | if (co2_ice_ini(ig_loop,islope_loop) < 0.5 .and. co2_ice(ig_loop,islope_loop) < 1.e-10) then |
---|
[3028] | 751 | tsurf_ave(ig,islope) = tsurf_ave(ig_loop,islope_loop) |
---|
| 752 | bool_sublim = .true. |
---|
| 753 | exit |
---|
| 754 | endif |
---|
| 755 | enddo |
---|
| 756 | if (bool_sublim) exit |
---|
| 757 | enddo |
---|
| 758 | else |
---|
| 759 | do ig_loop = ig,1,-1 |
---|
| 760 | do islope_loop = islope,iflat |
---|
[3149] | 761 | if(co2_ice_ini(ig_loop,islope_loop) < 0.5 .and. co2_ice(ig_loop,islope_loop) < 1.e-10) then |
---|
[3028] | 762 | tsurf_ave(ig,islope) = tsurf_ave(ig_loop,islope_loop) |
---|
| 763 | bool_sublim = .true. |
---|
| 764 | exit |
---|
| 765 | endif |
---|
| 766 | enddo |
---|
| 767 | if (bool_sublim) exit |
---|
| 768 | enddo |
---|
[2835] | 769 | endif |
---|
[3149] | 770 | co2_ice_ini(ig,islope) = 0 |
---|
| 771 | if ((co2_ice(ig,islope) < 1.e-10) .and. (h2o_ice(ig,islope) > frost_albedo_threshold)) then |
---|
[3028] | 772 | albedo(ig,1,islope) = albedo_h2o_frost |
---|
| 773 | albedo(ig,2,islope) = albedo_h2o_frost |
---|
| 774 | else |
---|
| 775 | albedo(ig,1,islope) = albedodat(ig) |
---|
[3065] | 776 | albedo(ig,2,islope) = albedodat(ig) |
---|
[3028] | 777 | emis(ig,islope) = emissiv |
---|
| 778 | endif |
---|
[3149] | 779 | else if ((co2_ice(ig,islope) > 1.e-3) .and. (tend_co2_ice(ig,islope) > 1.e-10)) then ! Put tsurf as tcond co2 |
---|
[3028] | 780 | ave = 0. |
---|
| 781 | do t = 1,timelen |
---|
[3149] | 782 | if (co2_ice_PCM(ig,islope,t) > 1.e-3) then |
---|
[3181] | 783 | ave = ave + beta_clap_co2/(alpha_clap_co2 - log(vmr_co2_PEM_phys(ig,t)*ps_timeseries(ig,t)/100.)) |
---|
[3028] | 784 | else |
---|
[3149] | 785 | ave = ave + tsurf_PCM_timeseries(ig,islope,t) |
---|
[3028] | 786 | endif |
---|
[2794] | 787 | enddo |
---|
[3028] | 788 | tsurf_ave(ig,islope) = ave/timelen |
---|
[3032] | 789 | ! set the surface albedo to be the ice albedo |
---|
| 790 | if (latitude_deg(ig) > 0) then |
---|
| 791 | icap = 1 |
---|
| 792 | else |
---|
| 793 | icap = 2 |
---|
| 794 | endif |
---|
| 795 | albedo(ig,1,islope) = albedice(icap) |
---|
| 796 | albedo(ig,2,islope) = albedice(icap) |
---|
| 797 | emis(ig,islope) = emisice(icap) |
---|
[2835] | 798 | endif |
---|
| 799 | enddo |
---|
[3028] | 800 | enddo |
---|
[2794] | 801 | |
---|
[3028] | 802 | do t = 1,timelen |
---|
[3149] | 803 | tsurf_PCM_timeseries(:,:,t) = tsurf_PCM_timeseries(:,:,t) + tsurf_ave - Tsurfavg_before_saved |
---|
[3028] | 804 | enddo |
---|
| 805 | ! for the start |
---|
| 806 | do ig = 1,ngrid |
---|
[2835] | 807 | do islope = 1,nslope |
---|
[3149] | 808 | tsurf(ig,islope) = tsurf(ig,islope) - (Tsurfavg_before_saved(ig,islope) - tsurf_ave(ig,islope)) |
---|
[2794] | 809 | enddo |
---|
[3028] | 810 | enddo |
---|
[2794] | 811 | |
---|
[3028] | 812 | if (soil_pem) then |
---|
[2794] | 813 | |
---|
[2835] | 814 | ! II_d.2 Update soil temperature |
---|
[3028] | 815 | allocate(TI_locslope(ngrid,nsoilmx_PEM)) |
---|
| 816 | allocate(Tsoil_locslope(ngrid,nsoilmx_PEM)) |
---|
| 817 | allocate(Tsurf_locslope(ngrid)) |
---|
| 818 | write(*,*)"Updating soil temperature" |
---|
[2794] | 819 | |
---|
[3028] | 820 | ! Soil averaged |
---|
| 821 | do islope = 1,nslope |
---|
[3149] | 822 | TI_locslope = TI_PEM(:,:,islope) |
---|
[3028] | 823 | do t = 1,timelen |
---|
[3149] | 824 | Tsoil_locslope = tsoil_phys_PEM_timeseries(:,:,islope,t) |
---|
| 825 | Tsurf_locslope = tsurf_PCM_timeseries(:,islope,t) |
---|
[3178] | 826 | call compute_tsoil_pem(ngrid,nsoilmx_PEM,.true.,TI_locslope,timestep/timelen,Tsurf_locslope,Tsoil_locslope) |
---|
| 827 | call compute_tsoil_pem(ngrid,nsoilmx_PEM,.false.,TI_locslope,timestep/timelen,Tsurf_locslope,Tsoil_locslope) |
---|
[3149] | 828 | tsoil_phys_PEM_timeseries(:,:,islope,t) = Tsoil_locslope |
---|
[3028] | 829 | do ig = 1,ngrid |
---|
| 830 | do isoil = 1,nsoilmx_PEM |
---|
| 831 | watersoil_density_PEM_timeseries(ig,isoil,islope,t) = exp(beta_clap_h2o/Tsoil_locslope(ig,isoil) + alpha_clap_h2o)/Tsoil_locslope(ig,isoil)*mmol(igcm_h2o_vap)/(mugaz*r) |
---|
[3065] | 832 | if (isnan(Tsoil_locslope(ig,isoil))) call abort_pem("PEM - Update Tsoil","NaN detected in Tsoil ",1) |
---|
[3028] | 833 | enddo |
---|
| 834 | enddo |
---|
| 835 | enddo |
---|
| 836 | enddo |
---|
[3149] | 837 | tsoil_PEM = sum(tsoil_phys_PEM_timeseries,4)/timelen |
---|
| 838 | watersoil_density_PEM_ave = sum(watersoil_density_PEM_timeseries,4)/timelen |
---|
[2794] | 839 | |
---|
[3028] | 840 | write(*,*) "Update of soil temperature done" |
---|
[2888] | 841 | |
---|
[3028] | 842 | deallocate(TI_locslope,Tsoil_locslope,Tsurf_locslope) |
---|
[2849] | 843 | |
---|
[2835] | 844 | ! II_d.3 Update the ice table |
---|
[3170] | 845 | if (icetable_equilibrium) then |
---|
| 846 | write(*,*) "Compute ice table" |
---|
| 847 | porefillingice_thickness_prev_iter = porefillingice_thickness |
---|
| 848 | call computeice_table_equilibrium(ngrid,nslope,nsoilmx_PEM,watercaptag,watersurf_density_ave,watersoil_density_PEM_ave,TI_PEM(:,1,:),porefillingice_depth,porefillingice_thickness) |
---|
[3264] | 849 | call compute_massh2o_exchange_ssi(ngrid,nslope,nsoilmx_PEM,porefillingice_thickness_prev_iter,porefillingice_thickness,porefillingice_depth,tsurf_ave, tsoil_PEM,delta_h2o_icetablesublim) ! Mass of H2O exchange between the ssi and the atmosphere |
---|
[3170] | 850 | endif |
---|
[3122] | 851 | ! II_d.4 Update the soil thermal properties |
---|
[3149] | 852 | call update_soil_thermalproperties(ngrid,nslope,nsoilmx_PEM,tend_h2o_ice,h2o_ice,global_avg_press_new,porefillingice_depth,porefillingice_thickness,TI_PEM) |
---|
[2794] | 853 | |
---|
[3143] | 854 | ! II_d.5 Update the mass of the regolith adsorbed |
---|
[3028] | 855 | if (adsorption_pem) then |
---|
[3159] | 856 | call regolith_adsorption(ngrid,nslope,nsoilmx_PEM,timelen,tend_h2o_ice,tend_co2_ice, & |
---|
[3149] | 857 | h2o_ice,co2_ice,tsoil_PEM,TI_PEM,ps_timeseries,q_co2_PEM_phys,q_h2o_PEM_phys, & |
---|
| 858 | h2o_adsorbded_phys,delta_h2o_adsorbded,co2_adsorbded_phys,delta_co2_adsorbded) |
---|
[2794] | 859 | |
---|
[3028] | 860 | totmassco2_adsorbded = 0. |
---|
| 861 | totmassh2o_adsorbded = 0. |
---|
| 862 | do ig = 1,ngrid |
---|
| 863 | do islope =1, nslope |
---|
[3264] | 864 | do l = 1,nsoilmx_PEM |
---|
| 865 | if (l==1) then |
---|
| 866 | totmassco2_adsorbded = totmassco2_adsorbded + co2_adsorbded_phys(ig,l,islope)*(layer_PEM(l))* & |
---|
| 867 | subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig) |
---|
| 868 | totmassh2o_adsorbded = totmassh2o_adsorbded + h2o_adsorbded_phys(ig,l,islope)*(layer_PEM(l))* & |
---|
| 869 | subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig) |
---|
| 870 | else |
---|
| 871 | totmassco2_adsorbded = totmassco2_adsorbded + co2_adsorbded_phys(ig,l,islope)*(layer_PEM(l) - layer_PEM(l-1))* & |
---|
| 872 | subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig) |
---|
| 873 | totmassh2o_adsorbded = totmassh2o_adsorbded + h2o_adsorbded_phys(ig,l,islope)*(layer_PEM(l) - layer_PEM(l-1))* & |
---|
| 874 | subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig) |
---|
| 875 | endif |
---|
[3028] | 876 | enddo |
---|
| 877 | enddo |
---|
| 878 | enddo |
---|
| 879 | write(*,*) "Tot mass of CO2 in the regolith=", totmassco2_adsorbded |
---|
| 880 | write(*,*) "Tot mass of H2O in the regolith=", totmassh2o_adsorbded |
---|
| 881 | endif |
---|
| 882 | endif !soil_pem |
---|
| 883 | |
---|
[2794] | 884 | !------------------------ |
---|
| 885 | ! II Run |
---|
[3088] | 886 | ! II_e Outputs |
---|
[2794] | 887 | !------------------------ |
---|
[3181] | 888 | call writediagpem(ngrid,'ps_ave','Global average pressure','Pa',0,(/global_avg_press_new/)) |
---|
[3088] | 889 | do islope = 1,nslope |
---|
| 890 | write(str2(1:2),'(i2.2)') islope |
---|
[3181] | 891 | call writediagpem(ngrid,'h2o_ice_slope'//str2,'H2O ice','kg.m-2',2,h2o_ice(:,islope)) |
---|
| 892 | call writediagpem(ngrid,'co2_ice_slope'//str2,'CO2 ice','kg.m-2',2,co2_ice(:,islope)) |
---|
| 893 | call writediagpem(ngrid,'tend_h2o_ice_slope'//str2,'H2O ice tend','kg.m-2.year-1',2,tend_h2o_ice(:,islope)) |
---|
| 894 | call writediagpem(ngrid,'tend_co2_ice_slope'//str2,'CO2 ice tend','kg.m-2.year-1',2,tend_co2_ice(:,islope)) |
---|
| 895 | call writediagpem(ngrid,'Flow_co2ice_slope'//str2,'CO2 ice flow','Boolean',2,flag_co2flow(:,islope)) |
---|
| 896 | call writediagpem(ngrid,'tsurf_slope'//str2,'tsurf','K',2,tsurf(:,islope)) |
---|
[3171] | 897 | if(icetable_equilibrium) then |
---|
[3181] | 898 | call writediagpem(ngrid,'ssi_depth_slope'//str2,'ice table depth','m',2,porefillingice_depth(:,islope)) |
---|
| 899 | call writediagpem(ngrid,'ssi_thick_slope'//str2,'ice table depth','m',2,porefillingice_thickness(:,islope)) |
---|
[3171] | 900 | endif |
---|
| 901 | if(soil_pem) then |
---|
| 902 | call writediagsoilpem(ngrid,'tsoil_PEM_slope'//str2,'tsoil_PEM','K',3,tsoil_PEM(:,:,islope)) |
---|
| 903 | call writediagsoilpem(ngrid,'inertiesoil_PEM_slope'//str2,'TI_PEM','K',3,TI_PEM(:,:,islope)) |
---|
| 904 | if (adsorption_pem) then |
---|
| 905 | call writediagsoilpem(ngrid,'co2_ads_slope'//str2,'co2_ads','K',3,co2_adsorbded_phys(:,:,islope)) |
---|
| 906 | call writediagsoilpem(ngrid,'h2o_ads_slope'//str2,'h2o_ads','K',3,h2o_adsorbded_phys(:,:,islope)) |
---|
| 907 | endif |
---|
| 908 | endif |
---|
[3088] | 909 | enddo |
---|
| 910 | |
---|
| 911 | !------------------------ |
---|
| 912 | ! II Run |
---|
| 913 | ! II_f Update the tendencies |
---|
| 914 | !------------------------ |
---|
[3149] | 915 | call recomp_tend_co2_slope(ngrid,nslope,timelen,tend_co2_ice,tend_co2_ice_ini,co2_ice,emis,vmr_co2_PCM,vmr_co2_PEM_phys,ps_timeseries, & |
---|
| 916 | global_avg_press_PCM,global_avg_press_new) |
---|
[2794] | 917 | |
---|
[2835] | 918 | !------------------------ |
---|
| 919 | ! II Run |
---|
[3088] | 920 | ! II_g Checking the stopping criterion |
---|
[2835] | 921 | !------------------------ |
---|
[3149] | 922 | call stopping_crit_h2o_ice(cell_area,h2o_surf_ini,h2o_ice,stopPEM,ngrid) |
---|
| 923 | call stopping_crit_co2(cell_area,co2_surf_ini,co2_ice,stopPEM,ngrid,global_avg_press_PCM,global_avg_press_new,nslope) |
---|
[2779] | 924 | |
---|
[3028] | 925 | year_iter = year_iter + dt_pem |
---|
[3039] | 926 | i_myear = i_myear + dt_pem |
---|
[2794] | 927 | |
---|
[3149] | 928 | write(*,*) "Checking the stopping criteria..." |
---|
| 929 | if (year_iter >= year_iter_max) stopPEM = 5 |
---|
| 930 | if (i_myear >= n_myear) stopPEM = 6 |
---|
| 931 | if (stopPEM > 0) then |
---|
| 932 | select case (stopPEM) |
---|
| 933 | case(1) |
---|
[3159] | 934 | write(*,*) "STOPPING because surface of h2o ice sublimating is too low:", stopPEM, "See message above." |
---|
[3149] | 935 | case(2) |
---|
[3159] | 936 | write(*,*) "STOPPING because tendencies on h2o ice = 0:", stopPEM, "See message above." |
---|
[3149] | 937 | case(3) |
---|
| 938 | write(*,*) "STOPPING because surface of co2 ice sublimating is too low:", stopPEM, "See message above." |
---|
| 939 | case(4) |
---|
| 940 | write(*,*) "STOPPING because surface global pressure changed too much:", stopPEM, "See message above." |
---|
| 941 | case(5) |
---|
| 942 | write(*,*) "STOPPING because maximum number of iterations due to orbital parameters is reached:", stopPEM |
---|
| 943 | case(6) |
---|
| 944 | write(*,*) "STOPPING because maximum number of Martian years to be simulated is reached:", stopPEM |
---|
| 945 | case default |
---|
| 946 | write(*,*) "STOPPING with unknown stopping criterion code:", stopPEM |
---|
| 947 | end select |
---|
[2779] | 948 | exit |
---|
[3028] | 949 | else |
---|
[3143] | 950 | write(*,*) "The PEM can continue!" |
---|
[3039] | 951 | write(*,*) "Number of iterations of the PEM: year_iter =", year_iter |
---|
| 952 | write(*,*) "Number of simulated Martian years: i_myear =", i_myear |
---|
[3028] | 953 | endif |
---|
[2779] | 954 | |
---|
[3149] | 955 | global_avg_press_old = global_avg_press_new |
---|
[2779] | 956 | |
---|
[3149] | 957 | enddo ! big time iteration loop of the pem |
---|
[3028] | 958 | !------------------------------ END RUN -------------------------------- |
---|
[2779] | 959 | |
---|
[3028] | 960 | !------------------------------- OUTPUT -------------------------------- |
---|
[2794] | 961 | !------------------------ |
---|
| 962 | ! III Output |
---|
[2835] | 963 | ! III_a Update surface value for the PCM start files |
---|
[2794] | 964 | !------------------------ |
---|
[2835] | 965 | ! III_a.1 Ice update (for startfi) |
---|
[2779] | 966 | |
---|
[3149] | 967 | watercap = 0. |
---|
[3159] | 968 | perennial_co2ice = co2_ice |
---|
[3028] | 969 | do ig = 1,ngrid |
---|
[3159] | 970 | ! H2O ice metamorphism |
---|
[3161] | 971 | if (metam_h2oice .and. sum(qsurf(ig,igcm_h2o_ice,:)*subslope_dist(ig,:)/cos(pi*def_slope_mean(:)/180.)) > metam_h2oice_threshold) then |
---|
[3159] | 972 | h2o_ice(ig,:) = h2o_ice(ig,:) + qsurf(ig,igcm_h2o_ice,:) - metam_h2oice_threshold/subslope_dist(ig,:)*cos(pi*def_slope_mean(:)*180.) |
---|
| 973 | qsurf(ig,igcm_h2o_ice,:) = metam_h2oice_threshold/subslope_dist(ig,:)*cos(pi*def_slope_mean(:)*180.) |
---|
| 974 | endif |
---|
| 975 | |
---|
| 976 | ! Is H2O ice still considered as an infinite reservoir for the PCM? |
---|
[3149] | 977 | if (sum(h2o_ice(ig,:)*subslope_dist(ig,:)/cos(pi*def_slope_mean(:)/180.)) > inf_h2oice_threshold) then |
---|
[3159] | 978 | ! There is enough ice to be considered as an infinite reservoir |
---|
[3149] | 979 | watercaptag(ig) = .true. |
---|
| 980 | else |
---|
[3159] | 981 | ! There too little ice to be considered as an infinite reservoir so ice is transferred to the frost |
---|
[3149] | 982 | watercaptag(ig) = .false. |
---|
| 983 | qsurf(ig,igcm_h2o_ice,:) = qsurf(ig,igcm_h2o_ice,:) + h2o_ice(ig,:) |
---|
| 984 | h2o_ice(ig,:) = 0. |
---|
[3028] | 985 | endif |
---|
[3159] | 986 | |
---|
| 987 | ! CO2 ice metamorphism |
---|
[3161] | 988 | if (metam_co2ice .and. sum(qsurf(ig,igcm_co2,:)*subslope_dist(ig,:)/cos(pi*def_slope_mean(:)/180.)) > metam_co2ice_threshold) then |
---|
[3159] | 989 | perennial_co2ice(ig,:) = perennial_co2ice(ig,:) + qsurf(ig,igcm_co2,:) - metam_co2ice_threshold/subslope_dist(ig,:)*cos(pi*def_slope_mean(:)*180.) |
---|
| 990 | qsurf(ig,igcm_co2,:) = metam_co2ice_threshold/subslope_dist(ig,:)*cos(pi*def_slope_mean(:)*180.) |
---|
| 991 | endif |
---|
[3028] | 992 | enddo |
---|
[2888] | 993 | |
---|
[2849] | 994 | ! III_a.2 Tsoil update (for startfi) |
---|
[3028] | 995 | if (soil_pem) then |
---|
[3149] | 996 | call interpol_TI_PEM2PCM(ngrid,nslope,nsoilmx_PEM,nsoilmx,TI_PEM,inertiesoil) |
---|
[3189] | 997 | tsoil = tsoil_PEM(:,1:nsoilmx,:) + tsoil_anom |
---|
[3199] | 998 | deallocate(tsoil_anom) |
---|
[3172] | 999 | #ifndef CPP_STD |
---|
[3181] | 1000 | flux_geo = fluxgeo |
---|
[3172] | 1001 | #endif |
---|
[3028] | 1002 | endif |
---|
[2779] | 1003 | |
---|
[2835] | 1004 | ! III_a.4 Pressure (for start) |
---|
[3149] | 1005 | ps = ps*global_avg_press_new/global_avg_press_PCM |
---|
| 1006 | ps_start_PCM = ps_start_PCM*global_avg_press_new/global_avg_press_PCM |
---|
[2794] | 1007 | |
---|
[2835] | 1008 | ! III_a.5 Tracer (for start) |
---|
[3028] | 1009 | allocate(zplev_new(ngrid,nlayer + 1)) |
---|
[2835] | 1010 | |
---|
[3028] | 1011 | do l = 1,nlayer + 1 |
---|
[3149] | 1012 | zplev_new(:,l) = ap(l) + bp(l)*ps_start_PCM |
---|
[3028] | 1013 | enddo |
---|
[2835] | 1014 | |
---|
[3028] | 1015 | do nnq = 1,nqtot |
---|
| 1016 | if (noms(nnq) /= "co2") then |
---|
| 1017 | do l = 1,llm - 1 |
---|
| 1018 | do ig = 1,ngrid |
---|
[3149] | 1019 | q(ig,l,nnq) = q(ig,l,nnq)*(zplev_PCM(ig,l) - zplev_PCM(ig,l + 1))/(zplev_new(ig,l) - zplev_new(ig,l + 1)) |
---|
[3028] | 1020 | enddo |
---|
| 1021 | q(:,llm,nnq) = q(:,llm - 1,nnq) |
---|
| 1022 | enddo |
---|
| 1023 | else |
---|
| 1024 | do l = 1,llm - 1 |
---|
| 1025 | do ig = 1,ngrid |
---|
[3149] | 1026 | q(ig,l,nnq) = q(ig,l,nnq)*(zplev_PCM(ig,l) - zplev_PCM(ig,l + 1))/(zplev_new(ig,l) - zplev_new(ig,l + 1)) & |
---|
| 1027 | + ((zplev_new(ig,l) - zplev_new(ig,l + 1)) - (zplev_PCM(ig,l) - zplev_PCM(ig,l + 1)))/(zplev_new(ig,l) - zplev_new(ig,l + 1)) |
---|
[3028] | 1028 | enddo |
---|
| 1029 | q(:,llm,nnq) = q(:,llm - 1,nnq) |
---|
| 1030 | enddo |
---|
| 1031 | endif |
---|
| 1032 | enddo |
---|
[2835] | 1033 | |
---|
[3096] | 1034 | ! Conserving the tracers mass for PCM start files |
---|
[3028] | 1035 | do nnq = 1,nqtot |
---|
| 1036 | do ig = 1,ngrid |
---|
| 1037 | do l = 1,llm - 1 |
---|
| 1038 | if (q(ig,l,nnq) > 1 .and. (noms(nnq) /= "dust_number") .and. (noms(nnq) /= "ccn_number") .and. (noms(nnq) /= "stormdust_number") .and. (noms(nnq) /= "topdust_number")) then |
---|
[3065] | 1039 | extra_mass = (q(ig,l,nnq) - 1)*(zplev_new(ig,l) - zplev_new(ig,l + 1)) |
---|
| 1040 | q(ig,l,nnq) = 1. |
---|
| 1041 | q(ig,l + 1,nnq) = q(ig,l + 1,nnq) + extra_mass*(zplev_new(ig,l + 1) - zplev_new(ig,l + 2)) |
---|
[3028] | 1042 | write(*,*) 'extra ',noms(nnq),extra_mass, noms(nnq) /= "dust_number",noms(nnq) /= "ccn_number" |
---|
[2835] | 1043 | endif |
---|
[3028] | 1044 | if (q(ig,l,nnq) < 0) q(ig,l,nnq) = 1.e-30 |
---|
| 1045 | enddo |
---|
| 1046 | enddo |
---|
| 1047 | enddo |
---|
[2779] | 1048 | |
---|
[3039] | 1049 | if (evol_orbit_pem) call recomp_orb_param(i_myear,year_iter) |
---|
[2779] | 1050 | |
---|
| 1051 | !------------------------ |
---|
[3028] | 1052 | ! III Output |
---|
[3161] | 1053 | ! III_b Write "restart_evol.nc" and "restartfi_evol.nc" |
---|
[3028] | 1054 | !------------------------ |
---|
[3161] | 1055 | ! III_b.1 Write "restart_evol.nc" |
---|
[3042] | 1056 | ptimestep = iphysiq*daysec/real(day_step)/nsplit_phys ! dtphys/nsplit_phys |
---|
[3028] | 1057 | pday = day_ini |
---|
[3042] | 1058 | ztime_fin = time_phys |
---|
[2779] | 1059 | |
---|
[3028] | 1060 | allocate(p(ip1jmp1,nlayer + 1)) |
---|
[2980] | 1061 | #ifndef CPP_1D |
---|
[3028] | 1062 | call pression (ip1jmp1,ap,bp,ps,p) |
---|
| 1063 | call massdair(p,masse) |
---|
[3039] | 1064 | call dynredem0("restart_evol.nc",day_ini,phis) |
---|
| 1065 | call dynredem1("restart_evol.nc",time_0,vcov,ucov,teta,q,masse,ps) |
---|
[3028] | 1066 | write(*,*) "restart_evol.nc has been written" |
---|
[2980] | 1067 | #else |
---|
[3069] | 1068 | call writerestart1D('restart1D_evol.txt',ps(1),tsurf(1,:),nlayer,size(tsurf,2),teta,ucov,vcov,nq,noms,qsurf(1,:,:),q) |
---|
[3065] | 1069 | write(*,*) "restart1D_evol.txt has been written" |
---|
[2980] | 1070 | #endif |
---|
| 1071 | |
---|
[3161] | 1072 | ! III_b.2 Write the "restartfi_evol.nc" |
---|
[2842] | 1073 | #ifndef CPP_STD |
---|
[3028] | 1074 | call physdem0("restartfi_evol.nc",longitude,latitude,nsoilmx,ngrid, & |
---|
| 1075 | nlayer,nq,ptimestep,pday,0.,cell_area,albedodat, & |
---|
| 1076 | inertiedat,def_slope,subslope_dist) |
---|
[3114] | 1077 | call physdem1("restartfi_evol.nc",nsoilmx,ngrid,nlayer,nq,nqsoil, & |
---|
| 1078 | ptimestep,ztime_fin,tsurf,tsoil,inertiesoil, & |
---|
| 1079 | albedo,emis,q2,qsurf,qsoil,tauscaling,totcloudfrac, & |
---|
[3130] | 1080 | wstar,watercap,perennial_co2ice) |
---|
[2842] | 1081 | #else |
---|
[3028] | 1082 | call physdem0("restartfi_evol.nc",longitude,latitude,nsoilmx,ngrid, & |
---|
| 1083 | nlayer,nq,ptimestep,pday,time_phys,cell_area, & |
---|
| 1084 | albedo_bareground,inertiedat,zmea,zstd,zsig,zgam,zthe) |
---|
[3114] | 1085 | call physdem1("restartfi_evol.nc",nsoilmx,ngrid,nlayer,nq,nqsoil, & |
---|
| 1086 | ptimestep,ztime_fin,tsurf,tsoil,emis,q2,qsurf,qsoil, & |
---|
| 1087 | cloudfrac,totcloudfrac,hice,rnat,pctsrf_sic,tslab, & |
---|
| 1088 | tsea_ice,sea_ice) |
---|
[2842] | 1089 | #endif |
---|
[3028] | 1090 | write(*,*) "restartfi_evol.nc has been written" |
---|
[2842] | 1091 | |
---|
[2794] | 1092 | !------------------------ |
---|
| 1093 | ! III Output |
---|
[3161] | 1094 | ! III_c Write the "restartpem.nc" |
---|
[2794] | 1095 | !------------------------ |
---|
[3206] | 1096 | call pemdem0("restartpem.nc",longitude,latitude,cell_area,ngrid,nslope,def_slope,subslope_dist) |
---|
[3088] | 1097 | call pemdem1("restartpem.nc",i_myear,nsoilmx_PEM,ngrid,nslope,tsoil_PEM, & |
---|
[3122] | 1098 | TI_PEM, porefillingice_depth,porefillingice_thickness, & |
---|
[3149] | 1099 | co2_adsorbded_phys,h2o_adsorbded_phys,h2o_ice) |
---|
[3088] | 1100 | write(*,*) "restartpem.nc has been written" |
---|
[2779] | 1101 | |
---|
[3149] | 1102 | call info_PEM(year_iter,stopPEM,i_myear,n_myear) |
---|
| 1103 | |
---|
[3039] | 1104 | write(*,*) "The PEM has run for", year_iter, "Martian years." |
---|
| 1105 | write(*,*) "The chained simulation has run for", i_myear, "Martian years =", i_myear*convert_years, "Earth years." |
---|
| 1106 | write(*,*) "The reached date is now", (year_bp_ini + i_myear)*convert_years, "Earth years." |
---|
| 1107 | write(*,*) "LL & RV & JBC: so far, so good!" |
---|
[2794] | 1108 | |
---|
[3149] | 1109 | deallocate(vmr_co2_PCM,ps_timeseries,tsurf_PCM_timeseries,q_co2_PEM_phys,q_h2o_PEM_phys) |
---|
| 1110 | deallocate(co2_ice_PCM,watersurf_density_ave,watersoil_density_timeseries,Tsurfavg_before_saved) |
---|
[3028] | 1111 | deallocate(tsoil_phys_PEM_timeseries,watersoil_density_PEM_timeseries,watersoil_density_PEM_ave) |
---|
[3149] | 1112 | deallocate(delta_co2_adsorbded,delta_h2o_adsorbded,vmr_co2_PEM_phys,delta_h2o_icetablesublim,porefillingice_thickness_prev_iter) |
---|
| 1113 | deallocate(co2_ice_ini) |
---|
[3028] | 1114 | !----------------------------- END OUTPUT ------------------------------ |
---|
[2897] | 1115 | |
---|
[2779] | 1116 | END PROGRAM pem |
---|