| 1 | module ice_table_mod |
|---|
| 2 | |
|---|
| 3 | implicit none |
|---|
| 4 | |
|---|
| 5 | contains |
|---|
| 6 | |
|---|
| 7 | |
|---|
| 8 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 9 | !!! |
|---|
| 10 | !!! Purpose: Compute the ice table in two ways: dynamic and at equilibrium |
|---|
| 11 | !!! Author: LL, 02/2023 |
|---|
| 12 | !!! |
|---|
| 13 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 14 | |
|---|
| 15 | |
|---|
| 16 | |
|---|
| 17 | SUBROUTINE computeice_table_equilibrium(ngrid,nslope,nsoil_PEM,watercaptag,rhowatersurf_ave,rhowatersoil_ave,ice_table) |
|---|
| 18 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 19 | !!! |
|---|
| 20 | !!! Purpose: Compute the ice table depth knowing the yearly average water |
|---|
| 21 | !!! density at the surface and at depth. |
|---|
| 22 | !!! Computations are made following the methods in Schorgofer et al., 2005 |
|---|
| 23 | !!! This subroutine only gives the ice table at equilibrium and does not consider exchange with the atmosphere |
|---|
| 24 | !!! |
|---|
| 25 | !!! Author: LL |
|---|
| 26 | !!! |
|---|
| 27 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 28 | |
|---|
| 29 | #ifndef CPP_STD |
|---|
| 30 | USE comsoil_h_PEM, only: mlayer_PEM ! Depth of the vertical grid |
|---|
| 31 | implicit none |
|---|
| 32 | |
|---|
| 33 | integer,intent(in) :: ngrid,nslope,nsoil_PEM ! Size of the physical grid, number of subslope, number of soil layer in the PEM |
|---|
| 34 | logical,intent(in) :: watercaptag(ngrid) ! Boolean to check the presence of a perennial glacier |
|---|
| 35 | real,intent(in) :: rhowatersurf_ave(ngrid,nslope) ! Water density at the surface, yearly averaged [kg/m^3] |
|---|
| 36 | real,intent(in) :: rhowatersoil_ave(ngrid,nsoil_PEM,nslope) ! Water density at depth, computed from clapeyron law's (Murchy and Koop 2005), yearly averaged [kg/m^3] |
|---|
| 37 | real,intent(inout) :: ice_table(ngrid,nslope) ! ice table depth [m] |
|---|
| 38 | real :: z1,z2 ! intermediate variables used when doing a linear interpolation between two depths to find the root |
|---|
| 39 | integer ig, islope,isoil ! loop variables |
|---|
| 40 | real :: diff_rho(nsoil_PEM) ! difference of water vapor density between the surface and at depth [kg/m^3] |
|---|
| 41 | |
|---|
| 42 | |
|---|
| 43 | do ig = 1,ngrid |
|---|
| 44 | if(watercaptag(ig)) then |
|---|
| 45 | ice_table(ig,:) = 0. |
|---|
| 46 | else |
|---|
| 47 | do islope = 1,nslope |
|---|
| 48 | ice_table(ig,islope) = -1. |
|---|
| 49 | |
|---|
| 50 | do isoil = 1,nsoil_PEM |
|---|
| 51 | diff_rho(isoil) = rhowatersurf_ave(ig,islope) - rhowatersoil_ave(ig,isoil,islope) |
|---|
| 52 | |
|---|
| 53 | enddo |
|---|
| 54 | if(diff_rho(1) > 0) then ! ice is at the surface |
|---|
| 55 | ice_table(ig,islope) = 0. |
|---|
| 56 | else |
|---|
| 57 | do isoil = 1,nsoil_PEM -1 ! general case, we find the ice table depth by doing a linear approximation between the two depth, and then solve the first degree equation to find the root |
|---|
| 58 | if((diff_rho(isoil).lt.0).and.(diff_rho(isoil+1).gt.0.)) then |
|---|
| 59 | call findroot(diff_rho(isoil),diff_rho(isoil+1),mlayer_PEM(isoil),mlayer_PEM(isoil+1),ice_table(ig,islope)) |
|---|
| 60 | exit |
|---|
| 61 | endif !diff_rho(z) <0 & diff_rho(z+1) > 0 |
|---|
| 62 | enddo |
|---|
| 63 | endif ! diff_rho(1) > 0 |
|---|
| 64 | enddo |
|---|
| 65 | endif ! watercaptag |
|---|
| 66 | enddo |
|---|
| 67 | !======================================================================= |
|---|
| 68 | RETURN |
|---|
| 69 | #endif |
|---|
| 70 | END |
|---|
| 71 | |
|---|
| 72 | SUBROUTINE find_layering_icetable(porefill,psat_soil,psat_surf,pwat_surf,psat_bottom,B,index_IS,depth_filling,index_filling,index_geothermal,depth_geothermal,dz_etadz_rho) |
|---|
| 73 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 74 | !!! |
|---|
| 75 | !!! Purpose: Compute layering between dry soil, pore filling ice, and ice sheet based on Schorgofer, Icarus (2010). Adapted from NS MSIM |
|---|
| 76 | !!! |
|---|
| 77 | !!! Author: LL |
|---|
| 78 | !!! |
|---|
| 79 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 80 | use comsoil_h_PEM,only: nsoilmx_PEM,mlayer_PEM |
|---|
| 81 | implicit none |
|---|
| 82 | ! inputs |
|---|
| 83 | ! ------ |
|---|
| 84 | |
|---|
| 85 | real,intent(in) :: porefill(nsoilmx_PEM) ! Fraction of pore space filled with ice [Unitless] 0 <= f <= 1 for pore ice |
|---|
| 86 | real,intent(in) :: psat_soil(nsoilmx_PEM) ! Soil water pressure at saturation, yearly averaged [Pa] |
|---|
| 87 | real,intent(in) :: psat_surf ! surface water pressure at saturation, yearly averaged [Pa] |
|---|
| 88 | real,intent(in) :: pwat_surf ! Water vapor pressure at the surface, not necesseraly at saturation, yearly averaged [Pa] |
|---|
| 89 | real,intent(in) :: psat_bottom ! Boundary conditions for soil vapor pressure [Pa] |
|---|
| 90 | real,intent(in) :: B ! constant (Eq. 8 from Schorgofer, Icarus (2010).) |
|---|
| 91 | integer, intent(in) :: index_IS ! index of the soil layer where the ice sheet begins [1] |
|---|
| 92 | real, intent(inout) :: depth_filling ! depth where pore filling begins [m] |
|---|
| 93 | |
|---|
| 94 | ! outputs |
|---|
| 95 | ! ------- |
|---|
| 96 | integer,intent(out) :: index_filling ! index where the pore filling begins [1] |
|---|
| 97 | integer, intent(out) :: index_geothermal ! index where the ice table stops [1] |
|---|
| 98 | real, intent(out) :: depth_geothermal ! depth where the ice table stops [m] |
|---|
| 99 | real, intent(out) :: dz_etadz_rho(nsoilmx_PEM) ! \partial z(eta \partial z rho), eta is the constriction, used later for pore filling increase |
|---|
| 100 | |
|---|
| 101 | ! local |
|---|
| 102 | |
|---|
| 103 | real :: eta(nsoilmx_PEM) ! constriction |
|---|
| 104 | integer :: ilay ! index for loop |
|---|
| 105 | real :: old_depth_filling ! depth_filling saved |
|---|
| 106 | real :: dz_psat(nsoilmx_PEM) ! first derivative of the vapor pressure at saturationn |
|---|
| 107 | integer :: index_tmp ! for loop |
|---|
| 108 | real :: Jdry ! flux trought the dry layer |
|---|
| 109 | real :: Jsat ! flux trought the ice layer |
|---|
| 110 | real :: Jdry_prevlay,Jsat_prevlay ! same but for the previous ice layer |
|---|
| 111 | integer :: index_firstice ! first index where ice appears (i.e., f > 0) |
|---|
| 112 | real :: dz_eta(nsoilmx_PEM) ! \partial z \eta |
|---|
| 113 | real :: dz_eta_low ! same but evaluated at the interface for ice |
|---|
| 114 | real :: dzz_psat(nsoilmx_PEM) ! \partial \partial psat |
|---|
| 115 | real :: massfillabove,massfillafter ! h2O mass above and after index_geothermal |
|---|
| 116 | |
|---|
| 117 | ! constant |
|---|
| 118 | real :: pvap2rho = 18.e-3/8.314 |
|---|
| 119 | ! |
|---|
| 120 | |
|---|
| 121 | |
|---|
| 122 | |
|---|
| 123 | |
|---|
| 124 | |
|---|
| 125 | ! 0. Compute constriction over the layer |
|---|
| 126 | ! Within the ice sheet, constriction is set to 0. Elsewhere, constriction = (1-porefilling)**2 |
|---|
| 127 | if (index_IS.lt.0) then |
|---|
| 128 | index_tmp = nsoilmx_PEM |
|---|
| 129 | do ilay = 1,nsoilmx_PEM |
|---|
| 130 | call constriction(porefill(ilay),eta(ilay)) |
|---|
| 131 | enddo |
|---|
| 132 | else |
|---|
| 133 | index_tmp = index_IS |
|---|
| 134 | do ilay = 1,index_IS-1 |
|---|
| 135 | call constriction(porefill(ilay),eta(ilay)) |
|---|
| 136 | enddo |
|---|
| 137 | do ilay = index_IS,nsoilmx_PEM |
|---|
| 138 | eta(ilay) = 0. |
|---|
| 139 | enddo |
|---|
| 140 | endif |
|---|
| 141 | |
|---|
| 142 | ! 1. Depth at which pore filling occurs. We solve Eq. 9 from Schorgofer, Icarus (2010) |
|---|
| 143 | |
|---|
| 144 | old_depth_filling = depth_filling |
|---|
| 145 | |
|---|
| 146 | call deriv1(mlayer_PEM,nsoilmx_PEM,psat_soil,psat_surf,psat_bottom,dz_psat) |
|---|
| 147 | |
|---|
| 148 | do ilay = 1,index_tmp |
|---|
| 149 | Jdry = (psat_soil(ilay) - pwat_surf)/mlayer_PEM(ilay) ! left member of Eq. 9 from Schorgofer, Icarus (2010) |
|---|
| 150 | Jsat = eta(ilay)*dz_psat(ilay) !right member of Eq. 9 from Schorgofer, Icarus (2010) |
|---|
| 151 | if((Jdry - Jsat).le.0) then |
|---|
| 152 | index_filling = ilay |
|---|
| 153 | exit |
|---|
| 154 | endif |
|---|
| 155 | enddo |
|---|
| 156 | |
|---|
| 157 | if(index_filling.eq.1) depth_filling = mlayer_PEM(1) |
|---|
| 158 | |
|---|
| 159 | if(index_filling.gt.1) then |
|---|
| 160 | Jdry_prevlay = (psat_soil(index_filling-1) - pwat_surf)/mlayer_PEM(index_filling-1) |
|---|
| 161 | Jsat_prevlay = eta(index_filling-1)*dz_psat(index_filling-1) |
|---|
| 162 | call findroot(Jdry-Jsat,Jdry_prevlay-Jsat_prevlay,mlayer_PEM(index_filling),mlayer_PEM(index_filling-1),depth_filling) |
|---|
| 163 | endif |
|---|
| 164 | |
|---|
| 165 | |
|---|
| 166 | ! 2. Compute d_z (eta* d_z(rho)) (last term in Eq. 13 of Schorgofer, Icarus (2010)) |
|---|
| 167 | |
|---|
| 168 | |
|---|
| 169 | ! 2.0 preliminary: depth to shallowest ice (discontinuity at interface) |
|---|
| 170 | |
|---|
| 171 | index_firstice = -1 |
|---|
| 172 | do ilay = 1,nsoilmx_PEM |
|---|
| 173 | if (porefill(ilay).le.0.) then |
|---|
| 174 | index_firstice = ilay ! first point with ice |
|---|
| 175 | exit |
|---|
| 176 | endif |
|---|
| 177 | enddo |
|---|
| 178 | |
|---|
| 179 | ! 2.1: now we can computeCompute d_z (eta* d_z(rho)) |
|---|
| 180 | |
|---|
| 181 | call deriv1(mlayer_PEM,nsoilmx_PEM,eta,1.,eta(nsoilmx_PEM-1),dz_eta) |
|---|
| 182 | |
|---|
| 183 | if ((index_firstice.gt.0).and.(index_firstice.lt.nsoilmx_PEM-2)) then |
|---|
| 184 | call deriv1_onesided(index_firstice,mlayer_PEM,nsoilmx_PEM,eta,dz_eta(index_firstice)) |
|---|
| 185 | endif |
|---|
| 186 | |
|---|
| 187 | call deriv2_simple(mlayer_PEM,nsoilmx_PEM,psat_soil,psat_surf,psat_bottom,dzz_psat) |
|---|
| 188 | dz_etadz_rho(:) = pvap2rho*(dz_eta(:)*dz_psat(:) + eta(:)*dzz_psat(:)) |
|---|
| 189 | |
|---|
| 190 | ! 3. Ice table boundary due to geothermal heating |
|---|
| 191 | |
|---|
| 192 | if(index_IS.gt.0) index_geothermal = -1 |
|---|
| 193 | if(index_geothermal.lt.0) depth_geothermal = -1. |
|---|
| 194 | if((index_geothermal.gt.0).and.(index_IS.lt.0)) then ! Eq. 21 from Schorfoger, Icarus (2010) |
|---|
| 195 | index_geothermal = -1 |
|---|
| 196 | do ilay=2,nsoilmx_PEM |
|---|
| 197 | if (dz_psat(ilay).gt.0.) then ! first point with reversed flux |
|---|
| 198 | index_geothermal=ilay |
|---|
| 199 | call findroot(dz_psat(ilay-1),dz_psat(ilay),mlayer_PEM(ilay-1),mlayer_PEM(ilay),depth_geothermal) |
|---|
| 200 | exit |
|---|
| 201 | endif |
|---|
| 202 | enddo |
|---|
| 203 | else |
|---|
| 204 | index_geothermal = -1 |
|---|
| 205 | endif |
|---|
| 206 | if ((index_geothermal.gt.0).and.(index_IS.lt.0)) then ! Eq. 24 from Schorgofer, Icarus (2010) |
|---|
| 207 | call colint(porefill(:)/eta(:),mlayer_PEM,nsoilmx_PEM,index_geothermal-1,nsoilmx_PEM,massfillabove) |
|---|
| 208 | index_tmp = -1 |
|---|
| 209 | do ilay=index_geothermal,nsoilmx_PEM |
|---|
| 210 | if (minval(eta(ilay:nsoilmx_PEM)).le.0.) cycle ! eta=0 means completely full |
|---|
| 211 | call colint(porefill(:)/eta(:),mlayer_PEM,nsoilmx_PEM,ilay,nsoilmx_PEM,massfillafter) |
|---|
| 212 | if (massfillafter<dz_psat(ilay)*pvap2rho*B) then ! usually executes on i=typeG |
|---|
| 213 | if (ilay>index_geothermal) then |
|---|
| 214 | ! write(34,*) '# adjustment to geotherm depth by',ilay-index_geothermal |
|---|
| 215 | call findroot(dz_psat(ilay-1)*pvap2rho*B-massfillabove, & |
|---|
| 216 | dz_psat(ilay)*pvap2rho*B-massfillafter,mlayer_PEM(ilay-1),mlayer_PEM(ilay),depth_geothermal) |
|---|
| 217 | ! if (depth_geothermal.gt.mlayer_PEM(ilay) .or. depth_geothermal.lt.<mlayer_PEM(ilay-1)) write(34,*) |
|---|
| 218 | ! '# WARNING: zdepthG interpolation failed',ilay,mlayer_PEM(ilay-1),depth_geothermal,mlayer_PEM(ilay) |
|---|
| 219 | index_tmp=ilay |
|---|
| 220 | endif |
|---|
| 221 | ! otherwise leave depth_geothermal unchanged |
|---|
| 222 | exit |
|---|
| 223 | endif |
|---|
| 224 | massfillabove = massfillafter |
|---|
| 225 | enddo |
|---|
| 226 | if (index_tmp.gt.0) index_geothermal = index_tmp |
|---|
| 227 | end if |
|---|
| 228 | return |
|---|
| 229 | end subroutine |
|---|
| 230 | |
|---|
| 231 | |
|---|
| 232 | |
|---|
| 233 | |
|---|
| 234 | |
|---|
| 235 | SUBROUTINE findroot(y1,y2,z1,z2,zr) |
|---|
| 236 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 237 | !!! |
|---|
| 238 | !!! Purpose: Compute the root zr, between two values y1 and y2 at depth z1,z2 |
|---|
| 239 | !!! |
|---|
| 240 | !!! Author: LL |
|---|
| 241 | !!! |
|---|
| 242 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 243 | |
|---|
| 244 | implicit none |
|---|
| 245 | real,intent(in) :: y1,y2 ! difference between surface water density and at depth [kg/m^3] |
|---|
| 246 | real,intent(in) :: z1,z2 ! depth [m] |
|---|
| 247 | real,intent(out) :: zr ! depth at which we have zero |
|---|
| 248 | zr = (y1*z2 - y2*z1)/(y1-y2) |
|---|
| 249 | RETURN |
|---|
| 250 | end |
|---|
| 251 | |
|---|
| 252 | SUBROUTINE constriction(porefill,eta) |
|---|
| 253 | |
|---|
| 254 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 255 | !!! |
|---|
| 256 | !!! Purpose: Compute the constriction of vapor flux by pore ice |
|---|
| 257 | !!! |
|---|
| 258 | !!! Author: LL |
|---|
| 259 | !!! |
|---|
| 260 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 261 | implicit none |
|---|
| 262 | real,intent(in) :: porefill ! pore filling fraction |
|---|
| 263 | real,intent(out) :: eta ! constriction |
|---|
| 264 | |
|---|
| 265 | !!! |
|---|
| 266 | |
|---|
| 267 | |
|---|
| 268 | if (porefill.le.0.) eta = 1. |
|---|
| 269 | if ((porefill.gt.0.) .and.(porefill.lt.1.)) then |
|---|
| 270 | eta = (1-porefill)**2 ! Hudson et al., JGR, 2009 |
|---|
| 271 | endif |
|---|
| 272 | if (porefill.le.1.) eta = 0. |
|---|
| 273 | return |
|---|
| 274 | end |
|---|
| 275 | |
|---|
| 276 | |
|---|
| 277 | |
|---|
| 278 | subroutine deriv1(z,nz,y,y0,ybot,dzY) |
|---|
| 279 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 280 | !!! |
|---|
| 281 | !!! Purpose: Compute the first derivative of a function y(z) on an irregular grid |
|---|
| 282 | !!! |
|---|
| 283 | !!! Author: From N.S (N.S, Icarus 2010), impletented here by LL |
|---|
| 284 | !!! |
|---|
| 285 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 286 | implicit none |
|---|
| 287 | |
|---|
| 288 | ! first derivative of a function y(z) on irregular grid |
|---|
| 289 | ! upper boundary conditions: y(0)=y0 |
|---|
| 290 | ! lower boundary condition.: yp = ybottom |
|---|
| 291 | integer, intent(IN) :: nz ! number of layer |
|---|
| 292 | real, intent(IN) :: z(nz) ! depth layer |
|---|
| 293 | real, intent(IN) :: y(nz) ! function which needs to be derived |
|---|
| 294 | real, intent(IN) :: y0,ybot ! boundary conditions |
|---|
| 295 | real, intent(OUT) :: dzY(nz) ! derivative of y w.r.t depth |
|---|
| 296 | ! local |
|---|
| 297 | integer :: j |
|---|
| 298 | real :: hm,hp,c1,c2,c3 |
|---|
| 299 | |
|---|
| 300 | hp = z(2)-z(1) |
|---|
| 301 | c1 = z(1)/(hp*z(2)) |
|---|
| 302 | c2 = 1/z(1) - 1/(z(2)-z(1)) |
|---|
| 303 | c3 = -hp/(z(1)*z(2)) |
|---|
| 304 | dzY(1) = c1*y(2) + c2*y(1) + c3*y0 |
|---|
| 305 | do j=2,nz-1 |
|---|
| 306 | hp = z(j+1)-z(j) |
|---|
| 307 | hm = z(j)-z(j-1) |
|---|
| 308 | c1 = +hm/(hp*(z(j+1)-z(j-1))) |
|---|
| 309 | c2 = 1/hm - 1/hp |
|---|
| 310 | c3 = -hp/(hm*(z(j+1)-z(j-1))) |
|---|
| 311 | dzY(j) = c1*y(j+1) + c2*y(j) + c3*y(j-1) |
|---|
| 312 | enddo |
|---|
| 313 | dzY(nz) = (ybot - y(nz-1))/(2.*(z(nz)-z(nz-1))) |
|---|
| 314 | return |
|---|
| 315 | end subroutine deriv1 |
|---|
| 316 | |
|---|
| 317 | |
|---|
| 318 | |
|---|
| 319 | subroutine deriv2_simple(z,nz,y,y0,yNp1,yp2) |
|---|
| 320 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 321 | !!! |
|---|
| 322 | !!! Purpose: Compute the second derivative of a function y(z) on an irregular grid |
|---|
| 323 | !!! |
|---|
| 324 | !!! Author: N.S (raw copy/paste from MSIM) |
|---|
| 325 | !!! |
|---|
| 326 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 327 | |
|---|
| 328 | ! second derivative y_zz on irregular grid |
|---|
| 329 | ! boundary conditions: y(0)=y0, y(nz+1)=yNp1 |
|---|
| 330 | implicit none |
|---|
| 331 | integer, intent(IN) :: nz |
|---|
| 332 | real, intent(IN) :: z(nz),y(nz),y0,yNp1 |
|---|
| 333 | real, intent(OUT) :: yp2(nz) |
|---|
| 334 | integer j |
|---|
| 335 | real hm,hp,c1,c2,c3 |
|---|
| 336 | |
|---|
| 337 | c1 = +2./((z(2)-z(1))*z(2)) |
|---|
| 338 | c2 = -2./((z(2)-z(1))*z(1)) |
|---|
| 339 | c3 = +2./(z(1)*z(2)) |
|---|
| 340 | yp2(1) = c1*y(2) + c2*y(1) + c3*y0 |
|---|
| 341 | |
|---|
| 342 | do j=2,nz-1 |
|---|
| 343 | hp = z(j+1)-z(j) |
|---|
| 344 | hm = z(j)-z(j-1) |
|---|
| 345 | c1 = +2./(hp*(z(j+1)-z(j-1))) |
|---|
| 346 | c2 = -2./(hp*hm) |
|---|
| 347 | c3 = +2./(hm*(z(j+1)-z(j-1))) |
|---|
| 348 | yp2(j) = c1*y(j+1) + c2*y(j) + c3*y(j-1) |
|---|
| 349 | enddo |
|---|
| 350 | yp2(nz) = (yNp1 - 2*y(nz) + y(nz-1))/(z(nz)-z(nz-1))**2 |
|---|
| 351 | return |
|---|
| 352 | end subroutine deriv2_simple |
|---|
| 353 | |
|---|
| 354 | |
|---|
| 355 | |
|---|
| 356 | subroutine deriv1_onesided(j,z,nz,y,dy_zj) |
|---|
| 357 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 358 | !!! |
|---|
| 359 | !!! Purpose: First derivative of function y(z) at z(j) one-sided derivative on irregular grid |
|---|
| 360 | !!! |
|---|
| 361 | !!! Author: N.S (raw copy/paste from MSIM) |
|---|
| 362 | !!! |
|---|
| 363 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 364 | |
|---|
| 365 | implicit none |
|---|
| 366 | integer, intent(IN) :: nz,j |
|---|
| 367 | real, intent(IN) :: z(nz),y(nz) |
|---|
| 368 | real, intent(out) :: dy_zj |
|---|
| 369 | real h1,h2,c1,c2,c3 |
|---|
| 370 | if (j<1 .or. j>nz-2) then |
|---|
| 371 | dy_zj = -1. |
|---|
| 372 | else |
|---|
| 373 | h1 = z(j+1)-z(j) |
|---|
| 374 | h2 = z(j+2)-z(j+1) |
|---|
| 375 | c1 = -(2*h1+h2)/(h1*(h1+h2)) |
|---|
| 376 | c2 = (h1+h2)/(h1*h2) |
|---|
| 377 | c3 = -h1/(h2*(h1+h2)) |
|---|
| 378 | dy_zj = c1*y(j) + c2*y(j+1) + c3*y(j+2) |
|---|
| 379 | endif |
|---|
| 380 | return |
|---|
| 381 | end subroutine deriv1_onesided |
|---|
| 382 | |
|---|
| 383 | |
|---|
| 384 | subroutine colint(y,z,nz,i1,i2,integral) |
|---|
| 385 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 386 | !!! |
|---|
| 387 | !!! Purpose: Column integrates y on irregular grid |
|---|
| 388 | !!! |
|---|
| 389 | !!! Author: N.S (raw copy/paste from MSIM) |
|---|
| 390 | !!! |
|---|
| 391 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 392 | |
|---|
| 393 | implicit none |
|---|
| 394 | integer, intent(IN) :: nz, i1, i2 |
|---|
| 395 | real, intent(IN) :: y(nz), z(nz) |
|---|
| 396 | real,intent(out) :: integral |
|---|
| 397 | integer i |
|---|
| 398 | real dz(nz) |
|---|
| 399 | |
|---|
| 400 | dz(1) = (z(2)-0.)/2 |
|---|
| 401 | do i=2,nz-1 |
|---|
| 402 | dz(i) = (z(i+1)-z(i-1))/2. |
|---|
| 403 | enddo |
|---|
| 404 | dz(nz) = z(nz)-z(nz-1) |
|---|
| 405 | integral = sum(y(i1:i2)*dz(i1:i2)) |
|---|
| 406 | end subroutine colint |
|---|
| 407 | |
|---|
| 408 | |
|---|
| 409 | |
|---|
| 410 | |
|---|
| 411 | |
|---|
| 412 | |
|---|
| 413 | end module |
|---|