| 1 | MODULE ini_soil_mod |
|---|
| 2 | |
|---|
| 3 | |
|---|
| 4 | IMPLICIT NONE |
|---|
| 5 | |
|---|
| 6 | CONTAINS |
|---|
| 7 | |
|---|
| 8 | |
|---|
| 9 | subroutine ini_icetable(timelen,ngrid,nsoil_PEM, & |
|---|
| 10 | therm_i, timestep,tsurf_ave,tsoil_ave,tsurf_inst, tsoil_inst,q_co2,q_h2o,ps,ice_table) |
|---|
| 11 | |
|---|
| 12 | |
|---|
| 13 | |
|---|
| 14 | use vertical_layers_mod, only: ap,bp |
|---|
| 15 | use comsoil_h_PEM, only: fluxgeo,layer_PEM,inertiedat_PEM |
|---|
| 16 | use comsoil_h,only: volcapa, nsoilmx |
|---|
| 17 | |
|---|
| 18 | implicit none |
|---|
| 19 | |
|---|
| 20 | !----------------------------------------------------------------------- |
|---|
| 21 | ! Author: LL |
|---|
| 22 | ! Purpose: Compute soil temperature using an implict 1st order scheme |
|---|
| 23 | ! |
|---|
| 24 | ! Note: depths of layers and mid-layers, soil thermal inertia and |
|---|
| 25 | ! heat capacity are commons in comsoil_PEM.h |
|---|
| 26 | ! A convergence loop is added until equilibrium |
|---|
| 27 | !----------------------------------------------------------------------- |
|---|
| 28 | |
|---|
| 29 | #include "dimensions.h" |
|---|
| 30 | !#include "dimphys.h" |
|---|
| 31 | |
|---|
| 32 | !#include"comsoil.h" |
|---|
| 33 | |
|---|
| 34 | |
|---|
| 35 | !----------------------------------------------------------------------- |
|---|
| 36 | ! arguments |
|---|
| 37 | ! --------- |
|---|
| 38 | ! inputs: |
|---|
| 39 | integer,intent(in) :: timelen ! Time length in for time-series data |
|---|
| 40 | integer,intent(in) :: ngrid ! number of (horizontal) grid-points |
|---|
| 41 | integer,intent(in) :: nsoil_PEM ! number of soil layers in the PEM |
|---|
| 42 | |
|---|
| 43 | |
|---|
| 44 | real,intent(in) :: timestep ! time step |
|---|
| 45 | real,intent(in) :: tsurf_ave(ngrid) ! surface temperature |
|---|
| 46 | |
|---|
| 47 | real,intent(in) :: q_co2(ngrid,timelen) ! MMR tracer co2 [kg/kg] |
|---|
| 48 | real,intent(in) :: q_h2o(ngrid,timelen) ! MMR tracer h2o [kg/kg] |
|---|
| 49 | real,intent(in) :: ps(ngrid,timelen) ! surface pressure [Pa] |
|---|
| 50 | real,intent(in) :: tsurf_inst(ngrid,timelen) ! soil (mid-layer) temperature |
|---|
| 51 | |
|---|
| 52 | |
|---|
| 53 | ! outputs: |
|---|
| 54 | real,intent(inout) :: tsoil_ave(ngrid,nsoil_PEM) ! soil (mid-layer) temperature. |
|---|
| 55 | real,intent(inout) :: tsoil_inst(ngrid,nsoil_PEM,timelen) ! soil (mid-layer) temperature |
|---|
| 56 | real,intent(out) :: ice_table(ngrid) ! ice table [m] |
|---|
| 57 | real,intent(inout) :: therm_i(ngrid,nsoil_PEM) ! thermal inertia |
|---|
| 58 | |
|---|
| 59 | |
|---|
| 60 | |
|---|
| 61 | ! local variables: |
|---|
| 62 | integer ig,isoil,it,k,iref |
|---|
| 63 | REAL :: error_depth = 2. |
|---|
| 64 | REAL :: tsoil_saved(nsoil_PEM) |
|---|
| 65 | integer :: countmax = 20 |
|---|
| 66 | integer :: countloop |
|---|
| 67 | REAL :: tol_error = 0.1 |
|---|
| 68 | REAL :: ice_inertia = 2120. |
|---|
| 69 | REAL :: alph_PEM(nsoil_PEM-1) |
|---|
| 70 | REAL :: beta_PEM(nsoil_PEM-1) |
|---|
| 71 | real :: rhoc(nsoil_PEM) |
|---|
| 72 | real :: volcapa_ice = 1.43e7 |
|---|
| 73 | |
|---|
| 74 | real :: k_soil(nsoil_PEM) |
|---|
| 75 | real :: d1(nsoil_PEM),d2(nsoil_PEM),d3(nsoil_PEM),re(nsoil_PEM) |
|---|
| 76 | real :: Tcol_saved(nsoil_PEM) |
|---|
| 77 | real :: tsoil_prev(nsoil_PEM) |
|---|
| 78 | real :: tsurf_prev |
|---|
| 79 | real :: icedepth_prev |
|---|
| 80 | |
|---|
| 81 | real :: m_h2o = 18.01528E-3 |
|---|
| 82 | real :: m_co2 = 44.01E-3 |
|---|
| 83 | real :: m_noco2 = 33.37E-3 |
|---|
| 84 | real :: A,B,z1,z2 |
|---|
| 85 | real :: alpha = -6143.7 |
|---|
| 86 | real :: beta = 29.9074 |
|---|
| 87 | |
|---|
| 88 | real,allocatable :: mass_mean(:) ! mean mass above the surface |
|---|
| 89 | real,allocatable :: zplev(:) ! pressure above the surface |
|---|
| 90 | real,allocatable :: pvapor(:) ! partial pressure above the surface |
|---|
| 91 | |
|---|
| 92 | real,allocatable :: rhovapor(:) |
|---|
| 93 | real :: rhovapor_avg ! mean vapor_density at the surface yearly averaged |
|---|
| 94 | |
|---|
| 95 | real :: psv_surf |
|---|
| 96 | real,allocatable :: rho_soil(:) ! water vapor in the soil |
|---|
| 97 | real,allocatable :: rho_soil_avg(:) ! water vapor in the soil yearly averaged |
|---|
| 98 | |
|---|
| 99 | real,allocatable :: diff_rho(:) ! difference of vapor content |
|---|
| 100 | |
|---|
| 101 | |
|---|
| 102 | A =(1/m_co2 - 1/m_noco2) |
|---|
| 103 | B=1/m_noco2 |
|---|
| 104 | |
|---|
| 105 | |
|---|
| 106 | ice_table(:) = 1. |
|---|
| 107 | do ig = 1,ngrid |
|---|
| 108 | |
|---|
| 109 | error_depth = 1. |
|---|
| 110 | countloop = 0 |
|---|
| 111 | |
|---|
| 112 | |
|---|
| 113 | |
|---|
| 114 | do while(( error_depth.gt.tol_error).and.(countloop.lt.countmax).and.(ice_table(ig).gt.-1e-20)) |
|---|
| 115 | |
|---|
| 116 | countloop = countloop +1 |
|---|
| 117 | Tcol_saved(:) = tsoil_ave(ig,:) |
|---|
| 118 | |
|---|
| 119 | !2. Compute ice table |
|---|
| 120 | |
|---|
| 121 | ! 2.1 Compute water density at the surface, yearly averaged |
|---|
| 122 | allocate(mass_mean(timelen)) |
|---|
| 123 | ! 1.1 Compute the partial pressure of vapor |
|---|
| 124 | ! a. the molecular mass into the column |
|---|
| 125 | mass_mean(:) = 1/(A*q_co2(ig,:) +B) |
|---|
| 126 | ! b. pressure level |
|---|
| 127 | allocate(zplev(timelen)) |
|---|
| 128 | do it = 1,timelen |
|---|
| 129 | zplev(it) = ap(1) + bp(1)*ps(ig,it) |
|---|
| 130 | enddo |
|---|
| 131 | |
|---|
| 132 | ! c. Vapor pressure |
|---|
| 133 | allocate(pvapor(timelen)) |
|---|
| 134 | pvapor(:) = mass_mean(:)/m_h2o*q_h2o(ig,:)*zplev(:) |
|---|
| 135 | deallocate(zplev) |
|---|
| 136 | deallocate(mass_mean) |
|---|
| 137 | |
|---|
| 138 | |
|---|
| 139 | |
|---|
| 140 | ! d! Check if there is frost at the surface and then compute the density |
|---|
| 141 | ! at the surface |
|---|
| 142 | allocate(rhovapor(timelen)) |
|---|
| 143 | |
|---|
| 144 | do it = 1,timelen |
|---|
| 145 | psv_surf = exp(alpha/tsurf_inst(ig,it) +beta) |
|---|
| 146 | rhovapor(it) = min(psv_surf,pvapor(it))/tsurf_inst(ig,it) |
|---|
| 147 | enddo |
|---|
| 148 | deallocate(pvapor) |
|---|
| 149 | rhovapor_avg = SUM(rhovapor(:),1)/timelen |
|---|
| 150 | deallocate(rhovapor) |
|---|
| 151 | |
|---|
| 152 | ! 2.2 Compute water density at the soil layer, yearly averaged |
|---|
| 153 | |
|---|
| 154 | allocate(rho_soil(timelen)) |
|---|
| 155 | allocate(rho_soil_avg(nsoil_PEM)) |
|---|
| 156 | |
|---|
| 157 | |
|---|
| 158 | |
|---|
| 159 | do isoil = 1,nsoil_PEM |
|---|
| 160 | do it = 1,timelen |
|---|
| 161 | rho_soil(it) = exp(alpha/tsoil_inst(ig,isoil,it) +beta)/tsoil_inst(ig,isoil,it) |
|---|
| 162 | enddo |
|---|
| 163 | rho_soil_avg(isoil) = SUM(rho_soil(:),1)/timelen |
|---|
| 164 | enddo |
|---|
| 165 | deallocate(rho_soil) |
|---|
| 166 | |
|---|
| 167 | |
|---|
| 168 | !2.3 Final: compute ice table |
|---|
| 169 | icedepth_prev = ice_table(ig) |
|---|
| 170 | ice_table(ig) = -1 |
|---|
| 171 | allocate(diff_rho(nsoil_PEM)) |
|---|
| 172 | do isoil = 1,nsoil_PEM |
|---|
| 173 | diff_rho(isoil) = rhovapor_avg - rho_soil_avg(isoil) |
|---|
| 174 | enddo |
|---|
| 175 | deallocate(rho_soil_avg) |
|---|
| 176 | |
|---|
| 177 | |
|---|
| 178 | if(diff_rho(1) > 0) then |
|---|
| 179 | ice_table(ig) = 0. |
|---|
| 180 | else |
|---|
| 181 | do isoil = 1,nsoil_PEM -1 |
|---|
| 182 | if((diff_rho(isoil).lt.0).and.(diff_rho(isoil+1).gt.0.)) then |
|---|
| 183 | z1 = (diff_rho(isoil) - diff_rho(isoil+1))/(layer_PEM(isoil) - layer_PEM(isoil+1)) |
|---|
| 184 | z2 = -layer_PEM(isoil+1)*z1 + diff_rho(isoil+1) |
|---|
| 185 | ice_table(ig) = -z2/z1 |
|---|
| 186 | exit |
|---|
| 187 | endif |
|---|
| 188 | enddo |
|---|
| 189 | endif |
|---|
| 190 | |
|---|
| 191 | |
|---|
| 192 | |
|---|
| 193 | deallocate(diff_rho) |
|---|
| 194 | |
|---|
| 195 | |
|---|
| 196 | !3. Update Soil Thermal Inertia |
|---|
| 197 | |
|---|
| 198 | if (ice_table(ig).gt. 0.) then |
|---|
| 199 | if (ice_table(ig).lt. 1e-10) then |
|---|
| 200 | do isoil = 1,nsoil_PEM |
|---|
| 201 | therm_i(ig,isoil)=ice_inertia |
|---|
| 202 | enddo |
|---|
| 203 | else |
|---|
| 204 | ! 4.1 find the index of the mixed layer |
|---|
| 205 | iref=0 ! initialize iref |
|---|
| 206 | do k=1,nsoil_PEM ! loop on layers |
|---|
| 207 | if (ice_table(ig).ge.layer_PEM(k)) then |
|---|
| 208 | iref=k ! pure regolith layer up to here |
|---|
| 209 | else |
|---|
| 210 | ! correct iref was obtained in previous cycle |
|---|
| 211 | exit |
|---|
| 212 | endif |
|---|
| 213 | |
|---|
| 214 | enddo |
|---|
| 215 | |
|---|
| 216 | |
|---|
| 217 | |
|---|
| 218 | ! 4.2 Build the new ti |
|---|
| 219 | do isoil=1,iref |
|---|
| 220 | therm_i(ig,isoil) =inertiedat_PEM(ig,isoil) |
|---|
| 221 | enddo |
|---|
| 222 | |
|---|
| 223 | |
|---|
| 224 | if (iref.lt.nsoil_PEM) then |
|---|
| 225 | if (iref.ne.0) then |
|---|
| 226 | ! mixed layer |
|---|
| 227 | therm_i(ig,iref+1)=sqrt((layer_PEM(iref+1)-layer_PEM(iref))/ & |
|---|
| 228 | (((ice_table(ig)-layer_PEM(iref))/(inertiedat_PEM(ig,iref)**2))+ & |
|---|
| 229 | ((layer_PEM(iref+1)-ice_table(ig))/(ice_inertia**2)))) |
|---|
| 230 | |
|---|
| 231 | |
|---|
| 232 | |
|---|
| 233 | else ! first layer is already a mixed layer |
|---|
| 234 | ! (ie: take layer(iref=0)=0) |
|---|
| 235 | therm_i(ig,1)=sqrt((layer_PEM(1))/ & |
|---|
| 236 | (((ice_table(ig))/(inertiedat_PEM(ig,1)**2))+ & |
|---|
| 237 | ((layer_PEM(1)-ice_table(ig))/(ice_inertia**2)))) |
|---|
| 238 | endif ! of if (iref.ne.0) |
|---|
| 239 | ! lower layers of pure ice |
|---|
| 240 | do isoil=iref+2,nsoil_PEM |
|---|
| 241 | therm_i(ig,isoil)=ice_inertia |
|---|
| 242 | enddo |
|---|
| 243 | endif ! of if (iref.lt.(nsoilmx)) |
|---|
| 244 | endif ! permanent glaciers |
|---|
| 245 | |
|---|
| 246 | |
|---|
| 247 | |
|---|
| 248 | call soil_pem_1D(nsoil_PEM,.true.,therm_i(ig,:),timestep,tsurf_ave(ig),tsoil_ave(ig,:),alph_PEM,beta_PEM) |
|---|
| 249 | |
|---|
| 250 | call soil_pem_1D(nsoil_PEM,.false.,therm_i(ig,:),timestep,tsurf_ave(ig),tsoil_ave(ig,:),alph_PEM,beta_PEM) |
|---|
| 251 | |
|---|
| 252 | |
|---|
| 253 | do it = 1,timelen |
|---|
| 254 | tsoil_inst(ig,:,it) = tsoil_inst(ig,:,it) - (Tcol_saved(:) - tsoil_ave(ig,:)) |
|---|
| 255 | enddo |
|---|
| 256 | |
|---|
| 257 | |
|---|
| 258 | |
|---|
| 259 | error_depth = abs(icedepth_prev - ice_table(ig)) |
|---|
| 260 | |
|---|
| 261 | endif |
|---|
| 262 | |
|---|
| 263 | |
|---|
| 264 | enddo |
|---|
| 265 | |
|---|
| 266 | error_depth = 1. |
|---|
| 267 | countloop = 0 |
|---|
| 268 | enddo |
|---|
| 269 | |
|---|
| 270 | |
|---|
| 271 | END SUBROUTINE ini_icetable |
|---|
| 272 | subroutine soil_pem_1D(nsoil,firstcall, & |
|---|
| 273 | therm_i, & |
|---|
| 274 | timestep,tsurf,tsoil,alph,beta) |
|---|
| 275 | |
|---|
| 276 | |
|---|
| 277 | use comsoil_h_PEM, only: layer_PEM, mlayer_PEM, & |
|---|
| 278 | mu_PEM,fluxgeo |
|---|
| 279 | use comsoil_h,only: volcapa |
|---|
| 280 | implicit none |
|---|
| 281 | |
|---|
| 282 | !----------------------------------------------------------------------- |
|---|
| 283 | ! Author: LL |
|---|
| 284 | ! Purpose: Compute soil temperature using an implict 1st order scheme |
|---|
| 285 | ! |
|---|
| 286 | ! Note: depths of layers and mid-layers, soil thermal inertia and |
|---|
| 287 | ! heat capacity are commons in comsoil_PEM.h |
|---|
| 288 | ! A convergence loop is added until equilibrium |
|---|
| 289 | !----------------------------------------------------------------------- |
|---|
| 290 | |
|---|
| 291 | #include "dimensions.h" |
|---|
| 292 | !#include "dimphys.h" |
|---|
| 293 | |
|---|
| 294 | !#include"comsoil.h" |
|---|
| 295 | |
|---|
| 296 | |
|---|
| 297 | !----------------------------------------------------------------------- |
|---|
| 298 | ! arguments |
|---|
| 299 | ! --------- |
|---|
| 300 | ! inputs: |
|---|
| 301 | integer,intent(in) :: nsoil ! number of soil layers |
|---|
| 302 | logical,intent(in) :: firstcall ! identifier for initialization call |
|---|
| 303 | real,intent(in) :: therm_i(nsoil) ! thermal inertia |
|---|
| 304 | real,intent(in) :: timestep ! time step |
|---|
| 305 | real,intent(in) :: tsurf ! surface temperature |
|---|
| 306 | |
|---|
| 307 | ! outputs: |
|---|
| 308 | real,intent(inout) :: tsoil(nsoil) ! soil (mid-layer) temperature |
|---|
| 309 | real,intent(inout) :: alph(nsoil-1) |
|---|
| 310 | real,intent(inout) :: beta(nsoil-1) |
|---|
| 311 | |
|---|
| 312 | |
|---|
| 313 | |
|---|
| 314 | |
|---|
| 315 | |
|---|
| 316 | ! local variables: |
|---|
| 317 | integer ik |
|---|
| 318 | real :: thermdiff_PEM(nsoil-1) |
|---|
| 319 | real :: mthermdiff_PEM(0:nsoil-1) |
|---|
| 320 | real :: coefd_PEM(nsoil-1) |
|---|
| 321 | real :: coefq_PEM(0:nsoil-1) |
|---|
| 322 | |
|---|
| 323 | ! 0. Initialisations and preprocessing step |
|---|
| 324 | if (firstcall) then |
|---|
| 325 | |
|---|
| 326 | ! 0.1 Build mthermdiff_PEM(:), the mid-layer thermal diffusivities |
|---|
| 327 | do ik=0,nsoil-1 |
|---|
| 328 | mthermdiff_PEM(ik)=therm_i(ik+1)*therm_i(ik+1)/volcapa |
|---|
| 329 | |
|---|
| 330 | enddo |
|---|
| 331 | |
|---|
| 332 | |
|---|
| 333 | ! 0.2 Build thermdiff(:), the "interlayer" thermal diffusivities |
|---|
| 334 | do ik=1,nsoil-1 |
|---|
| 335 | thermdiff_PEM(ik)=((layer_PEM(ik)-mlayer_PEM(ik-1))*mthermdiff_PEM(ik) & |
|---|
| 336 | +(mlayer_PEM(ik)-layer_PEM(ik))*mthermdiff_PEM(ik-1)) & |
|---|
| 337 | /(mlayer_PEM(ik)-mlayer_PEM(ik-1)) |
|---|
| 338 | |
|---|
| 339 | enddo |
|---|
| 340 | |
|---|
| 341 | ! 0.3 Build coefficients mu_PEM, q_{k+1/2}, d_k, alpha_k and capcal |
|---|
| 342 | ! mu_PEM |
|---|
| 343 | mu_PEM=mlayer_PEM(0)/(mlayer_PEM(1)-mlayer_PEM(0)) |
|---|
| 344 | |
|---|
| 345 | ! q_{1/2} |
|---|
| 346 | coefq_PEM(0)=volcapa*layer_PEM(1)/timestep |
|---|
| 347 | ! q_{k+1/2} |
|---|
| 348 | do ik=1,nsoil-1 |
|---|
| 349 | coefq_PEM(ik)=volcapa*(layer_PEM(ik+1)-layer_PEM(ik)) & |
|---|
| 350 | /timestep |
|---|
| 351 | enddo |
|---|
| 352 | |
|---|
| 353 | ! d_k |
|---|
| 354 | do ik=1,nsoil-1 |
|---|
| 355 | coefd_PEM(ik)=thermdiff_PEM(ik)/(mlayer_PEM(ik)-mlayer_PEM(ik-1)) |
|---|
| 356 | enddo |
|---|
| 357 | |
|---|
| 358 | ! alph_PEM_{N-1} |
|---|
| 359 | alph(nsoil-1)=coefd_PEM(nsoil-1)/ & |
|---|
| 360 | (coefq_PEM(nsoil-1)+coefd_PEM(nsoil-1)) |
|---|
| 361 | ! alph_PEM_k |
|---|
| 362 | do ik=nsoil-2,1,-1 |
|---|
| 363 | alph(ik)=coefd_PEM(ik)/(coefq_PEM(ik)+coefd_PEM(ik+1)* & |
|---|
| 364 | (1.-alph(ik+1))+coefd_PEM(ik)) |
|---|
| 365 | enddo |
|---|
| 366 | |
|---|
| 367 | |
|---|
| 368 | |
|---|
| 369 | |
|---|
| 370 | |
|---|
| 371 | endif ! of if (firstcall) |
|---|
| 372 | |
|---|
| 373 | |
|---|
| 374 | |
|---|
| 375 | IF (.not.firstcall) THEN |
|---|
| 376 | ! 2. Compute soil temperatures |
|---|
| 377 | ! First layer: |
|---|
| 378 | tsoil(1)=(tsurf+mu_PEM*beta(1)* & |
|---|
| 379 | thermdiff_PEM(1)/mthermdiff_PEM(0))/ & |
|---|
| 380 | (1.+mu_PEM*(1.0-alph(1))*& |
|---|
| 381 | thermdiff_PEM(1)/mthermdiff_PEM(0)) |
|---|
| 382 | |
|---|
| 383 | ! Other layers: |
|---|
| 384 | do ik=1,nsoil-1 |
|---|
| 385 | tsoil(ik+1)=alph(ik)*tsoil(ik)+beta(ik) |
|---|
| 386 | enddo |
|---|
| 387 | |
|---|
| 388 | ENDIF |
|---|
| 389 | |
|---|
| 390 | |
|---|
| 391 | |
|---|
| 392 | |
|---|
| 393 | ! 2. Compute beta_PEM coefficients (preprocessing for next time step) |
|---|
| 394 | ! Bottom layer, beta_PEM_{N-1} |
|---|
| 395 | |
|---|
| 396 | beta(nsoil-1)=coefq_PEM(nsoil-1)*tsoil(nsoil) & |
|---|
| 397 | /(coefq_PEM(nsoil-1)+coefd_PEM(nsoil-1)) & |
|---|
| 398 | + fluxgeo/(coefq_PEM(nsoil-1)+coefd_PEM(nsoil-1)) |
|---|
| 399 | ! Other layers |
|---|
| 400 | do ik=nsoil-2,1,-1 |
|---|
| 401 | beta(ik)=(coefq_PEM(ik)*tsoil(ik+1)+ & |
|---|
| 402 | coefd_PEM(ik+1)*beta(ik+1))/ & |
|---|
| 403 | (coefq_PEM(ik)+coefd_PEM(ik+1)*(1.0-alph(ik+1)) & |
|---|
| 404 | +coefd_PEM(ik)) |
|---|
| 405 | enddo |
|---|
| 406 | |
|---|
| 407 | |
|---|
| 408 | |
|---|
| 409 | end |
|---|
| 410 | |
|---|
| 411 | |
|---|
| 412 | |
|---|
| 413 | |
|---|
| 414 | END MODULE ini_soil_mod |
|---|
| 415 | |
|---|
| 416 | |
|---|
| 417 | |
|---|