[2779] | 1 | |
---|
| 2 | !------------------------ |
---|
| 3 | |
---|
| 4 | ! I Initialisation |
---|
[2835] | 5 | ! I_a READ run.def |
---|
| 6 | ! I_b READ of start_evol.nc and starfi_evol.nc |
---|
| 7 | ! I_c Subslope parametrisation |
---|
| 8 | ! I_d READ GCM data and convert to the physical grid |
---|
| 9 | ! I_e Initialisation of the PEM variable and soil |
---|
| 10 | ! I_f Compute tendencies & Save initial situation |
---|
| 11 | ! I_g Save initial PCM situation |
---|
| 12 | ! I_h Read the PEMstart |
---|
| 13 | ! I_i Compute orbit criterion |
---|
[2779] | 14 | |
---|
| 15 | ! II Run |
---|
[2794] | 16 | ! II_a update pressure, ice and tracers |
---|
[2835] | 17 | ! II_b Evolution of the ice |
---|
| 18 | ! II_c CO2 glaciers flows |
---|
| 19 | ! II_d Update surface and soil temperatures |
---|
| 20 | ! II_e Update the tendencies |
---|
| 21 | ! II_f Checking the stopping criterion |
---|
[2779] | 22 | |
---|
| 23 | ! III Output |
---|
[2835] | 24 | ! III_a Update surface value for the PCM start files |
---|
[2794] | 25 | ! III_b Write start and starfi.nc |
---|
| 26 | ! III_c Write start_pem |
---|
[2779] | 27 | |
---|
| 28 | !------------------------ |
---|
| 29 | |
---|
| 30 | PROGRAM pem |
---|
| 31 | |
---|
| 32 | !module needed for INITIALISATION |
---|
[2842] | 33 | #ifndef CPP_STD |
---|
[2794] | 34 | use comsoil_h, only: tsoil, nsoilmx, ini_comsoil_h,inertiedat, mlayer,volcapa |
---|
[2779] | 35 | use surfdat_h, only: tsurf, co2ice, emis,& |
---|
[2842] | 36 | qsurf,watercap, ini_surfdat_h, & |
---|
[2779] | 37 | albedodat, zmea, zstd, zsig, zgam, zthe, & |
---|
[2794] | 38 | hmons, summit, base,albedo_h2o_frost, & |
---|
[2842] | 39 | frost_albedo_threshold,emissiv |
---|
[2835] | 40 | use dimradmars_mod, only: totcloudfrac, albedo |
---|
[2842] | 41 | use dust_param_mod, only: tauscaling |
---|
| 42 | use tracer_mod, only: noms,igcm_h2o_ice ! tracer names |
---|
| 43 | #else |
---|
| 44 | use comsoil_h, only: nsoilmx, ini_comsoil_h,inertiedat, mlayer,volcapa |
---|
| 45 | use surfdat_h, only: albedodat, zmea, zstd, zsig, zgam, zthe, & |
---|
| 46 | emissiv |
---|
| 47 | use tracer_h, only: noms,igcm_h2o_ice,igcm_co2_ice ! tracer names |
---|
| 48 | use phys_state_var_mod |
---|
| 49 | #endif |
---|
| 50 | use phyetat0_mod, only: phyetat0 |
---|
| 51 | use phyredem, only: physdem0, physdem1 |
---|
[2835] | 52 | use turb_mod, only: q2, wstar |
---|
[2779] | 53 | use netcdf, only: nf90_open,NF90_NOWRITE,nf90_noerr,nf90_strerror, & |
---|
| 54 | nf90_get_var, nf90_inq_varid, nf90_inq_dimid, & |
---|
| 55 | nf90_inquire_dimension,nf90_close |
---|
| 56 | |
---|
| 57 | ! For phyredem : |
---|
| 58 | USE control_mod, ONLY: iphysiq, day_step,nsplit_phys |
---|
[2842] | 59 | USE iniphysiq_mod, ONLY: iniphysiq |
---|
| 60 | USE logic_mod, ONLY: iflag_phys |
---|
| 61 | #ifndef CPP_STD |
---|
[2779] | 62 | use mod_phys_lmdz_para, only: is_parallel, is_sequential, & |
---|
| 63 | is_mpi_root, is_omp_root, & |
---|
| 64 | is_master |
---|
[2842] | 65 | use planete_h, only: aphelie, periheli, year_day, peri_day, & |
---|
| 66 | obliquit |
---|
| 67 | #else |
---|
| 68 | ! USE comcstfi_mod, ONLY: rad,g,r,cpp,pi |
---|
| 69 | ! USE inifis_mod, ONLY: inifis |
---|
| 70 | use planete_mod, only: apoastr, periastr, year_day, peri_day, & |
---|
| 71 | obliquit |
---|
| 72 | #endif |
---|
[2779] | 73 | USE mod_const_mpi, ONLY: COMM_LMDZ |
---|
[2794] | 74 | USE comslope_mod, ONLY: nslope,def_slope,def_slope_mean, & |
---|
[2779] | 75 | subslope_dist,co2ice_slope, & |
---|
| 76 | tsurf_slope,tsoil_slope,fluxgrd_slope,& |
---|
| 77 | fluxrad_sky_slope,sky_slope,callsubslope,& |
---|
| 78 | co2iceflow, beta_slope, capcal_slope,& |
---|
| 79 | albedo_slope,emiss_slope,qsurf_slope,& |
---|
[2849] | 80 | iflat,major_slope,ini_comslope_h |
---|
[2842] | 81 | use time_phylmdz_mod, only: daysec,dtphys |
---|
| 82 | USE comconst_mod, ONLY: rad,g,r,cpp,pi |
---|
| 83 | USE infotrac |
---|
[2835] | 84 | USE geometry_mod, only: latitude_deg |
---|
[2779] | 85 | |
---|
[2794] | 86 | use pemredem, only: pemdem1 |
---|
[2856] | 87 | use co2glaciers_mod,only: co2glaciers_evol |
---|
[2794] | 88 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!! SOIL |
---|
[2855] | 89 | use comsoil_h_PEM, only: soil_pem,ini_comsoil_h_PEM,end_comsoil_h_PEM,nsoilmx_PEM, & |
---|
[2835] | 90 | TI_PEM,inertiedat_PEM,alph_PEM, beta_PEM, & ! soil thermal inertia |
---|
| 91 | tsoil_PEM, mlayer_PEM,layer_PEM, & !number of subsurface layers, soil mid layer depths |
---|
| 92 | fluxgeo, co2_adsorbded_phys ! geothermal flux, mass of co2 in the regolith |
---|
[2794] | 93 | use adsorption_mod, only : regolith_co2adsorption |
---|
[2835] | 94 | |
---|
| 95 | !!! For orbit parameters |
---|
| 96 | USE temps_mod_evol, ONLY: dt_pem, evol_orbit_pem, Max_iter_pem |
---|
| 97 | use orbit_param_criterion_mod, only : orbit_param_criterion |
---|
| 98 | use recomp_orb_param_mod, only: recomp_orb_param |
---|
| 99 | |
---|
| 100 | |
---|
[2779] | 101 | IMPLICIT NONE |
---|
| 102 | |
---|
| 103 | include "dimensions.h" |
---|
| 104 | include "paramet.h" |
---|
[2794] | 105 | |
---|
| 106 | INTEGER ngridmx |
---|
| 107 | PARAMETER( ngridmx = 2+(jjm-1)*iim - 1/jjm ) |
---|
| 108 | |
---|
[2779] | 109 | include "comdissnew.h" |
---|
| 110 | include "comgeom.h" |
---|
| 111 | include "iniprint.h" |
---|
| 112 | ! Same variable's name as in the GCM |
---|
| 113 | |
---|
[2794] | 114 | INTEGER :: ngrid !Number of physical grid points |
---|
| 115 | INTEGER :: nlayer !Number of vertical layer |
---|
| 116 | INTEGER :: nq !Number of tracer |
---|
| 117 | INTEGER :: day_ini !First day of the simulation |
---|
| 118 | REAL :: pday !Physical day |
---|
| 119 | REAL :: time_phys !Same as GCM |
---|
| 120 | REAL :: ptimestep !Same as GCM |
---|
| 121 | REAL :: ztime_fin !Same as GCM |
---|
[2779] | 122 | |
---|
| 123 | ! Variable for reading start.nc |
---|
[2835] | 124 | character (len = *), parameter :: FILE_NAME_start = "start_evol.nc" !Name of the file used for initialsing the PEM |
---|
[2779] | 125 | ! variables dynamiques |
---|
| 126 | REAL vcov(ip1jm,llm),ucov(ip1jmp1,llm) ! vents covariants |
---|
| 127 | REAL teta(ip1jmp1,llm) ! temperature potentielle |
---|
| 128 | REAL, ALLOCATABLE, DIMENSION(:,:,:):: q! champs advectes |
---|
| 129 | REAL ps(ip1jmp1) ! pression au sol |
---|
[2794] | 130 | REAL, dimension(:),allocatable :: ps_phys !(ngrid) ! pression au sol |
---|
| 131 | REAL, dimension(:,:),allocatable :: ps_phys_timeseries !(ngrid x timelen) ! pression au sol instantannées |
---|
| 132 | REAL, dimension(:,:),allocatable :: ps_phys_timeseries_yr1 !(ngrid x timelen) ! pression au sol instantannées for the first year of the gcm |
---|
| 133 | |
---|
[2779] | 134 | REAL masse(ip1jmp1,llm) ! masse d'air |
---|
| 135 | REAL phis(ip1jmp1) ! geopotentiel au sol |
---|
| 136 | REAL time_0 |
---|
| 137 | |
---|
| 138 | ! Variable for reading starfi.nc |
---|
| 139 | |
---|
[2835] | 140 | character (len = *), parameter :: FILE_NAME = "startfi_evol.nc" !Name of the file used for initialsing the PEM |
---|
[2779] | 141 | integer :: ncid, varid,status !Variable for handling opening of files |
---|
| 142 | integer :: phydimid, subdimid, nlayerdimid, nqdimid !Variable ID for Netcdf files |
---|
| 143 | integer :: lonvarid, latvarid, areavarid,sdvarid !Variable ID for Netcdf files |
---|
[2794] | 144 | integer :: apvarid,bpvarid !Variable ID for Netcdf files |
---|
[2779] | 145 | |
---|
| 146 | ! Variable for reading starfi.nc and writting restartfi.nc |
---|
| 147 | |
---|
| 148 | REAL, dimension(:),allocatable :: longitude !Longitude read in FILE_NAME and written in restartfi |
---|
| 149 | REAL, dimension(:),allocatable :: latitude !Latitude read in FILE_NAME and written in restartfi |
---|
[2794] | 150 | REAL, dimension(:),allocatable :: ap !Coefficient ap read in FILE_NAME_start and written in restart |
---|
| 151 | REAL, dimension(:),allocatable :: bp !Coefficient bp read in FILE_NAME_start and written in restart |
---|
[2779] | 152 | REAL, dimension(:),allocatable :: cell_area !Cell_area read in FILE_NAME and written in restartfi |
---|
| 153 | REAL :: Total_surface !Total surface of the planet |
---|
| 154 | |
---|
| 155 | ! Variable for h2o_ice evolution |
---|
| 156 | |
---|
| 157 | REAL , dimension(:,:), allocatable :: tendencies_h2o_ice ! LON x LAT field : Tendency of evolution of perenial ice over a year |
---|
| 158 | REAL, dimension(:),allocatable :: tendencies_h2o_ice_phys ! physical point field : Tendency of evolution of perenial ice over a year |
---|
| 159 | |
---|
| 160 | REAL , dimension(:,:), allocatable :: tendencies_co2_ice ! LON x LAT field : Tendency of evolution of perenial co2 ice over a year |
---|
| 161 | REAL, dimension(:),allocatable :: tendencies_co2_ice_phys ! physical point field : Tendency of evolution of perenial co2 ice over a year |
---|
| 162 | |
---|
| 163 | REAL :: ini_surf ! Initial surface of sublimating water ice |
---|
[2794] | 164 | REAL :: ini_surf_h2o ! Initial surface of sublimating water ice |
---|
[2779] | 165 | REAL, dimension(:),allocatable :: initial_h2o_ice ! physical point field : Logical array indicating sublimating point |
---|
| 166 | |
---|
| 167 | REAL :: ini_surf_co2 ! Initial surface of sublimating co2 ice |
---|
| 168 | REAL, dimension(:),allocatable :: initial_co2_ice ! physical point field : Logical array indicating sublimating point of co2 ice |
---|
| 169 | |
---|
| 170 | REAL , dimension(:,:), allocatable :: min_h2o_ice_s_1 ! LON x LAT field : minimum of water ice at each point for the first year |
---|
| 171 | REAL , dimension(:,:), allocatable :: min_h2o_ice_s_2 ! LON x LAT field : minimum of water ice at each point for the second year |
---|
| 172 | |
---|
| 173 | REAL , dimension(:,:), allocatable :: min_co2_ice_s_1 ! LON x LAT field : minimum of water ice at each point for the first year |
---|
| 174 | REAL , dimension(:,:), allocatable :: min_co2_ice_s_2 ! LON x LAT field : minimum of water ice at each point for the second year |
---|
| 175 | |
---|
[2855] | 176 | REAL :: global_ave_press_GCM ! constant: global average pressure retrieved in the GCM [Pa] |
---|
| 177 | REAL :: global_ave_press_old ! constant: Global average pressure of initial/previous time step |
---|
| 178 | REAL :: global_ave_press_new ! constant: Global average pressure of current time step |
---|
[2779] | 179 | |
---|
[2855] | 180 | REAL , dimension(:,:), allocatable :: zplev_new ! Physical x Atmospheric field : mass of the atmospheric layers in the pem at current time step [kg/m^2] |
---|
| 181 | REAL , dimension(:,:), allocatable :: zplev_gcm ! same but retrieved from the gcm [kg/m^2] |
---|
| 182 | REAL , dimension(:,:,:), allocatable :: zplev_new_timeseries ! Physical x Atmospheric x Time: same as zplev_new, but in times series [kg/m ^2] |
---|
| 183 | REAL , dimension(:,:,:), allocatable :: zplev_old_timeseries ! same but with the time series, for oldest time step |
---|
[2779] | 184 | |
---|
| 185 | LOGICAL :: STOPPING_water ! Logical : is the criterion (% of change in the surface of sublimating water ice) reached? |
---|
| 186 | LOGICAL :: STOPPING_1_water ! Logical : is there still water ice to sublimate? |
---|
[2835] | 187 | LOGICAL :: STOPPING_co2 ! Logical : is the criterion (% of change in the surface of sublimating water ice) reached? |
---|
| 188 | LOGICAL :: STOPPING_1_co2 ! Logical : is there still water ice to sublimate? |
---|
[2779] | 189 | |
---|
[2855] | 190 | REAL, dimension(:,:,:),allocatable :: q_co2_GCM ! Lon x Lat x Time : mass mixing ratio of co2 in the first layer [kg/kg] |
---|
[2779] | 191 | |
---|
[2855] | 192 | real,save :: m_co2, m_noco2, A , B, mmean ! Molar mass of co2, no co2 (Ar, ...), intermediate A, B for computations, mean molar mass of the layer [mol/kg] |
---|
| 193 | real ,allocatable :: vmr_co2_gcm_phys(:,:) ! Physics x Times co2 volume mixing ratio retrieve from the gcm [m^3/m^3] |
---|
| 194 | real ,allocatable :: vmr_co2_pem_phys(:,:) ! Physics x Times co2 volume mixing ratio used in the PEM |
---|
| 195 | real ,allocatable :: q_h2o_GCM_phys(:,:) ! Physics x Times h2o mass mixing ratio in the first layer from the GCM [kg/kg] |
---|
| 196 | real ,allocatable :: q_co2_GCM_phys(:,:) ! Physics x Times co2 mass mixing ratio in the first layer from the GCM [kg/kg] |
---|
| 197 | real ,allocatable :: q_co2_PEM_phys(:,:) ! Physics x Times co2 mass mixing ratio in the first layer computed in the PEM [kg/kg] |
---|
| 198 | REAL, ALLOCATABLE :: ps_GCM(:,:,:) ! Lon x Lat x Times: surface pressure from the GCM [Pa] |
---|
| 199 | REAL, ALLOCATABLE :: ps_GCM_yr1(:,:,:) ! Lon x Lat x Times: surface pressure from the 1st year of the GCM [Pa] |
---|
| 200 | REAL, ALLOCATABLE :: vmr_co2_gcm(:,:,:) ! Lon x Lat x Times: co2 volumemixing ratio retrieve from the gcm [m^3/m^3] |
---|
| 201 | REAL, ALLOCATABLE :: q_h2o_GCM(:,:,:) ! Lon x Lat x Times: h2o volume mixing ratio retrieved from the GCM |
---|
| 202 | REAL ,allocatable :: q_h2o_PEM_phys(:,:) ! Physics x Times: h2o mass mixing ratio computed in the PEM |
---|
| 203 | integer :: timelen ! # time samples |
---|
| 204 | REAL :: ave ! intermediate varibale to compute average |
---|
[2779] | 205 | |
---|
[2855] | 206 | REAL, ALLOCATABLE :: p(:,:) ! Physics x Atmosphere: pressure to recompute and write in restart (ngrid,llmp1) |
---|
| 207 | REAL :: extra_mass ! Intermediate variables Extra mass of a tracer if it is greater than 1 |
---|
| 208 | REAL :: beta_clap_co2 = 3182.48 ! clapeyron's law for CO2 |
---|
| 209 | REAL :: alpha_clap_co2 = 23.3494 ! Clapeyron's law for CO2 |
---|
[2779] | 210 | |
---|
[2855] | 211 | |
---|
[2779] | 212 | !!!!!!!!!!!!!!!!!!!!!!!! SLOPE |
---|
[2855] | 213 | REAL ,allocatable :: watercap_slope(:,:) ! Physics x Nslope: watercap per slope |
---|
| 214 | REAL , dimension(:,:,:), allocatable :: min_co2_ice_slope_1 ! LON x LAT field : minimum of co2 ice at each point for the first year [kg/m^2] |
---|
| 215 | REAL , dimension(:,:,:), allocatable :: min_co2_ice_slope_2 ! LON x LAT field : minimum of co2 ice at each point for the second year [kg/m^2] |
---|
| 216 | REAL , dimension(:,:,:), allocatable :: min_h2o_ice_slope_1 ! LON x LAT field : minimum of water ice at each point for the first year [kg/m^2] |
---|
| 217 | REAL , dimension(:,:,:), allocatable :: min_h2o_ice_slope_2 ! LON x LAT field : minimum of water ice at each point for the second year [kg/m^2] |
---|
| 218 | REAL , dimension(:,:,:,:), allocatable :: co2_ice_GCM_slope ! LON x LATX NSLOPE x Times field : co2 ice given by the GCM [kg/m^2] |
---|
| 219 | REAL , dimension(:,:,:), allocatable :: co2_ice_GCM_phys_slope ! Physics x NSLOPE x Times field : co2 ice given by the GCM [kg/m^2] |
---|
[2835] | 220 | REAL, dimension(:,:),allocatable :: initial_co2_ice_sublim_slope ! physical point field : Logical array indicating sublimating point of co2 ice |
---|
[2855] | 221 | REAL, dimension(:,:),allocatable :: initial_h2o_ice_slope ! physical point field : Logical array indicating if there is water ice at initial state |
---|
| 222 | REAL, dimension(:,:),allocatable :: initial_co2_ice_slope ! physical point field : Logical array indicating if there is co2 ice at initial state |
---|
| 223 | REAL , dimension(:,:,:), allocatable :: tendencies_co2_ice_slope ! LON x LAT x nslope field : Tendency of evolution of perenial co2 ice over a year |
---|
| 224 | REAL , dimension(:,:,:), allocatable :: tendencies_h2o_ice_slope ! LON x LAT x slope field : Tendency of evolution of perenial water ice over a year |
---|
| 225 | REAL, dimension(:,:),allocatable :: tendencies_co2_ice_phys_slope ! physical point xslope field : Tendency of evolution of perenial co2 ice over a year |
---|
| 226 | REAL, dimension(:,:),allocatable :: tendencies_co2_ice_phys_slope_ini ! physical point x slope field x nslope: Tendency of evolution of perenial co2 ice over a year in the GCM |
---|
[2856] | 227 | REAL, dimension(:,:),allocatable :: tendencies_h2o_ice_phys_slope ! physical pointx slope field : Tendency of evolution of perenial co2 ice |
---|
[2779] | 228 | REAL , dimension(:,:), allocatable :: flag_co2flow(:,:) !(ngrid,nslope) ! To flag where there is a glacier flow |
---|
| 229 | REAL , dimension(:), allocatable :: flag_co2flow_mesh(:) !(ngrid) ! To flag where there is a glacier flow |
---|
| 230 | |
---|
[2794] | 231 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!! SURFACE/SOIL |
---|
[2779] | 232 | |
---|
[2835] | 233 | REAL, ALLOCATABLE :: tsurf_ave(:,:,:) ! LON x LAT x SLOPE field : Averaged Surface Temperature [K] |
---|
[2855] | 234 | REAL, ALLOCATABLE :: tsurf_ave_phys(:,:) ! Physic x LAT x SLOPE field : Averaged Surface Temperature [K] |
---|
[2835] | 235 | REAL, ALLOCATABLE :: tsoil_ave(:,:,:,:) ! LON x LAT x SLOPE field : Averaged Soil Temperature [K] |
---|
[2855] | 236 | REAL, ALLOCATABLE :: tsoil_ave_yr1(:,:,:,:) ! LON x LAT x SLOPE field : Averaged Soil Temperature during 1st year of the GCM [K] |
---|
| 237 | REAL, ALLOCATABLE :: tsoil_ave_phys_yr1(:,:,:) ! Physics x SLOPE field : Averaged Soil Temperature during 1st year [K] |
---|
[2835] | 238 | REAL, ALLOCATABLE :: TI_GCM(:,:,:,:) ! LON x LAT x SLOPE field : Averaged Thermal Inertia [SI] |
---|
[2855] | 239 | REAL, ALLOCATABLE :: tsurf_GCM_timeseries(:,:,:,:) ! LON X LAT x SLOPE XTULES field : Surface Temperature in timeseries [K] |
---|
| 240 | REAL, ALLOCATABLE :: tsurf_phys_GCM_timeseries(:,:,:) ! Physic x SLOPE XTULES field : NOn averaged Surf Temperature [K] |
---|
[2794] | 241 | |
---|
| 242 | REAL, ALLOCATABLE :: tsoil_phys_PEM_timeseries(:,:,:,:) !IG x SLOPE XTULES field : NOn averaged Soil Temperature [K] |
---|
[2835] | 243 | REAL, ALLOCATABLE :: tsoil_GCM_timeseries(:,:,:,:,:) !IG x SLOPE XTULES field : NOn averaged Soil Temperature [K] |
---|
| 244 | REAL, ALLOCATABLE :: tsurf_ave_yr1(:,:,:) ! LON x LAT x SLOPE field : Averaged Surface Temperature of the first year of the gcm [K] |
---|
[2855] | 245 | REAL, ALLOCATABLE :: tsurf_ave_phys_yr1(:,:) ! Physic SLOPE field : Averaged Surface Temperature of first call of the gcm [K] |
---|
| 246 | REAL, ALLOCATABLE :: inertiesoil(:,:) !Physic x Depth Thermal inertia of the mesh for restart [SI] |
---|
[2794] | 247 | |
---|
[2855] | 248 | REAL, ALLOCATABLE :: TI_GCM_phys(:,:,:) ! Physic x Depth x Slope Averaged GCM Thermal Inertia per slope [SI] |
---|
| 249 | REAL, ALLOCATABLE :: TI_GCM_start(:,:,:) ! Same but for the start |
---|
[2794] | 250 | |
---|
[2855] | 251 | REAL,ALLOCATABLE :: ice_depth(:,:) ! Physic x SLope: Ice table depth [m] |
---|
| 252 | REAL,ALLOCATABLE :: TI_locslope(:,:) ! Physic x Soil: Intermediate thermal inertia to compute Tsoil [SI] |
---|
| 253 | REAL,ALLOCATABLE :: Tsoil_locslope(:,:) ! Physic x Soil: intermediate when computing Tsoil [K] |
---|
| 254 | REAL,ALLOCATABLE :: Tsurf_locslope(:) ! Physic x Soil: Intermediate surface temperature to compute Tsoil [K] |
---|
| 255 | REAL,ALLOCATABLE :: alph_locslope(:,:) ! Physic x Soil: Intermediate to compute Tsoil [1] |
---|
| 256 | REAL,ALLOCATABLE :: beta_locslope(:,:) ! Physic x Soil : Intermediate tocompute Tsoil [K] |
---|
| 257 | REAL,ALLOCATABLE :: watersurf_density_timeseries(:,:,:,:) ! Lon x Lat x Slope x Times: water surface density, time series [kg/m^3] |
---|
| 258 | REAL,ALLOCATABLE :: watersoil_density_timeseries(:,:,:,:,:) ! Lon x Lat x Soil x Slope x Times water soil density, time series [kg /m^3] |
---|
| 259 | REAL,ALLOCATABLE :: watersurf_density_phys_timeseries(:,:,:) ! Physic x Slope x Times, water surface density, time series [kg/m^3] |
---|
| 260 | REAL,ALLOCATABLE :: watersurf_density_phys_ave(:,:) ! Physic x Slope, water surface density, yearly averaged [kg/m^3] |
---|
| 261 | REAL,ALLOCATABLE :: watersoil_density_phys_PEM_timeseries(:,:,:,:) ! Physic x Soil x Slope x Times, water soil density, time series [kg/m^3] |
---|
| 262 | REAL,ALLOCATABLE :: watersoil_density_phys_PEM_ave(:,:,:) ! Physic x Soil x SLopes, water soil density, yearly averaged [kg/m^3] |
---|
| 263 | REAL,ALLOCATABLE :: Tsurfave_before_saved(:,:) ! Surface temperature saved from previous time step [K] |
---|
| 264 | REAL, ALLOCATABLE :: delta_co2_adsorbded(:) ! Physics: quantity of CO2 that is exchanged because of adsorption / desorption [kg/m^2] |
---|
| 265 | REAL :: totmass_adsorbded ! Total mass of CO2 that is exchanged because of adsorption / desoprtion over the planets [kg] |
---|
| 266 | REAL :: alpha_clap_h2o = -6143.7 ! coeffcient to compute psat, from Murphie et Kood 2005 [K] |
---|
| 267 | REAL :: beta_clap_h2o = 28.9074 ! coefficient to compute psat, from Murphie et Kood 2005 [1] |
---|
| 268 | LOGICAL :: bool_sublim ! logical to check if there is sublimation or not |
---|
[2794] | 269 | |
---|
[2855] | 270 | !! Some parameters for the PEM run |
---|
| 271 | REAL, PARAMETER :: year_step = 1 ! timestep for the pem |
---|
| 272 | INTEGER :: year_iter ! number of iteration |
---|
| 273 | INTEGER :: year_iter_max ! maximum number of iterations before stopping |
---|
| 274 | REAL :: timestep ! timestep [s] |
---|
[2842] | 275 | #ifdef CPP_STD |
---|
| 276 | ! INTEGER :: nsplit_phys=1 |
---|
| 277 | ! LOGICAL :: iflag_phys=.true. |
---|
[2855] | 278 | REAL :: frost_albedo_threshold=0.05 ! frost albedo threeshold to convert fresh frost to old ice |
---|
| 279 | REAL :: albedo_h2o_frost ! albedo of h2o frost |
---|
| 280 | REAL,ALLOCATABLE :: co2ice(:) ! Physics: co2 ice mesh averaged [kg/m^2] |
---|
[2842] | 281 | #endif |
---|
| 282 | |
---|
[2779] | 283 | !!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 284 | |
---|
| 285 | ! Loop variable |
---|
[2855] | 286 | INTEGER :: i,j,ig0,l,ig,nnq,t,islope,ig_loop,islope_loop,iloop,isoil |
---|
[2842] | 287 | #ifndef CPP_STD |
---|
[2779] | 288 | ! Parallel variables |
---|
| 289 | is_sequential=.true. |
---|
| 290 | is_parallel=.false. |
---|
| 291 | is_mpi_root=.true. |
---|
| 292 | is_omp_root=.true. |
---|
| 293 | is_master=.true. |
---|
[2842] | 294 | #endif |
---|
[2779] | 295 | |
---|
| 296 | day_ini=0 !test |
---|
| 297 | time_phys=0. !test |
---|
| 298 | |
---|
[2835] | 299 | ! Some constants |
---|
[2794] | 300 | |
---|
[2835] | 301 | ngrid=ngridmx |
---|
| 302 | nlayer=llm |
---|
| 303 | |
---|
[2794] | 304 | m_co2 = 44.01E-3 ! CO2 molecular mass (kg/mol) |
---|
| 305 | m_noco2 = 33.37E-3 ! Non condensible mol mass (kg/mol) |
---|
| 306 | A =(1/m_co2 - 1/m_noco2) |
---|
| 307 | B=1/m_noco2 |
---|
| 308 | |
---|
[2835] | 309 | year_day=669 |
---|
| 310 | daysec=88775. |
---|
| 311 | dtphys=0 |
---|
| 312 | timestep=year_day*daysec/year_step |
---|
[2794] | 313 | |
---|
[2779] | 314 | !------------------------ |
---|
| 315 | |
---|
| 316 | ! I Initialisation |
---|
| 317 | ! I_a READ run.def |
---|
| 318 | |
---|
| 319 | !------------------------ |
---|
| 320 | |
---|
| 321 | !----------------------------READ run.def --------------------- |
---|
| 322 | CALL conf_gcm( 99, .TRUE. ) |
---|
| 323 | |
---|
[2835] | 324 | call infotrac_init |
---|
| 325 | nq=nqtot |
---|
[2794] | 326 | |
---|
[2779] | 327 | !------------------------ |
---|
| 328 | |
---|
| 329 | ! I Initialisation |
---|
| 330 | ! I_a READ run.def |
---|
[2835] | 331 | ! I_b READ of start_evol.nc and starfi_evol.nc |
---|
[2779] | 332 | |
---|
[2835] | 333 | !------------------------ |
---|
[2779] | 334 | |
---|
[2835] | 335 | !----------------------------Initialisation : READ some constant of startfi_evol.nc --------------------- |
---|
[2779] | 336 | |
---|
[2835] | 337 | ! In the gcm, these values are given to the physic by the dynamic. |
---|
| 338 | ! Here we simply read them in the startfi_evol.nc file |
---|
[2779] | 339 | status =nf90_open(FILE_NAME, NF90_NOWRITE, ncid) |
---|
| 340 | |
---|
| 341 | allocate(longitude(ngrid)) |
---|
| 342 | allocate(latitude(ngrid)) |
---|
| 343 | allocate(cell_area(ngrid)) |
---|
| 344 | |
---|
| 345 | status = nf90_inq_varid(ncid, "longitude", lonvarid) |
---|
| 346 | status = nf90_get_var(ncid, lonvarid, longitude) |
---|
| 347 | |
---|
| 348 | status = nf90_inq_varid(ncid, "latitude", latvarid) |
---|
| 349 | status = nf90_get_var(ncid, latvarid, latitude) |
---|
| 350 | |
---|
| 351 | status = nf90_inq_varid(ncid, "area", areavarid) |
---|
| 352 | status = nf90_get_var(ncid, areavarid, cell_area) |
---|
| 353 | |
---|
| 354 | call ini_comsoil_h(ngrid) |
---|
| 355 | |
---|
| 356 | status = nf90_inq_varid(ncid, "soildepth", sdvarid) |
---|
| 357 | status = nf90_get_var(ncid, sdvarid, mlayer) |
---|
| 358 | |
---|
| 359 | status =nf90_close(ncid) |
---|
| 360 | |
---|
| 361 | !----------------------------READ start.nc --------------------- |
---|
| 362 | |
---|
| 363 | allocate(q(ip1jmp1,llm,nqtot)) |
---|
| 364 | CALL dynetat0(FILE_NAME_start,vcov,ucov, & |
---|
| 365 | teta,q,masse,ps,phis, time_0) |
---|
| 366 | |
---|
[2794] | 367 | CALL iniconst !new |
---|
[2779] | 368 | CALL inigeom |
---|
[2794] | 369 | allocate(ap(nlayer+1)) |
---|
| 370 | allocate(bp(nlayer+1)) |
---|
| 371 | status =nf90_open(FILE_NAME_start, NF90_NOWRITE, ncid) |
---|
| 372 | status = nf90_inq_varid(ncid, "ap", apvarid) |
---|
| 373 | status = nf90_get_var(ncid, apvarid, ap) |
---|
| 374 | status = nf90_inq_varid(ncid, "bp", bpvarid) |
---|
| 375 | status = nf90_get_var(ncid, bpvarid, bp) |
---|
| 376 | status =nf90_close(ncid) |
---|
[2779] | 377 | |
---|
[2835] | 378 | CALL iniphysiq(iim,jjm,llm, & |
---|
[2779] | 379 | (jjm-1)*iim+2,comm_lmdz, & |
---|
| 380 | daysec,day_ini,dtphys/nsplit_phys, & |
---|
| 381 | rlatu,rlatv,rlonu,rlonv,aire,cu,cv,rad,g,r,cpp, & |
---|
| 382 | iflag_phys) |
---|
| 383 | |
---|
[2835] | 384 | !----------------------------READ startfi.nc --------------------- |
---|
[2779] | 385 | |
---|
| 386 | ! First we read the initial state (starfi.nc) |
---|
| 387 | |
---|
[2835] | 388 | allocate(watercap_slope(ngrid,nslope)) |
---|
| 389 | allocate(TI_GCM_start(ngrid,nsoilmx,nslope)) |
---|
[2794] | 390 | allocate(inertiesoil(ngrid,nsoilmx)) |
---|
[2779] | 391 | |
---|
[2842] | 392 | #ifndef CPP_STD |
---|
[2835] | 393 | CALL phyetat0 (FILE_NAME,0,0, & |
---|
[2779] | 394 | nsoilmx,ngrid,nlayer,nq, & |
---|
| 395 | day_ini,time_phys, & |
---|
| 396 | tsurf,tsoil,albedo,emis, & |
---|
| 397 | q2,qsurf,co2ice,tauscaling,totcloudfrac,wstar, & |
---|
[2794] | 398 | watercap,inertiesoil,nslope,tsurf_slope, & |
---|
[2779] | 399 | tsoil_slope,co2ice_slope,def_slope,def_slope_mean, & |
---|
[2849] | 400 | subslope_dist,major_slope,albedo_slope,emiss_slope, TI_GCM_start, & |
---|
[2779] | 401 | qsurf_slope,watercap_slope) |
---|
| 402 | |
---|
[2835] | 403 | if(soil_pem) then |
---|
| 404 | deallocate(TI_GCM_start) !not used then |
---|
| 405 | endif |
---|
[2779] | 406 | |
---|
[2835] | 407 | ! Remove unphysical values of surface tracer |
---|
[2794] | 408 | DO i=1,ngrid |
---|
[2835] | 409 | DO nnq=1,nqtot |
---|
| 410 | DO islope=1,nslope |
---|
| 411 | if(qsurf_slope(i,nnq,islope).LT.0) then |
---|
| 412 | qsurf_slope(i,nnq,islope)=0. |
---|
| 413 | endif |
---|
[2794] | 414 | enddo |
---|
| 415 | enddo |
---|
[2835] | 416 | enddo |
---|
[2794] | 417 | |
---|
[2842] | 418 | #else |
---|
| 419 | call phys_state_var_init(nq) |
---|
| 420 | IF (.NOT.ALLOCATED(noms)) ALLOCATE(noms(nq)) ! (because noms is an argument of physdem1 whether or not tracer is on) |
---|
| 421 | call initracer(ngrid,nq) |
---|
| 422 | call iniaerosol() |
---|
| 423 | call phyetat0(.true., & |
---|
| 424 | ngrid,nlayer,FILE_NAME,0,0,nsoilmx,nq, & |
---|
| 425 | day_ini,time_phys,tsurf,tsoil,emis,q2,qsurf, & |
---|
| 426 | cloudfrac,totcloudfrac,hice, & |
---|
| 427 | rnat,pctsrf_sic,tslab, tsea_ice,sea_ice) |
---|
| 428 | call surfini(ngrid,nq,qsurf,albedo,albedo_bareground,albedo_snow_SPECTV,albedo_co2_ice_SPECTV) |
---|
| 429 | |
---|
| 430 | call ini_comslope_h(ngrid,nsoilmx,nq) |
---|
| 431 | |
---|
| 432 | allocate(co2ice(ngrid)) |
---|
| 433 | co2ice(:)=qsurf(:,igcm_co2_ice) |
---|
| 434 | co2ice_slope(:,1)=co2ice(:) |
---|
| 435 | tsurf_slope(:,1)=tsurf(:) |
---|
| 436 | |
---|
| 437 | if (nslope.eq.1) then |
---|
| 438 | def_slope(1) = 0 |
---|
| 439 | def_slope(2) = 0 |
---|
| 440 | def_slope_mean=0 |
---|
| 441 | subslope_dist(:,1) = 1. |
---|
| 442 | endif |
---|
| 443 | |
---|
| 444 | ! Remove unphysical values of surface tracer |
---|
| 445 | DO i=1,ngrid |
---|
| 446 | DO nnq=1,nqtot |
---|
| 447 | qsurf_slope(i,nnq,1)=qsurf(i,nnq) |
---|
| 448 | if(qsurf(i,nnq).LT.0) then |
---|
| 449 | qsurf(i,nnq)=0. |
---|
| 450 | endif |
---|
| 451 | enddo |
---|
| 452 | enddo |
---|
| 453 | #endif |
---|
| 454 | |
---|
| 455 | DO nnq=1,nqtot |
---|
| 456 | if(noms(nnq).eq."h2o_ice") igcm_h2o_ice = nnq |
---|
| 457 | ENDDO |
---|
| 458 | |
---|
[2835] | 459 | !------------------------ |
---|
[2794] | 460 | |
---|
[2835] | 461 | ! I Initialisation |
---|
| 462 | ! I_a READ run.def |
---|
| 463 | ! I_b READ of start_evol.nc and starfi_evol.nc |
---|
| 464 | ! I_c Subslope parametrisation |
---|
[2794] | 465 | |
---|
[2835] | 466 | !------------------------ |
---|
[2794] | 467 | |
---|
[2835] | 468 | !----------------------------Subslope parametrisation definition --------------------- |
---|
[2794] | 469 | |
---|
[2835] | 470 | ! Define some slope statistics |
---|
| 471 | iflat=1 |
---|
| 472 | DO islope=2,nslope |
---|
| 473 | IF(abs(def_slope_mean(islope)).lt. & |
---|
| 474 | abs(def_slope_mean(iflat))) THEN |
---|
| 475 | iflat = islope |
---|
| 476 | ENDIF |
---|
| 477 | ENDDO |
---|
| 478 | |
---|
| 479 | PRINT*,'Flat slope for islope = ',iflat |
---|
| 480 | PRINT*,'corresponding criterium = ',def_slope_mean(iflat) |
---|
| 481 | |
---|
[2812] | 482 | |
---|
[2835] | 483 | allocate(flag_co2flow(ngrid,nslope)) |
---|
| 484 | allocate(flag_co2flow_mesh(ngrid)) |
---|
[2812] | 485 | |
---|
[2779] | 486 | flag_co2flow(:,:) = 0. |
---|
| 487 | flag_co2flow_mesh(:) = 0. |
---|
| 488 | |
---|
[2842] | 489 | |
---|
[2835] | 490 | !---------------------------- READ GCM data --------------------- |
---|
[2779] | 491 | |
---|
[2794] | 492 | ! I Initialisation |
---|
[2835] | 493 | ! I_a READ run.def |
---|
| 494 | ! I_b READ of start_evol.nc and starfi_evol.nc |
---|
| 495 | ! I_c Subslope parametrisation |
---|
| 496 | ! I_d READ GCM data and convert to the physical grid |
---|
[2779] | 497 | |
---|
[2794] | 498 | !------------------------ |
---|
| 499 | |
---|
| 500 | ! First we read the evolution of water and co2 ice (and the mass mixing ratio) over the first year of the GCM run, saving only the minimum value |
---|
| 501 | |
---|
[2835] | 502 | call nb_time_step_GCM("data_GCM_Y1.nc",timelen) |
---|
[2794] | 503 | |
---|
[2779] | 504 | allocate(min_h2o_ice_s_1(iim+1,jjm+1)) |
---|
| 505 | allocate(min_co2_ice_s_1(iim+1,jjm+1)) |
---|
[2794] | 506 | allocate(vmr_co2_gcm(iim+1,jjm+1,timelen)) |
---|
| 507 | allocate(q_h2o_GCM(iim+1,jjm+1,timelen)) |
---|
| 508 | allocate(q_co2_GCM(iim+1,jjm+1,timelen)) |
---|
| 509 | allocate(ps_GCM(iim+1,jjm+1,timelen)) |
---|
| 510 | allocate(ps_GCM_yr1(iim+1,jjm+1,timelen)) |
---|
[2779] | 511 | allocate(min_co2_ice_slope_1(iim+1,jjm+1,nslope)) |
---|
| 512 | allocate(min_h2o_ice_slope_1(iim+1,jjm+1,nslope)) |
---|
[2794] | 513 | allocate(tsurf_ave(iim+1,jjm+1,nslope)) |
---|
| 514 | allocate(tsurf_ave_yr1(iim+1,jjm+1,nslope)) |
---|
| 515 | allocate(tsurf_ave_phys(ngrid,nslope)) |
---|
| 516 | allocate(tsurf_ave_phys_yr1(ngrid,nslope)) |
---|
| 517 | allocate(tsurf_GCM_timeseries(iim+1,jjm+1,nslope,timelen)) |
---|
| 518 | allocate(tsurf_phys_GCM_timeseries(ngrid,nslope,timelen)) |
---|
| 519 | allocate(co2_ice_GCM_phys_slope(ngrid,nslope,timelen)) |
---|
| 520 | allocate(co2_ice_GCM_slope(iim+1,jjm+1,nslope,timelen)) |
---|
| 521 | allocate(Tsurfave_before_saved(ngrid,nslope)) |
---|
[2835] | 522 | allocate(tsoil_ave(iim+1,jjm+1,nsoilmx,nslope)) |
---|
| 523 | allocate(tsoil_ave_yr1(iim+1,jjm+1,nsoilmx,nslope)) |
---|
| 524 | allocate(tsoil_ave_phys_yr1(ngrid,nsoilmx_PEM,nslope)) |
---|
| 525 | allocate(TI_GCM(iim+1,jjm+1,nsoilmx,nslope)) |
---|
| 526 | allocate(tsoil_GCM_timeseries(iim+1,jjm+1,nsoilmx,nslope,timelen)) |
---|
| 527 | allocate(tsoil_phys_PEM_timeseries(ngrid,nsoilmx_PEM,nslope,timelen)) |
---|
[2794] | 528 | allocate(delta_co2_adsorbded(ngrid)) |
---|
[2849] | 529 | allocate(watersurf_density_timeseries(iim+1,jjm+1,nslope,timelen)) |
---|
| 530 | allocate(watersoil_density_timeseries(iim+1,jjm+1,nsoilmx,nslope,timelen)) |
---|
| 531 | allocate(watersurf_density_phys_timeseries(ngrid,nslope,timelen)) |
---|
| 532 | allocate(watersurf_density_phys_ave(ngrid,nslope)) |
---|
| 533 | allocate(watersoil_density_phys_PEM_timeseries(ngrid,nsoilmx_PEM,nslope,timelen)) |
---|
| 534 | allocate(watersoil_density_phys_PEM_ave(ngrid,nsoilmx_PEM,nslope)) |
---|
[2835] | 535 | print *, "Downloading data Y1..." |
---|
[2779] | 536 | |
---|
[2855] | 537 | call read_data_GCM("data_GCM_Y1.nc",timelen, iim,jjm, min_h2o_ice_s_1,min_co2_ice_s_1,vmr_co2_gcm,ps_GCM_yr1,min_co2_ice_slope_1,min_h2o_ice_slope_1,& |
---|
[2849] | 538 | nslope,tsurf_ave_yr1,tsoil_ave_yr1, tsurf_GCM_timeseries,tsoil_GCM_timeseries,TI_GCM,q_co2_GCM,q_h2o_GCM,co2_ice_GCM_slope, & |
---|
| 539 | watersurf_density_timeseries,watersoil_density_timeseries) |
---|
[2794] | 540 | |
---|
| 541 | ! Then we read the evolution of water and co2 ice (and the mass mixing ratio) over the second year of the GCM run, saving only the minimum value |
---|
| 542 | |
---|
[2835] | 543 | print *, "Downloading data Y1 done" |
---|
| 544 | |
---|
[2779] | 545 | allocate(min_h2o_ice_s_2(iim+1,jjm+1)) |
---|
| 546 | allocate(min_co2_ice_s_2(iim+1,jjm+1)) |
---|
| 547 | allocate(min_co2_ice_slope_2(iim+1,jjm+1,nslope)) |
---|
| 548 | allocate(min_h2o_ice_slope_2(iim+1,jjm+1,nslope)) |
---|
| 549 | |
---|
[2835] | 550 | print *, "Downloading data Y2" |
---|
| 551 | |
---|
[2855] | 552 | call read_data_GCM("data_GCM_Y2.nc",timelen,iim,jjm ,min_h2o_ice_s_2,min_co2_ice_s_2,vmr_co2_gcm,ps_GCM,min_co2_ice_slope_2,min_h2o_ice_slope_2, & |
---|
[2849] | 553 | nslope,tsurf_ave,tsoil_ave, tsurf_GCM_timeseries,tsoil_GCM_timeseries,TI_GCM,q_co2_GCM,q_h2o_GCM,co2_ice_GCM_slope, & |
---|
| 554 | watersurf_density_timeseries,watersoil_density_timeseries) |
---|
[2779] | 555 | |
---|
[2835] | 556 | print *, "Downloading data Y2 done" |
---|
[2779] | 557 | |
---|
[2794] | 558 | ! The variables in the dynamic grid are transfered to the physical grid |
---|
| 559 | |
---|
[2779] | 560 | allocate(vmr_co2_gcm_phys(ngrid,timelen)) |
---|
[2794] | 561 | allocate(vmr_co2_pem_phys(ngrid,timelen)) |
---|
| 562 | allocate(q_h2o_GCM_phys(ngrid,timelen)) |
---|
| 563 | allocate(q_h2o_PEM_phys(ngrid,timelen)) |
---|
| 564 | allocate(q_co2_GCM_phys(ngrid,timelen)) |
---|
| 565 | allocate(q_co2_PEM_phys(ngrid,timelen)) |
---|
[2835] | 566 | allocate(ps_phys(ngrid)) |
---|
| 567 | allocate(ps_phys_timeseries(ngrid,timelen)) |
---|
| 568 | allocate(ps_phys_timeseries_yr1(ngrid,timelen)) |
---|
[2779] | 569 | |
---|
[2794] | 570 | CALL gr_dyn_fi(timelen,iip1,jjp1,ngridmx,vmr_co2_gcm,vmr_co2_gcm_phys) |
---|
| 571 | CALL gr_dyn_fi(timelen,iip1,jjp1,ngridmx,q_h2o_GCM,q_h2o_GCM_phys) |
---|
| 572 | CALL gr_dyn_fi(timelen,iip1,jjp1,ngridmx,q_co2_GCM,q_co2_GCM_phys) |
---|
[2835] | 573 | call gr_dyn_fi(1,iip1,jjp1,ngridmx,ps,ps_phys) |
---|
| 574 | call gr_dyn_fi(timelen,iip1,jjp1,ngridmx,ps_GCM,ps_phys_timeseries) |
---|
| 575 | call gr_dyn_fi(timelen,iip1,jjp1,ngridmx,ps_GCM_yr1,ps_phys_timeseries_yr1) |
---|
| 576 | CALL gr_dyn_fi(nslope,iip1,jjp1,ngridmx,tsurf_ave,tsurf_ave_phys) |
---|
| 577 | CALL gr_dyn_fi(nslope,iip1,jjp1,ngridmx,tsurf_ave_yr1,tsurf_ave_phys_yr1) |
---|
[2779] | 578 | |
---|
[2794] | 579 | deallocate(vmr_co2_gcm) |
---|
| 580 | deallocate(q_h2o_GCM) |
---|
| 581 | deallocate(q_co2_GCM) |
---|
[2835] | 582 | deallocate(ps_GCM) |
---|
| 583 | deallocate(ps_GCM_yr1) |
---|
| 584 | deallocate(tsurf_ave) |
---|
| 585 | deallocate(tsurf_ave_yr1) |
---|
[2794] | 586 | |
---|
[2835] | 587 | q_co2_PEM_phys(:,:)= q_co2_GCM_phys(:,:) |
---|
| 588 | q_h2o_PEM_phys(:,:)= q_h2o_GCM_phys(:,:) |
---|
[2794] | 589 | |
---|
[2835] | 590 | !------------------------ |
---|
[2794] | 591 | |
---|
[2835] | 592 | ! I Initialisation |
---|
| 593 | ! I_a READ run.def |
---|
| 594 | ! I_b READ of start_evol.nc and starfi_evol.nc |
---|
| 595 | ! I_c Subslope parametrisation |
---|
| 596 | ! I_d READ GCM data and convert to the physical grid |
---|
| 597 | ! I_e Initialisation of the PEM variable and soil |
---|
[2794] | 598 | |
---|
[2835] | 599 | !------------------------ |
---|
[2794] | 600 | |
---|
[2835] | 601 | !---------------------------- Initialisation of the PEM soil and values --------------------- |
---|
[2794] | 602 | |
---|
| 603 | call end_comsoil_h_PEM |
---|
| 604 | call ini_comsoil_h_PEM(ngrid,nslope) |
---|
| 605 | |
---|
| 606 | allocate(ice_depth(ngrid,nslope)) |
---|
[2849] | 607 | ice_depth(:,:) = 0. |
---|
[2794] | 608 | allocate(TI_GCM_phys(ngrid,nsoilmx,nslope)) |
---|
| 609 | |
---|
| 610 | DO islope = 1,nslope |
---|
[2835] | 611 | if(soil_pem) then |
---|
[2794] | 612 | CALL gr_dyn_fi(nsoilmx,iip1,jjp1,ngridmx,TI_GCM(:,:,:,islope),TI_GCM_phys(:,:,islope)) |
---|
[2835] | 613 | endif !soil_pem |
---|
| 614 | DO t=1,timelen |
---|
| 615 | CALL gr_dyn_fi(1,iip1,jjp1,ngridmx,tsurf_GCM_timeseries(:,:,islope,t),tsurf_phys_GCM_timeseries(:,islope,t)) |
---|
| 616 | CALL gr_dyn_fi(1,iip1,jjp1,ngridmx,co2_ice_GCM_slope(:,:,islope,t),co2_ice_GCM_phys_slope(:,islope,t)) |
---|
| 617 | enddo |
---|
[2794] | 618 | ENDDO |
---|
| 619 | |
---|
[2835] | 620 | deallocate(co2_ice_GCM_slope) |
---|
| 621 | deallocate(TI_GCM) |
---|
[2849] | 622 | deallocate(tsurf_GCM_timeseries) |
---|
[2794] | 623 | |
---|
[2835] | 624 | |
---|
[2849] | 625 | if(soil_pem) then |
---|
[2794] | 626 | call soil_settings_PEM(ngrid,nslope,nsoilmx_PEM,nsoilmx,TI_GCM_phys,TI_PEM) |
---|
| 627 | DO islope = 1,nslope |
---|
[2849] | 628 | DO t=1,timelen |
---|
| 629 | CALL gr_dyn_fi(1,iip1,jjp1,ngridmx,watersurf_density_timeseries(:,:,islope,t),watersurf_density_phys_timeseries(:,islope,t)) |
---|
| 630 | ENDDO |
---|
[2794] | 631 | DO l=1,nsoilmx |
---|
| 632 | CALL gr_dyn_fi(1,iip1,jjp1,ngridmx,tsoil_ave_yr1(:,:,l,islope),tsoil_ave_phys_yr1(:,l,islope)) |
---|
[2835] | 633 | CALL gr_dyn_fi(1,iip1,jjp1,ngridmx,tsoil_ave(:,:,l,islope),tsoil_PEM(:,l,islope)) |
---|
| 634 | DO t=1,timelen |
---|
| 635 | CALL gr_dyn_fi(1,iip1,jjp1,ngridmx,tsoil_GCM_timeseries(:,:,l,islope,t),tsoil_phys_PEM_timeseries(:,l,islope,t)) |
---|
[2849] | 636 | CALL gr_dyn_fi(1,iip1,jjp1,ngridmx,watersoil_density_timeseries(:,:,l,islope,t),watersoil_density_phys_PEM_timeseries(:,l,islope,t)) |
---|
[2835] | 637 | ENDDO |
---|
[2849] | 638 | |
---|
[2794] | 639 | ENDDO |
---|
| 640 | DO l=nsoilmx+1,nsoilmx_PEM |
---|
| 641 | CALL gr_dyn_fi(1,iip1,jjp1,ngridmx,tsoil_ave_yr1(:,:,nsoilmx,islope),tsoil_ave_phys_yr1(:,l,islope)) |
---|
| 642 | CALL gr_dyn_fi(1,iip1,jjp1,ngridmx,tsoil_ave(:,:,nsoilmx,islope),tsoil_PEM(:,l,islope)) |
---|
[2849] | 643 | DO t=1,timelen |
---|
| 644 | watersoil_density_phys_PEM_timeseries(:,l,islope,t) = watersoil_density_phys_PEM_timeseries(:,nsoilmx,islope,t) |
---|
| 645 | ENDDO |
---|
[2794] | 646 | ENDDO |
---|
| 647 | ENDDO |
---|
[2849] | 648 | watersoil_density_phys_PEM_ave(:,:,:) = SUM(watersoil_density_phys_PEM_timeseries(:,:,:,:),4)/timelen |
---|
| 649 | watersurf_density_phys_ave(:,:) = SUM(watersurf_density_phys_timeseries(:,:,:),3)/timelen |
---|
| 650 | deallocate(watersurf_density_timeseries) |
---|
| 651 | deallocate(watersurf_density_phys_timeseries) |
---|
| 652 | deallocate(watersoil_density_timeseries) |
---|
[2835] | 653 | deallocate(tsoil_ave_yr1) |
---|
| 654 | deallocate(tsoil_ave) |
---|
[2794] | 655 | deallocate(tsoil_GCM_timeseries) |
---|
[2835] | 656 | endif !soil_pem |
---|
[2794] | 657 | |
---|
[2779] | 658 | !------------------------ |
---|
| 659 | |
---|
[2794] | 660 | ! I Initialisation |
---|
[2835] | 661 | ! I_a READ run.def |
---|
| 662 | ! I_b READ of start_evol.nc and starfi_evol.nc |
---|
| 663 | ! I_c Subslope parametrisation |
---|
| 664 | ! I_d READ GCM data and convert to the physical grid |
---|
| 665 | ! I_e Initialisation of the PEM variable and soil |
---|
| 666 | ! I_f Compute tendencies & Save initial situation |
---|
[2779] | 667 | |
---|
[2835] | 668 | !----- Compute tendencies from the PCM run |
---|
[2794] | 669 | |
---|
[2779] | 670 | allocate(tendencies_h2o_ice(iim+1,jjm+1)) |
---|
| 671 | allocate(tendencies_h2o_ice_phys(ngrid)) |
---|
| 672 | allocate(tendencies_co2_ice(iim+1,jjm+1)) |
---|
| 673 | allocate(tendencies_co2_ice_phys(ngrid)) |
---|
| 674 | allocate(tendencies_co2_ice_slope(iim+1,jjm+1,nslope)) |
---|
| 675 | allocate(tendencies_co2_ice_phys_slope(ngrid,nslope)) |
---|
[2794] | 676 | allocate(tendencies_co2_ice_phys_slope_ini(ngrid,nslope)) |
---|
[2779] | 677 | allocate(tendencies_h2o_ice_slope(iim+1,jjm+1,nslope)) |
---|
| 678 | allocate(tendencies_h2o_ice_phys_slope(ngrid,nslope)) |
---|
| 679 | |
---|
[2835] | 680 | ! Compute the tendencies of the evolution of ice over the years |
---|
[2779] | 681 | |
---|
| 682 | call compute_tendencies(tendencies_h2o_ice,min_h2o_ice_s_1,& |
---|
| 683 | min_h2o_ice_s_2,iim,jjm,ngrid,tendencies_h2o_ice_phys) |
---|
| 684 | |
---|
| 685 | call compute_tendencies(tendencies_co2_ice,min_co2_ice_s_1,& |
---|
| 686 | min_co2_ice_s_2,iim,jjm,ngrid,tendencies_co2_ice_phys) |
---|
| 687 | |
---|
| 688 | call compute_tendencies_slope(tendencies_co2_ice_slope,min_co2_ice_slope_1,& |
---|
| 689 | min_co2_ice_slope_2,iim,jjm,ngrid,tendencies_co2_ice_phys_slope,nslope) |
---|
| 690 | |
---|
[2794] | 691 | tendencies_co2_ice_phys_slope_ini(:,:)=tendencies_co2_ice_phys_slope(:,:) |
---|
| 692 | |
---|
[2779] | 693 | call compute_tendencies_slope(tendencies_h2o_ice_slope,min_h2o_ice_slope_1,& |
---|
| 694 | min_h2o_ice_slope_2,iim,jjm,ngrid,tendencies_h2o_ice_phys_slope,nslope) |
---|
| 695 | |
---|
[2835] | 696 | !------------------------ |
---|
[2779] | 697 | |
---|
[2835] | 698 | ! I Initialisation |
---|
| 699 | ! I_a READ run.def |
---|
| 700 | ! I_b READ of start_evol.nc and starfi_evol.nc |
---|
| 701 | ! I_c Subslope parametrisation |
---|
| 702 | ! I_d READ GCM data and convert to the physical grid |
---|
| 703 | ! I_e Initialisation of the PEM variable and soil |
---|
| 704 | ! I_f Compute tendencies & Save initial situation |
---|
| 705 | ! I_g Save initial PCM situation |
---|
| 706 | |
---|
| 707 | !---------------------------- Save initial PCM situation --------------------- |
---|
| 708 | |
---|
[2779] | 709 | allocate(initial_h2o_ice(ngrid)) |
---|
| 710 | allocate(initial_co2_ice(ngrid)) |
---|
[2794] | 711 | allocate(initial_co2_ice_sublim_slope(ngrid,nslope)) |
---|
[2779] | 712 | allocate(initial_co2_ice_slope(ngrid,nslope)) |
---|
| 713 | allocate(initial_h2o_ice_slope(ngrid,nslope)) |
---|
| 714 | |
---|
[2794] | 715 | ! We save the places where water ice is sublimating |
---|
[2835] | 716 | ! We compute the surface of water ice sublimating |
---|
| 717 | ini_surf=0. |
---|
| 718 | ini_surf_co2=0. |
---|
| 719 | ini_surf_h2o=0. |
---|
| 720 | Total_surface=0. |
---|
[2779] | 721 | do i=1,ngrid |
---|
[2835] | 722 | Total_surface=Total_surface+cell_area(i) |
---|
| 723 | if (tendencies_h2o_ice_phys(i).LT.0) then |
---|
[2779] | 724 | initial_h2o_ice(i)=1. |
---|
[2835] | 725 | ini_surf=ini_surf+cell_area(i) |
---|
| 726 | else |
---|
[2779] | 727 | initial_h2o_ice(i)=0. |
---|
[2835] | 728 | endif |
---|
[2779] | 729 | do islope=1,nslope |
---|
| 730 | if (tendencies_co2_ice_phys_slope(i,islope).LT.0) then |
---|
[2794] | 731 | initial_co2_ice_sublim_slope(i,islope)=1. |
---|
[2835] | 732 | ini_surf_co2=ini_surf_co2+cell_area(i)*subslope_dist(i,islope) |
---|
[2794] | 733 | else |
---|
| 734 | initial_co2_ice_sublim_slope(i,islope)=0. |
---|
| 735 | endif |
---|
| 736 | if (co2ice_slope(i,islope).GT.0) then |
---|
[2779] | 737 | initial_co2_ice_slope(i,islope)=1. |
---|
| 738 | else |
---|
| 739 | initial_co2_ice_slope(i,islope)=0. |
---|
| 740 | endif |
---|
| 741 | if (tendencies_h2o_ice_phys_slope(i,islope).LT.0) then |
---|
| 742 | initial_h2o_ice_slope(i,islope)=1. |
---|
[2835] | 743 | ini_surf_h2o=ini_surf_h2o+cell_area(i)*subslope_dist(i,islope) |
---|
[2779] | 744 | else |
---|
| 745 | initial_h2o_ice_slope(i,islope)=0. |
---|
| 746 | endif |
---|
| 747 | enddo |
---|
| 748 | enddo |
---|
| 749 | |
---|
[2835] | 750 | print *, "Total initial surface of co2ice sublimating (slope)=", ini_surf_co2 |
---|
| 751 | print *, "Total initial surface of h2o ice sublimating=", ini_surf |
---|
| 752 | print *, "Total initial surface of h2o ice sublimating (slope)=", ini_surf_h2o |
---|
| 753 | print *, "Total surface of the planet=", Total_surface |
---|
[2794] | 754 | |
---|
[2835] | 755 | allocate(zplev_gcm(ngrid,nlayer+1)) |
---|
[2779] | 756 | |
---|
[2835] | 757 | DO l=1,nlayer+1 |
---|
| 758 | DO ig=1,ngrid |
---|
| 759 | zplev_gcm(ig,l) = ap(l) + bp(l)*ps_phys(ig) |
---|
| 760 | ENDDO |
---|
| 761 | ENDDO |
---|
[2779] | 762 | |
---|
[2794] | 763 | global_ave_press_old=0. |
---|
| 764 | do i=1,ngrid |
---|
| 765 | global_ave_press_old=global_ave_press_old+cell_area(i)*ps_phys(i)/Total_surface |
---|
| 766 | enddo |
---|
[2779] | 767 | |
---|
[2794] | 768 | global_ave_press_GCM=global_ave_press_old |
---|
[2835] | 769 | global_ave_press_new=global_ave_press_old |
---|
| 770 | print *, "Initial global average pressure=", global_ave_press_GCM |
---|
[2779] | 771 | |
---|
| 772 | !------------------------ |
---|
| 773 | |
---|
[2794] | 774 | ! I Initialisation |
---|
[2835] | 775 | ! I_a READ run.def |
---|
| 776 | ! I_b READ of start_evol.nc and starfi_evol.nc |
---|
| 777 | ! I_c Subslope parametrisation |
---|
| 778 | ! I_d READ GCM data and convert to the physical grid |
---|
| 779 | ! I_e Initialisation of the PEM variable and soil |
---|
| 780 | ! I_f Compute tendencies & Save initial situation |
---|
| 781 | ! I_g Save initial PCM situation |
---|
| 782 | ! I_h Read the PEMstart |
---|
[2779] | 783 | |
---|
[2835] | 784 | !---------------------------- Read the PEMstart --------------------- |
---|
[2779] | 785 | |
---|
[2855] | 786 | call pemetat0(.false.,"startfi_PEM.nc",ngrid,nsoilmx,nsoilmx_PEM,nslope,timelen,timestep,TI_PEM,tsoil_ave_phys_yr1,tsoil_PEM,ice_depth, & |
---|
| 787 | tsurf_ave_phys_yr1, tsurf_ave_phys, q_co2_PEM_phys, q_h2o_PEM_phys,ps_phys_timeseries,tsoil_phys_PEM_timeseries,& |
---|
[2849] | 788 | tendencies_h2o_ice_phys_slope,tendencies_co2_ice_phys_slope,co2ice_slope,qsurf_slope(:,igcm_h2o_ice,:),global_ave_press_GCM, co2_adsorbded_phys,delta_co2_adsorbded,& |
---|
| 789 | watersurf_density_phys_ave,watersoil_density_phys_PEM_ave) |
---|
[2779] | 790 | |
---|
[2835] | 791 | if(soil_pem) then |
---|
| 792 | totmass_adsorbded = 0. |
---|
| 793 | |
---|
[2794] | 794 | do ig = 1,ngrid |
---|
| 795 | do islope =1, nslope |
---|
| 796 | do l = 1,nsoilmx_PEM - 1 |
---|
| 797 | totmass_adsorbded = totmass_adsorbded + co2_adsorbded_phys(ig,l,islope)*(layer_PEM(l+1) - layer_PEM(l))* & |
---|
| 798 | subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.) * & |
---|
| 799 | cell_area(ig) |
---|
| 800 | enddo |
---|
| 801 | enddo |
---|
| 802 | enddo |
---|
| 803 | |
---|
[2835] | 804 | write(*,*) "Tot mass in the regolith=", totmass_adsorbded |
---|
| 805 | deallocate(tsoil_ave_phys_yr1) |
---|
| 806 | endif !soil_pem |
---|
[2794] | 807 | deallocate(tsurf_ave_phys_yr1) |
---|
[2835] | 808 | deallocate(ps_phys_timeseries_yr1) |
---|
[2794] | 809 | |
---|
[2835] | 810 | !------------------------ |
---|
[2794] | 811 | |
---|
[2835] | 812 | ! I Initialisation |
---|
| 813 | ! I_a READ run.def |
---|
| 814 | ! I_b READ of start_evol.nc and starfi_evol.nc |
---|
| 815 | ! I_c Subslope parametrisation |
---|
| 816 | ! I_d READ GCM data and convert to the physical grid |
---|
| 817 | ! I_e Initialisation of the PEM variable and soil |
---|
| 818 | ! I_f Compute tendencies & Save initial situation |
---|
| 819 | ! I_g Save initial PCM situation |
---|
| 820 | ! I_h Read the PEMstar |
---|
| 821 | ! I_i Compute orbit criterion |
---|
[2842] | 822 | #ifndef CPP_STD |
---|
[2835] | 823 | CALL iniorbit(aphelie,periheli,year_day,peri_day,obliquit) |
---|
[2842] | 824 | #else |
---|
| 825 | CALL iniorbit(apoastr, periastr, year_day, peri_day,obliquit) |
---|
| 826 | #endif |
---|
[2794] | 827 | |
---|
[2835] | 828 | if(evol_orbit_pem) then |
---|
| 829 | call orbit_param_criterion(year_iter_max) |
---|
| 830 | else |
---|
| 831 | year_iter_max=Max_iter_pem |
---|
| 832 | endif |
---|
[2794] | 833 | |
---|
[2835] | 834 | !--------------------------- END INITIALISATION --------------------- |
---|
[2794] | 835 | |
---|
| 836 | !---------------------------- RUN --------------------- |
---|
| 837 | |
---|
| 838 | !------------------------ |
---|
| 839 | |
---|
| 840 | ! II Run |
---|
| 841 | ! II_a update pressure,ice and tracers |
---|
| 842 | |
---|
| 843 | !------------------------ |
---|
[2835] | 844 | year_iter=0 |
---|
| 845 | do while (year_iter.LT.year_iter_max) |
---|
[2794] | 846 | |
---|
[2835] | 847 | ! II.a.1. Compute updated global pressure |
---|
| 848 | print *, "Recomputing the new pressure..." |
---|
[2779] | 849 | do i=1,ngrid |
---|
| 850 | do islope=1,nslope |
---|
[2794] | 851 | global_ave_press_new=global_ave_press_new-g*cell_area(i)*tendencies_co2_ice_phys_slope(i,islope)*subslope_dist(i,islope)/cos(pi*def_slope_mean(islope)/180.)/Total_surface |
---|
[2857] | 852 | enddo |
---|
[2849] | 853 | enddo |
---|
| 854 | print *, 'Global average pressure old time step',global_ave_press_old |
---|
| 855 | print *, 'Global average pressure new time step',global_ave_press_new |
---|
| 856 | |
---|
| 857 | do i=1,ngrid |
---|
[2835] | 858 | if(soil_pem) then |
---|
| 859 | global_ave_press_new = global_ave_press_new -g*cell_area(i)*delta_co2_adsorbded(i)/Total_surface |
---|
| 860 | endif |
---|
[2779] | 861 | enddo |
---|
[2849] | 862 | print *, 'Global average pressure old time step',global_ave_press_old |
---|
| 863 | print *, 'Global average pressure new time step',global_ave_press_new |
---|
[2835] | 864 | |
---|
| 865 | ! II.a.2. Old pressure levels for the timeseries, this value is deleted when unused and recreated each time (big memory consuption) |
---|
[2794] | 866 | allocate(zplev_old_timeseries(ngrid,nlayer+1,timelen)) |
---|
[2835] | 867 | print *, "Recomputing the old pressure levels timeserie adapted to the old pressure..." |
---|
| 868 | DO l=1,nlayer+1 |
---|
| 869 | DO ig=1,ngrid |
---|
| 870 | zplev_old_timeseries(ig,l,:) = ap(l) + bp(l)*ps_phys_timeseries(ig,:) |
---|
| 871 | ENDDO |
---|
| 872 | ENDDO |
---|
[2779] | 873 | |
---|
[2835] | 874 | ! II.a.3. Surface pressure timeseries |
---|
| 875 | print *, "Recomputing the surface pressure timeserie adapted to the new pressure..." |
---|
[2794] | 876 | do i = 1,ngrid |
---|
| 877 | ps_phys_timeseries(i,:) = ps_phys_timeseries(i,:)*global_ave_press_new/global_ave_press_old |
---|
| 878 | enddo |
---|
[2779] | 879 | |
---|
[2835] | 880 | ! II.a.4. New pressure levels timeseries |
---|
[2794] | 881 | allocate(zplev_new_timeseries(ngrid,nlayer+1,timelen)) |
---|
[2835] | 882 | print *, "Recomputing the new pressure levels timeserie adapted to the new pressure..." |
---|
| 883 | do l=1,nlayer+1 |
---|
| 884 | do ig=1,ngrid |
---|
| 885 | zplev_new_timeseries(ig,l,:) = ap(l) + bp(l)*ps_phys_timeseries(ig,:) |
---|
[2794] | 886 | enddo |
---|
[2835] | 887 | enddo |
---|
[2779] | 888 | |
---|
[2835] | 889 | ! II.a.5. Tracers timeseries |
---|
| 890 | print *, "Recomputing of tracer VMR timeseries for the new pressure..." |
---|
[2794] | 891 | |
---|
[2835] | 892 | l=1 |
---|
| 893 | DO ig=1,ngrid |
---|
| 894 | DO t = 1, timelen |
---|
[2794] | 895 | q_h2o_PEM_phys(ig,t)=q_h2o_PEM_phys(ig,t)*(zplev_old_timeseries(ig,l,t)-zplev_old_timeseries(ig,l+1,t))/(zplev_new_timeseries(ig,l,t)-zplev_new_timeseries(ig,l+1,t)) |
---|
| 896 | if(q_h2o_PEM_phys(ig,t).LT.0) then |
---|
| 897 | q_h2o_PEM_phys(ig,t)=1E-30 |
---|
| 898 | endif |
---|
| 899 | if(q_h2o_PEM_phys(ig,t).GT.1) then |
---|
| 900 | q_h2o_PEM_phys(ig,t)=1. |
---|
| 901 | endif |
---|
[2835] | 902 | enddo |
---|
| 903 | enddo |
---|
[2794] | 904 | |
---|
[2835] | 905 | DO ig=1,ngrid |
---|
| 906 | DO t = 1, timelen |
---|
[2794] | 907 | q_co2_PEM_phys(ig,t)=q_co2_PEM_phys(ig,t)*(zplev_old_timeseries(ig,l,t)-zplev_old_timeseries(ig,l+1,t))/(zplev_new_timeseries(ig,l,t)-zplev_new_timeseries(ig,l+1,t)) & |
---|
| 908 | + ( (zplev_new_timeseries(ig,l,t)-zplev_new_timeseries(ig,l+1,t)) - & |
---|
| 909 | (zplev_old_timeseries(ig,l,t)-zplev_old_timeseries(ig,l+1,t)) ) / & |
---|
| 910 | (zplev_new_timeseries(ig,l,t)-zplev_new_timeseries(ig,l+1,t)) |
---|
| 911 | if (q_co2_PEM_phys(ig,t).LT.0) then |
---|
| 912 | q_co2_PEM_phys(ig,t)=1E-30 |
---|
| 913 | elseif (q_co2_PEM_phys(ig,t).GT.1) then |
---|
| 914 | q_co2_PEM_phys(ig,t)=1. |
---|
| 915 | endif |
---|
| 916 | mmean=1/(A*q_co2_PEM_phys(ig,t) +B) |
---|
| 917 | vmr_co2_pem_phys(ig,t) = q_co2_PEM_phys(ig,t)*mmean/m_co2 |
---|
[2835] | 918 | ENDDO |
---|
| 919 | ENDDO |
---|
[2794] | 920 | |
---|
| 921 | deallocate(zplev_new_timeseries) |
---|
| 922 | deallocate(zplev_old_timeseries) |
---|
| 923 | |
---|
[2835] | 924 | ! II Run |
---|
| 925 | ! II_a update pressure, ice and tracers |
---|
| 926 | ! II_b Evolution of the ice |
---|
[2794] | 927 | |
---|
[2835] | 928 | ! II.b. Evolution of the ice |
---|
| 929 | print *, "Evolution of h2o ice" |
---|
[2794] | 930 | call evol_h2o_ice_s_slope(qsurf_slope(:,igcm_h2o_ice,:),tendencies_h2o_ice_phys_slope,iim,jjm,ngrid,cell_area,STOPPING_1_water,nslope) |
---|
| 931 | |
---|
[2857] | 932 | |
---|
[2835] | 933 | print *, "Evolution of co2 ice" |
---|
[2779] | 934 | call evol_co2_ice_s_slope(co2ice_slope,tendencies_co2_ice_phys_slope,iim,jjm,ngrid,cell_area,STOPPING_1_co2,nslope) |
---|
| 935 | |
---|
[2794] | 936 | !------------------------ |
---|
| 937 | |
---|
| 938 | ! II Run |
---|
| 939 | ! II_a update pressure, ice and tracers |
---|
[2835] | 940 | ! II_b Evolution of the ice |
---|
| 941 | ! II_c CO2 glaciers flows |
---|
[2794] | 942 | |
---|
| 943 | !------------------------ |
---|
| 944 | |
---|
[2856] | 945 | print *, "Co2 glacier flows" |
---|
[2779] | 946 | |
---|
| 947 | |
---|
| 948 | |
---|
[2856] | 949 | call co2glaciers_evol(timelen,ngrid,nslope,iflat,subslope_dist,def_slope_mean,vmr_co2_pem_phys,ps_phys_timeseries,& |
---|
| 950 | global_ave_press_GCM,global_ave_press_new,co2ice_slope,flag_co2flow,flag_co2flow_mesh) |
---|
| 951 | |
---|
| 952 | |
---|
| 953 | |
---|
| 954 | |
---|
| 955 | |
---|
[2794] | 956 | !------------------------ |
---|
[2779] | 957 | |
---|
[2794] | 958 | ! II Run |
---|
| 959 | ! II_a update pressure, ice and tracers |
---|
[2835] | 960 | ! II_b Evolution of the ice |
---|
| 961 | ! II_c CO2 glaciers flows |
---|
| 962 | ! II_d Update surface and soil temperatures |
---|
[2779] | 963 | |
---|
[2794] | 964 | !------------------------ |
---|
[2779] | 965 | |
---|
[2835] | 966 | ! II_d.1 Update Tsurf |
---|
[2794] | 967 | |
---|
[2835] | 968 | print *, "Updating the new Tsurf" |
---|
[2794] | 969 | bool_sublim=0 |
---|
| 970 | Tsurfave_before_saved(:,:) = tsurf_ave_phys(:,:) |
---|
[2835] | 971 | DO ig = 1,ngrid |
---|
[2794] | 972 | DO islope = 1,nslope |
---|
[2857] | 973 | if(initial_co2_ice_slope(ig,islope).gt.0.5 .and. co2ice_slope(ig,islope).LT. 1E-10) THEN !co2ice disappeared, look for closest point without co2ice |
---|
[2835] | 974 | if(latitude_deg(ig).gt.0) then |
---|
| 975 | do ig_loop=ig,ngrid |
---|
| 976 | DO islope_loop=islope,iflat,-1 |
---|
[2857] | 977 | if(initial_co2_ice_slope(ig_loop,islope_loop).lt.0.5 .and. co2ice_slope(ig_loop,islope_loop).LT. 1E-10) then |
---|
[2835] | 978 | tsurf_ave_phys(ig,islope)=tsurf_ave_phys(ig_loop,islope_loop) |
---|
| 979 | bool_sublim=1 |
---|
| 980 | exit |
---|
[2794] | 981 | endif |
---|
| 982 | enddo |
---|
[2835] | 983 | if (bool_sublim.eq.1) then |
---|
| 984 | exit |
---|
| 985 | endif |
---|
| 986 | enddo |
---|
| 987 | else |
---|
| 988 | do ig_loop=ig,1,-1 |
---|
| 989 | DO islope_loop=islope,iflat |
---|
[2857] | 990 | if(initial_co2_ice_slope(ig_loop,islope_loop).lt.0.5 .and. co2ice_slope(ig_loop,islope_loop).LT. 1E-10) then |
---|
[2835] | 991 | tsurf_ave_phys(ig,islope)=tsurf_ave_phys(ig_loop,islope_loop) |
---|
| 992 | bool_sublim=1 |
---|
| 993 | exit |
---|
[2794] | 994 | endif |
---|
| 995 | enddo |
---|
[2835] | 996 | if (bool_sublim.eq.1) then |
---|
| 997 | exit |
---|
| 998 | endif |
---|
| 999 | enddo |
---|
| 1000 | endif |
---|
| 1001 | initial_co2_ice_slope(ig,islope)=0 |
---|
[2857] | 1002 | if ((co2ice_slope(ig,islope).lt.1e-10).and. (qsurf_slope(ig,igcm_h2o_ice,islope).gt.frost_albedo_threshold)) then |
---|
[2835] | 1003 | albedo_slope(ig,1,islope) = albedo_h2o_frost |
---|
| 1004 | albedo_slope(ig,2,islope) = albedo_h2o_frost |
---|
| 1005 | else |
---|
| 1006 | albedo_slope(ig,1,islope) = albedodat(ig) |
---|
| 1007 | albedo_slope(ig,2,islope) = albedodat(ig) |
---|
| 1008 | emiss_slope(ig,islope) = emissiv |
---|
| 1009 | endif |
---|
[2857] | 1010 | elseif( (co2ice_slope(ig,islope).GT. 1E-3).and.(tendencies_co2_ice_phys_slope(ig,islope).gt.1e-10) )THEN !Put tsurf as tcond co2 |
---|
[2835] | 1011 | ave=0. |
---|
| 1012 | do t=1,timelen |
---|
[2849] | 1013 | if(co2_ice_GCM_phys_slope(ig,islope,t).gt.1e-3) then |
---|
[2855] | 1014 | ave = ave + beta_clap_co2/(alpha_clap_co2-log(vmr_co2_pem_phys(ig,t)*ps_phys_timeseries(ig,t)/100.)) |
---|
[2794] | 1015 | else |
---|
[2835] | 1016 | ave = ave + tsurf_phys_GCM_timeseries(ig,islope,t) |
---|
[2794] | 1017 | endif |
---|
[2835] | 1018 | enddo |
---|
| 1019 | tsurf_ave_phys(ig,islope)=ave/timelen |
---|
| 1020 | endif |
---|
| 1021 | enddo |
---|
| 1022 | enddo |
---|
[2794] | 1023 | |
---|
[2835] | 1024 | do t = 1,timelen |
---|
| 1025 | tsurf_phys_GCM_timeseries(:,:,t) = tsurf_phys_GCM_timeseries(:,:,t) +( tsurf_ave_phys(:,:) -Tsurfave_before_saved(:,:)) |
---|
| 1026 | enddo |
---|
| 1027 | ! for the start |
---|
| 1028 | do ig = 1,ngrid |
---|
| 1029 | do islope = 1,nslope |
---|
| 1030 | tsurf_slope(ig,islope) = tsurf_slope(ig,islope) - (Tsurfave_before_saved(ig,islope)-tsurf_ave_phys(ig,islope)) |
---|
[2794] | 1031 | enddo |
---|
[2835] | 1032 | enddo |
---|
[2794] | 1033 | |
---|
[2849] | 1034 | |
---|
[2835] | 1035 | if(soil_pem) then |
---|
[2794] | 1036 | |
---|
[2835] | 1037 | ! II_d.2 Update soil temperature |
---|
[2794] | 1038 | |
---|
[2835] | 1039 | allocate(TI_locslope(ngrid,nsoilmx_PEM)) |
---|
| 1040 | allocate(Tsoil_locslope(ngrid,nsoilmx_PEM)) |
---|
| 1041 | allocate(Tsurf_locslope(ngrid)) |
---|
| 1042 | allocate(alph_locslope(ngrid,nsoilmx_PEM-1)) |
---|
| 1043 | allocate(beta_locslope(ngrid,nsoilmx_PEM-1)) |
---|
[2794] | 1044 | |
---|
[2835] | 1045 | print *,"Updating soil temperature" |
---|
[2794] | 1046 | |
---|
| 1047 | ! Soil averaged |
---|
| 1048 | do islope = 1,nslope |
---|
| 1049 | TI_locslope(:,:) = TI_PEM(:,:,islope) |
---|
| 1050 | alph_locslope(:,:) = alph_PEM(:,:,islope) |
---|
| 1051 | beta_locslope(:,:) = beta_PEM(:,:,islope) |
---|
| 1052 | do t = 1,timelen |
---|
[2849] | 1053 | Tsoil_locslope(:,:) = tsoil_phys_PEM_timeseries(:,:,islope,t) |
---|
| 1054 | Tsurf_locslope(:) = tsurf_phys_GCM_timeseries(:,islope,t) |
---|
[2794] | 1055 | |
---|
[2849] | 1056 | call soil_pem_routine(ngrid,nsoilmx_PEM,.true.,TI_locslope,timestep/timelen,Tsurf_locslope,Tsoil_locslope,alph_locslope,beta_locslope) |
---|
| 1057 | call soil_pem_routine(ngrid,nsoilmx_PEM,.false.,TI_locslope,timestep/timelen,Tsurf_locslope,Tsoil_locslope,alph_locslope,beta_locslope) |
---|
[2794] | 1058 | |
---|
[2849] | 1059 | |
---|
| 1060 | tsoil_phys_PEM_timeseries(:,:,islope,t) = Tsoil_locslope(:,:) |
---|
| 1061 | do ig = 1,ngrid |
---|
| 1062 | do isoil = 1,nsoilmx_PEM |
---|
| 1063 | watersoil_density_phys_PEM_timeseries(ig,l,islope,t) = exp(alpha_clap_h2o/Tsoil_locslope(ig,isoil) + beta_clap_h2o)/Tsoil_locslope(ig,isoil) |
---|
| 1064 | if(isnan(Tsoil_locslope(ig,isoil))) then |
---|
| 1065 | write(*,*)'Tsoil=',ig,isoil,Tsoil_locslope(ig,isoil) |
---|
[2857] | 1066 | stop |
---|
[2849] | 1067 | endif |
---|
[2794] | 1068 | enddo |
---|
[2835] | 1069 | enddo |
---|
| 1070 | enddo |
---|
[2849] | 1071 | alph_PEM(:,:,islope) = alph_locslope(:,:) |
---|
| 1072 | beta_PEM(:,:,islope) = beta_locslope(:,:) |
---|
| 1073 | enddo |
---|
[2794] | 1074 | |
---|
[2849] | 1075 | |
---|
| 1076 | tsoil_PEM(:,:,:) = SUM(tsoil_phys_PEM_timeseries(:,:,:,:),4)/timelen |
---|
| 1077 | watersoil_density_phys_PEM_ave(:,:,:)= SUM(watersoil_density_phys_PEM_timeseries(:,:,:,:),4)/timelen |
---|
| 1078 | print *, "Update of soil temperature done" |
---|
| 1079 | |
---|
| 1080 | deallocate(TI_locslope) |
---|
| 1081 | deallocate(Tsoil_locslope) |
---|
| 1082 | deallocate(Tsurf_locslope) |
---|
| 1083 | deallocate(alph_locslope) |
---|
| 1084 | deallocate(beta_locslope) |
---|
| 1085 | |
---|
[2835] | 1086 | write(*,*) "Compute ice table" |
---|
[2794] | 1087 | |
---|
[2835] | 1088 | ! II_d.3 Update the ice table |
---|
[2849] | 1089 | call computeice_table(ngrid,nslope,nsoilmx_PEM,watersurf_density_phys_ave,watersoil_density_phys_PEM_ave,ice_depth) |
---|
[2794] | 1090 | |
---|
[2835] | 1091 | print *, "Update soil propreties" |
---|
| 1092 | ! II_d.4 Update the soil thermal properties |
---|
| 1093 | call update_soil(ngrid,nslope,nsoilmx_PEM,tendencies_h2o_ice_phys_slope,tendencies_co2_ice_phys_slope,co2ice_slope,qsurf_slope(:,igcm_h2o_ice,:),global_ave_press_new, & |
---|
| 1094 | ice_depth,TI_PEM) |
---|
[2794] | 1095 | |
---|
[2835] | 1096 | ! II_d.5 Update the mass of the regolith adsorbded |
---|
[2794] | 1097 | call regolith_co2adsorption(ngrid,nslope,nsoilmx_PEM,timelen,ps_phys_timeseries,tsoil_PEM,TI_PEM,tendencies_h2o_ice_phys_slope,tendencies_co2_ice_phys_slope, & |
---|
| 1098 | co2ice_slope,qsurf_slope(:,igcm_h2o_ice,:), q_co2_PEM_phys,q_h2o_PEM_phys,co2_adsorbded_phys,delta_co2_adsorbded) |
---|
| 1099 | |
---|
[2835] | 1100 | endif !soil_pem |
---|
[2794] | 1101 | |
---|
| 1102 | !------------------------ |
---|
| 1103 | |
---|
| 1104 | ! II Run |
---|
| 1105 | ! II_a update pressure, ice and tracers |
---|
[2835] | 1106 | ! II_b Evolution of the ice |
---|
| 1107 | ! II_c CO2 glaciers flows |
---|
| 1108 | ! II_d Update surface and soil temperatures |
---|
| 1109 | ! II_e Update the tendencies |
---|
[2794] | 1110 | |
---|
| 1111 | !------------------------ |
---|
| 1112 | |
---|
[2835] | 1113 | print *, "Adaptation of the new co2 tendencies to the current pressure" |
---|
[2794] | 1114 | call recomp_tend_co2_slope(tendencies_co2_ice_phys_slope,tendencies_co2_ice_phys_slope_ini,vmr_co2_gcm_phys,vmr_co2_pem_phys,ps_phys_timeseries,& |
---|
| 1115 | global_ave_press_GCM,global_ave_press_new,timelen,ngrid,nslope) |
---|
| 1116 | |
---|
[2835] | 1117 | !------------------------ |
---|
[2779] | 1118 | |
---|
[2835] | 1119 | ! II Run |
---|
| 1120 | ! II_a update pressure, ice and tracers |
---|
| 1121 | ! II_b Evolution of the ice |
---|
| 1122 | ! II_c CO2 glaciers flows |
---|
| 1123 | ! II_d Update surface and soil temperatures |
---|
| 1124 | ! II_e Update the tendencies |
---|
| 1125 | ! II_f Checking the stopping criterion |
---|
[2779] | 1126 | |
---|
[2835] | 1127 | !------------------------ |
---|
[2794] | 1128 | call criterion_ice_stop_water_slope(cell_area,ini_surf_h2o,qsurf_slope(:,igcm_h2o_ice,:),STOPPING_water,ngrid,initial_h2o_ice_slope) |
---|
[2779] | 1129 | |
---|
[2794] | 1130 | call criterion_ice_stop_slope(cell_area,ini_surf_co2,co2ice_slope,STOPPING_co2,ngrid,initial_co2_ice_sublim_slope,global_ave_press_GCM,global_ave_press_new,nslope) |
---|
| 1131 | |
---|
[2835] | 1132 | year_iter=year_iter+dt_pem |
---|
[2794] | 1133 | |
---|
[2835] | 1134 | print *, "Checking all the stopping criterion." |
---|
| 1135 | if (STOPPING_water) then |
---|
| 1136 | print *, "STOPPING because surface of water ice sublimating is too low, see message above", STOPPING_water |
---|
| 1137 | endif |
---|
[2849] | 1138 | if (year_iter.ge.year_iter_max) then |
---|
| 1139 | print *, "STOPPING because maximum number of iterations reached" |
---|
| 1140 | endif |
---|
[2835] | 1141 | if (STOPPING_1_water) then |
---|
| 1142 | print *, "STOPPING because tendencies on water ice=0, see message above", STOPPING_1_water |
---|
| 1143 | endif |
---|
| 1144 | if (STOPPING_co2) then |
---|
| 1145 | print *, "STOPPING because surface of co2 ice sublimating is too low or global pressure changed too much, see message above", STOPPING_co2 |
---|
| 1146 | endif |
---|
| 1147 | if (STOPPING_1_co2) then |
---|
| 1148 | print *, "STOPPING because tendencies on co2 ice=0, see message above", STOPPING_1_co2 |
---|
| 1149 | endif |
---|
[2794] | 1150 | |
---|
[2857] | 1151 | |
---|
| 1152 | |
---|
[2779] | 1153 | if (STOPPING_water .or. STOPPING_1_water .or. STOPPING_co2 .or. STOPPING_1_co2) then |
---|
| 1154 | exit |
---|
[2835] | 1155 | else |
---|
| 1156 | print *, "We continue!" |
---|
| 1157 | print *, "Number of iteration of the PEM : year_iter=", year_iter |
---|
[2779] | 1158 | endif |
---|
| 1159 | |
---|
| 1160 | global_ave_press_old=global_ave_press_new |
---|
| 1161 | |
---|
[2835] | 1162 | enddo ! big time iteration loop of the pem |
---|
[2779] | 1163 | |
---|
| 1164 | |
---|
[2794] | 1165 | !---------------------------- END RUN PEM --------------------- |
---|
| 1166 | |
---|
| 1167 | !---------------------------- OUTPUT --------------------- |
---|
| 1168 | |
---|
| 1169 | !------------------------ |
---|
| 1170 | |
---|
| 1171 | ! III Output |
---|
[2835] | 1172 | ! III_a Update surface value for the PCM start files |
---|
[2794] | 1173 | |
---|
| 1174 | !------------------------ |
---|
| 1175 | |
---|
[2835] | 1176 | ! III_a.1 Ice update (for startfi) |
---|
| 1177 | ! Co2 ice |
---|
[2779] | 1178 | DO ig = 1,ngrid |
---|
[2835] | 1179 | co2ice(ig) = 0. |
---|
| 1180 | DO islope = 1,nslope |
---|
| 1181 | co2ice(ig) = co2ice(ig) + co2ice_slope(ig,islope) & |
---|
| 1182 | * subslope_dist(ig,islope) / & |
---|
| 1183 | cos(pi*def_slope_mean(islope)/180.) |
---|
| 1184 | ENDDO |
---|
[2842] | 1185 | #ifdef CPP_STD |
---|
| 1186 | qsurf(ig,igcm_co2_ice)=co2ice(ig) |
---|
| 1187 | #endif |
---|
[2779] | 1188 | ENDDO ! of DO ig=1,ngrid |
---|
[2835] | 1189 | ! H2o ice |
---|
| 1190 | DO ig = 1,ngrid |
---|
| 1191 | qsurf(ig,igcm_h2o_ice) = 0. |
---|
| 1192 | DO islope = 1,nslope |
---|
| 1193 | qsurf(ig,igcm_h2o_ice) = qsurf(ig,igcm_h2o_ice) + qsurf_slope(ig,igcm_h2o_ice,islope) & |
---|
| 1194 | * subslope_dist(ig,islope) / & |
---|
| 1195 | cos(pi*def_slope_mean(islope)/180.) |
---|
| 1196 | ENDDO |
---|
[2779] | 1197 | ENDDO ! of DO ig=1,ngrid |
---|
| 1198 | |
---|
[2849] | 1199 | ! III_a.2 Tsoil update (for startfi) |
---|
[2779] | 1200 | |
---|
[2835] | 1201 | if(soil_pem) then |
---|
| 1202 | call interpolate_TIPEM_TIGCM(ngrid,nslope,nsoilmx_PEM,nsoilmx,TI_PEM,TI_GCM_phys) |
---|
| 1203 | tsoil_slope(:,:,:) = tsoil_phys_PEM_timeseries(:,:,:,timelen) |
---|
| 1204 | else |
---|
| 1205 | TI_GCM_phys(:,:,:)=TI_GCM_start(:,:,:) |
---|
| 1206 | endif !soil_pem |
---|
[2779] | 1207 | |
---|
[2794] | 1208 | |
---|
[2842] | 1209 | #ifndef CPP_STD |
---|
[2794] | 1210 | DO ig = 1,ngrid |
---|
[2835] | 1211 | DO iloop = 1,nsoilmx |
---|
[2794] | 1212 | tsoil(ig,iloop) = 0. |
---|
| 1213 | inertiesoil(ig,iloop) = 0. |
---|
[2835] | 1214 | DO islope = 1,nslope |
---|
| 1215 | tsoil(ig,iloop) = tsoil(ig,iloop) + tsoil_slope(ig,iloop,islope) & |
---|
[2794] | 1216 | * subslope_dist(ig,islope) |
---|
[2835] | 1217 | inertiesoil(ig,iloop) = inertiesoil(ig,iloop) + TI_GCM_phys(ig,iloop,islope) & |
---|
[2794] | 1218 | * subslope_dist(ig,islope) |
---|
| 1219 | ENDDO |
---|
[2835] | 1220 | ENDDO |
---|
[2794] | 1221 | ENDDO ! of DO ig=1,ngrid |
---|
| 1222 | |
---|
[2835] | 1223 | ! III_a.3 Surface optical properties (for startfi) |
---|
[2794] | 1224 | |
---|
| 1225 | DO ig = 1,ngrid |
---|
| 1226 | DO l = 1,2 |
---|
| 1227 | albedo(ig,l) =0. |
---|
| 1228 | DO islope = 1,nslope |
---|
| 1229 | albedo(ig,l)= albedo(ig,l)+albedo_slope(ig,l,islope) & |
---|
| 1230 | *subslope_dist(ig,islope) |
---|
| 1231 | ENDDO |
---|
| 1232 | ENDDO |
---|
[2835] | 1233 | ENDDO |
---|
[2794] | 1234 | |
---|
| 1235 | DO ig = 1,ngrid |
---|
[2835] | 1236 | emis(ig) =0. |
---|
| 1237 | DO islope = 1,nslope |
---|
| 1238 | emis(ig)= emis(ig)+emiss_slope(ig,islope) & |
---|
[2794] | 1239 | *subslope_dist(ig,islope) |
---|
[2835] | 1240 | ENDDO |
---|
| 1241 | ENDDO |
---|
[2849] | 1242 | |
---|
| 1243 | |
---|
| 1244 | DO ig = 1,ngrid |
---|
| 1245 | tsurf(ig) = 0. |
---|
| 1246 | DO islope = 1,nslope |
---|
| 1247 | tsurf(ig) = tsurf(ig) + (emiss_slope(ig,islope)*tsurf_slope(ig,islope))**4 & |
---|
| 1248 | * subslope_dist(ig,islope) |
---|
| 1249 | ENDDO |
---|
| 1250 | tsurf(ig) = tsurf(ig)**(0.25)/emis(ig) |
---|
| 1251 | ENDDO ! of DO ig=1,ngrid |
---|
| 1252 | |
---|
[2842] | 1253 | #endif |
---|
[2794] | 1254 | |
---|
[2835] | 1255 | ! III_a.4 Pressure (for start) |
---|
| 1256 | do i=1,ip1jmp1 |
---|
| 1257 | ps(i)=ps(i)*global_ave_press_new/global_ave_press_GCM |
---|
| 1258 | enddo |
---|
[2794] | 1259 | |
---|
[2835] | 1260 | do i = 1,ngrid |
---|
| 1261 | ps_phys(i)=ps_phys(i)*global_ave_press_new/global_ave_press_GCM |
---|
| 1262 | enddo |
---|
| 1263 | |
---|
[2857] | 1264 | write(*,*) 'rapport ps',global_ave_press_new/global_ave_press_GCM |
---|
| 1265 | |
---|
[2835] | 1266 | ! III_a.5 Tracer (for start) |
---|
| 1267 | allocate(zplev_new(ngrid,nlayer+1)) |
---|
| 1268 | |
---|
| 1269 | do l=1,nlayer+1 |
---|
| 1270 | do ig=1,ngrid |
---|
| 1271 | zplev_new(ig,l) = ap(l) + bp(l)*ps_phys(ig) |
---|
| 1272 | enddo |
---|
| 1273 | enddo |
---|
| 1274 | |
---|
| 1275 | DO nnq=1,nqtot |
---|
| 1276 | if (noms(nnq).NE."co2") then |
---|
| 1277 | DO l=1,llm-1 |
---|
| 1278 | DO ig=1,ngrid |
---|
| 1279 | q(ig,l,nnq)=q(ig,l,nnq)*(zplev_gcm(ig,l)-zplev_gcm(ig,l+1))/(zplev_new(ig,l)-zplev_new(ig,l+1)) |
---|
| 1280 | ENDDO |
---|
| 1281 | q(:,llm,nnq)=q(:,llm-1,nnq) |
---|
| 1282 | ENDDO |
---|
| 1283 | else |
---|
| 1284 | DO l=1,llm-1 |
---|
| 1285 | DO ig=1,ngrid |
---|
| 1286 | q(ig,l,nnq)=q(ig,l,nnq)*(zplev_gcm(ig,l)-zplev_gcm(ig,l+1))/(zplev_new(ig,l)-zplev_new(ig,l+1)) & |
---|
| 1287 | + ( (zplev_new(ig,l)-zplev_new(ig,l+1)) - & |
---|
| 1288 | (zplev_gcm(ig,l)-zplev_gcm(ig,l+1)) ) / & |
---|
| 1289 | (zplev_new(ig,l)-zplev_new(ig,l+1)) |
---|
| 1290 | ENDDO |
---|
| 1291 | q(:,llm,nnq)=q(:,llm-1,nnq) |
---|
| 1292 | ENDDO |
---|
| 1293 | endif |
---|
| 1294 | ENDDO |
---|
| 1295 | |
---|
| 1296 | ! Conserving the tracers's mass for GCM start files |
---|
| 1297 | DO nnq=1,nqtot |
---|
| 1298 | DO ig=1,ngrid |
---|
| 1299 | DO l=1,llm-1 |
---|
[2857] | 1300 | if(q(ig,l,nnq).GT.1 .and. (noms(nnq).NE."dust_number") .and. (noms(nnq).NE."ccn_number") ) then |
---|
[2835] | 1301 | extra_mass=(q(ig,l,nnq)-1)*(zplev_new(ig,l)-zplev_new(ig,l+1)) |
---|
| 1302 | q(ig,l,nnq)=1. |
---|
| 1303 | q(ig,l+1,nnq)=q(ig,l+1,nnq)+extra_mass*(zplev_new(ig,l+1)-zplev_new(ig,l+2)) |
---|
[2857] | 1304 | write(*,*) 'extra ',noms(nnq),extra_mass, noms(nnq).NE."dust_number",noms(nnq).NE."ccn_number" |
---|
[2835] | 1305 | endif |
---|
| 1306 | if(q(ig,l,nnq).LT.0) then |
---|
| 1307 | q(ig,l,nnq)=1E-30 |
---|
| 1308 | endif |
---|
| 1309 | ENDDO |
---|
| 1310 | enddo |
---|
| 1311 | enddo |
---|
| 1312 | |
---|
[2779] | 1313 | !------------------------ |
---|
[2835] | 1314 | if(evol_orbit_pem) then |
---|
| 1315 | call recomp_orb_param(year_iter) |
---|
| 1316 | endif |
---|
[2779] | 1317 | |
---|
| 1318 | ! III Output |
---|
[2835] | 1319 | ! III_a Update surface value for the PCM start files |
---|
[2794] | 1320 | ! III_b Write start and starfi.nc |
---|
[2779] | 1321 | |
---|
| 1322 | !------------------------ |
---|
| 1323 | |
---|
[2794] | 1324 | ! III_b.1 WRITE restart.nc |
---|
[2779] | 1325 | |
---|
| 1326 | ptimestep=iphysiq*daysec/REAL(day_step)/nsplit_phys |
---|
| 1327 | pday=day_ini |
---|
| 1328 | ztime_fin=0. |
---|
| 1329 | |
---|
| 1330 | allocate(p(ip1jmp1,nlayer+1)) |
---|
[2835] | 1331 | CALL pression (ip1jmp1,ap,bp,ps,p) |
---|
| 1332 | CALL massdair(p,masse) |
---|
[2779] | 1333 | |
---|
[2794] | 1334 | CALL dynredem0("restart_evol.nc", day_ini, phis) |
---|
| 1335 | |
---|
| 1336 | CALL dynredem1("restart_evol.nc", & |
---|
[2779] | 1337 | time_0,vcov,ucov,teta,q,masse,ps) |
---|
[2835] | 1338 | print *, "restart_evol.nc has been written" |
---|
[2779] | 1339 | |
---|
[2794] | 1340 | ! III_b.2 WRITE restartfi.nc |
---|
[2842] | 1341 | #ifndef CPP_STD |
---|
[2835] | 1342 | call physdem0("restartfi_evol.nc",longitude,latitude, & |
---|
[2794] | 1343 | nsoilmx,ngrid,nlayer,nq, & |
---|
| 1344 | ptimestep,pday,0.,cell_area, & |
---|
| 1345 | albedodat,inertiedat,zmea,zstd,zsig,zgam,zthe, & |
---|
| 1346 | hmons,summit,base,nslope,def_slope, & |
---|
| 1347 | subslope_dist) |
---|
[2779] | 1348 | |
---|
[2835] | 1349 | call physdem1("restartfi_evol.nc",nsoilmx,ngrid,nlayer,nq, & |
---|
[2779] | 1350 | ptimestep,ztime_fin, & |
---|
| 1351 | tsurf,tsoil,co2ice,albedo,emis, & |
---|
| 1352 | q2,qsurf,tauscaling,totcloudfrac,wstar, & |
---|
[2794] | 1353 | watercap,inertiesoil,nslope,co2ice_slope, & |
---|
[2779] | 1354 | tsurf_slope,tsoil_slope, albedo_slope, & |
---|
[2794] | 1355 | emiss_slope,qsurf_slope,watercap_slope, TI_GCM_phys) |
---|
[2842] | 1356 | #else |
---|
| 1357 | call physdem0("restartfi_evol.nc",longitude,latitude,nsoilmx,ngrid,nlayer,nq, & |
---|
| 1358 | ptimestep,pday,time_phys,cell_area, & |
---|
| 1359 | albedo_bareground,inertiedat,zmea,zstd,zsig,zgam,zthe) |
---|
[2779] | 1360 | |
---|
[2842] | 1361 | call physdem1("restartfi_evol.nc",nsoilmx,ngrid,nlayer,nq, & |
---|
| 1362 | ptimestep,ztime_fin, & |
---|
| 1363 | tsurf,tsoil,emis,q2,qsurf, & |
---|
| 1364 | cloudfrac,totcloudfrac,hice, & |
---|
| 1365 | rnat,pctsrf_sic,tslab,tsea_ice,sea_ice) |
---|
| 1366 | #endif |
---|
| 1367 | |
---|
[2835] | 1368 | print *, "restartfi_evol.nc has been written" |
---|
[2794] | 1369 | !------------------------ |
---|
[2779] | 1370 | |
---|
[2794] | 1371 | ! III Output |
---|
[2835] | 1372 | ! III_a Update surface value for the PCM start files |
---|
[2794] | 1373 | ! III_b Write start and starfi.nc |
---|
| 1374 | ! III_c Write start_pem |
---|
[2779] | 1375 | |
---|
[2794] | 1376 | !------------------------ |
---|
[2779] | 1377 | |
---|
[2835] | 1378 | call pemdem1("restartfi_PEM.nc",year_iter,nsoilmx_PEM,ngrid,nslope , & |
---|
[2794] | 1379 | tsoil_PEM, TI_PEM, ice_depth,co2_adsorbded_phys) |
---|
[2779] | 1380 | |
---|
[2835] | 1381 | print *, "restartfi_PEM.nc has been written" |
---|
| 1382 | print *, "The PEM had run for ", year_iter, " years." |
---|
[2794] | 1383 | print *, "LL & RV : So far so good" |
---|
| 1384 | |
---|
[2779] | 1385 | END PROGRAM pem |
---|