1 | module ice_table_mod |
---|
2 | |
---|
3 | implicit none |
---|
4 | |
---|
5 | contains |
---|
6 | |
---|
7 | |
---|
8 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
9 | !!! |
---|
10 | !!! Purpose: Compute the ice table in two ways: dynamic and at equilibrium |
---|
11 | !!! Author: LL, 02/2023 |
---|
12 | !!! |
---|
13 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
14 | |
---|
15 | |
---|
16 | |
---|
17 | SUBROUTINE computeice_table_equilibrium(ngrid,nslope,nsoil_PEM,watercaptag,rhowatersurf_ave,rhowatersoil_ave,ice_table) |
---|
18 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
19 | !!! |
---|
20 | !!! Purpose: Compute the ice table depth knowing the yearly average water |
---|
21 | !!! density at the surface and at depth. |
---|
22 | !!! Computations are made following the methods in Schorgofer et al., 2005 |
---|
23 | !!! This subroutine only gives the ice table at equilibrium and does not consider exchange with the atmosphere |
---|
24 | !!! |
---|
25 | !!! Author: LL |
---|
26 | !!! |
---|
27 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
28 | |
---|
29 | #ifndef CPP_STD |
---|
30 | USE comsoil_h_PEM, only: mlayer_PEM ! Depth of the vertical grid |
---|
31 | implicit none |
---|
32 | |
---|
33 | integer,intent(in) :: ngrid,nslope,nsoil_PEM ! Size of the physical grid, number of subslope, number of soil layer in the PEM |
---|
34 | logical,intent(in) :: watercaptag(ngrid) ! Boolean to check the presence of a perennial glacier |
---|
35 | real,intent(in) :: rhowatersurf_ave(ngrid,nslope) ! Water density at the surface, yearly averaged [kg/m^3] |
---|
36 | real,intent(in) :: rhowatersoil_ave(ngrid,nsoil_PEM,nslope) ! Water density at depth, computed from clapeyron law's (Murchy and Koop 2005), yearly averaged [kg/m^3] |
---|
37 | real,intent(inout) :: ice_table(ngrid,nslope) ! ice table depth [m] |
---|
38 | real :: z1,z2 ! intermediate variables used when doing a linear interpolation between two depths to find the root |
---|
39 | integer ig, islope,isoil ! loop variables |
---|
40 | real :: diff_rho(nsoil_PEM) ! difference of water vapor density between the surface and at depth [kg/m^3] |
---|
41 | |
---|
42 | |
---|
43 | do ig = 1,ngrid |
---|
44 | if(watercaptag(ig)) then |
---|
45 | ice_table(ig,:) = 0. |
---|
46 | else |
---|
47 | do islope = 1,nslope |
---|
48 | ice_table(ig,islope) = -1. |
---|
49 | |
---|
50 | do isoil = 1,nsoil_PEM |
---|
51 | diff_rho(isoil) = rhowatersurf_ave(ig,islope) - rhowatersoil_ave(ig,isoil,islope) |
---|
52 | |
---|
53 | enddo |
---|
54 | if(diff_rho(1) > 0) then ! ice is at the surface |
---|
55 | ice_table(ig,islope) = 0. |
---|
56 | else |
---|
57 | do isoil = 1,nsoil_PEM -1 ! general case, we find the ice table depth by doing a linear approximation between the two depth, and then solve the first degree equation to find the root |
---|
58 | if((diff_rho(isoil).lt.0).and.(diff_rho(isoil+1).gt.0.)) then |
---|
59 | call findroot(diff_rho(isoil),diff_rho(isoil+1),mlayer_PEM(isoil),mlayer_PEM(isoil+1),ice_table(ig,islope)) |
---|
60 | exit |
---|
61 | endif !diff_rho(z) <0 & diff_rho(z+1) > 0 |
---|
62 | enddo |
---|
63 | endif ! diff_rho(1) > 0 |
---|
64 | enddo |
---|
65 | endif ! watercaptag |
---|
66 | enddo |
---|
67 | !======================================================================= |
---|
68 | RETURN |
---|
69 | #endif |
---|
70 | END |
---|
71 | |
---|
72 | SUBROUTINE find_layering_icetable(porefill,psat_soil,psat_surf,pwat_surf,psat_bottom,B,index_IS,depth_filling,index_filling,index_geothermal,depth_geothermal,dz_etadz_rho) |
---|
73 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
74 | !!! |
---|
75 | !!! Purpose: Compute layering between dry soil, pore filling ice, and ice sheet based on Schorgofer, Icarus (2010). Adapted from NS MSIM |
---|
76 | !!! |
---|
77 | !!! Author: LL |
---|
78 | !!! |
---|
79 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
80 | use comsoil_h_PEM,only: nsoilmx_PEM,mlayer_PEM |
---|
81 | implicit none |
---|
82 | ! inputs |
---|
83 | ! ------ |
---|
84 | |
---|
85 | real,intent(in) :: porefill(nsoilmx_PEM) ! Fraction of pore space filled with ice [Unitless] 0 <= f <= 1 for pore ice |
---|
86 | real,intent(in) :: psat_soil(nsoilmx_PEM) ! Soil water pressure at saturation, yearly averaged [Pa] |
---|
87 | real,intent(in) :: psat_surf ! surface water pressure at saturation, yearly averaged [Pa] |
---|
88 | real,intent(in) :: pwat_surf ! Water vapor pressure at the surface, not necesseraly at saturation, yearly averaged [Pa] |
---|
89 | real,intent(in) :: psat_bottom ! Boundary conditions for soil vapor pressure [Pa] |
---|
90 | real,intent(in) :: B ! constant (Eq. 8 from Schorgofer, Icarus (2010).) |
---|
91 | integer, intent(in) :: index_IS ! index of the soil layer where the ice sheet begins [1] |
---|
92 | real, intent(inout) :: depth_filling ! depth where pore filling begins [m] |
---|
93 | |
---|
94 | ! outputs |
---|
95 | ! ------- |
---|
96 | integer,intent(out) :: index_filling ! index where the pore filling begins [1] |
---|
97 | integer, intent(out) :: index_geothermal ! index where the ice table stops [1] |
---|
98 | real, intent(out) :: depth_geothermal ! depth where the ice table stops [m] |
---|
99 | real, intent(out) :: dz_etadz_rho(nsoilmx_PEM) ! \partial z(eta \partial z rho), eta is the constriction, used later for pore filling increase |
---|
100 | |
---|
101 | ! local |
---|
102 | |
---|
103 | real :: eta(nsoilmx_PEM) ! constriction |
---|
104 | integer :: ilay ! index for loop |
---|
105 | real :: old_depth_filling ! depth_filling saved |
---|
106 | real :: dz_psat(nsoilmx_PEM) ! first derivative of the vapor pressure at saturationn |
---|
107 | integer :: index_tmp ! for loop |
---|
108 | real :: Jdry ! flux trought the dry layer |
---|
109 | real :: Jsat ! flux trought the ice layer |
---|
110 | real :: Jdry_prevlay,Jsat_prevlay ! same but for the previous ice layer |
---|
111 | integer :: index_firstice ! first index where ice appears (i.e., f > 0) |
---|
112 | real :: dz_eta(nsoilmx_PEM) ! \partial z \eta |
---|
113 | real :: dz_eta_low ! same but evaluated at the interface for ice |
---|
114 | real :: dzz_psat(nsoilmx_PEM) ! \partial \partial psat |
---|
115 | real :: massfillabove,massfillafter ! h2O mass above and after index_geothermal |
---|
116 | |
---|
117 | ! constant |
---|
118 | real :: pvap2rho = 18.e-3/8.314 |
---|
119 | ! |
---|
120 | |
---|
121 | |
---|
122 | |
---|
123 | |
---|
124 | |
---|
125 | ! 0. Compute constriction over the layer |
---|
126 | ! Within the ice sheet, constriction is set to 0. Elsewhere, constriction = (1-porefilling)**2 |
---|
127 | if (index_IS.lt.0) then |
---|
128 | index_tmp = nsoilmx_PEM |
---|
129 | do ilay = 1,nsoilmx_PEM |
---|
130 | call constriction(porefill(ilay),eta(ilay)) |
---|
131 | enddo |
---|
132 | else |
---|
133 | index_tmp = index_IS |
---|
134 | do ilay = 1,index_IS-1 |
---|
135 | call constriction(porefill(ilay),eta(ilay)) |
---|
136 | enddo |
---|
137 | do ilay = index_IS,nsoilmx_PEM |
---|
138 | eta(ilay) = 0. |
---|
139 | enddo |
---|
140 | endif |
---|
141 | |
---|
142 | ! 1. Depth at which pore filling occurs. We solve Eq. 9 from Schorgofer, Icarus (2010) |
---|
143 | |
---|
144 | old_depth_filling = depth_filling |
---|
145 | |
---|
146 | call deriv1(mlayer_PEM,nsoilmx_PEM,psat_soil,psat_surf,psat_bottom,dz_psat) |
---|
147 | |
---|
148 | do ilay = 1,index_tmp |
---|
149 | Jdry = (psat_soil(ilay) - pwat_surf)/mlayer_PEM(ilay) ! left member of Eq. 9 from Schorgofer, Icarus (2010) |
---|
150 | Jsat = eta(ilay)*dz_psat(ilay) !right member of Eq. 9 from Schorgofer, Icarus (2010) |
---|
151 | if((Jdry - Jsat).le.0) then |
---|
152 | index_filling = ilay |
---|
153 | exit |
---|
154 | endif |
---|
155 | enddo |
---|
156 | |
---|
157 | if(index_filling.eq.1) depth_filling = mlayer_PEM(1) |
---|
158 | |
---|
159 | if(index_filling.gt.1) then |
---|
160 | Jdry_prevlay = (psat_soil(index_filling-1) - pwat_surf)/mlayer_PEM(index_filling-1) |
---|
161 | Jsat_prevlay = eta(index_filling-1)*dz_psat(index_filling-1) |
---|
162 | call findroot(Jdry-Jsat,Jdry_prevlay-Jsat_prevlay,mlayer_PEM(index_filling),mlayer_PEM(index_filling-1),depth_filling) |
---|
163 | endif |
---|
164 | |
---|
165 | |
---|
166 | ! 2. Compute d_z (eta* d_z(rho)) (last term in Eq. 13 of Schorgofer, Icarus (2010)) |
---|
167 | |
---|
168 | |
---|
169 | ! 2.0 preliminary: depth to shallowest ice (discontinuity at interface) |
---|
170 | |
---|
171 | index_firstice = -1 |
---|
172 | do ilay = 1,nsoilmx_PEM |
---|
173 | if (porefill(ilay).le.0.) then |
---|
174 | index_firstice = ilay ! first point with ice |
---|
175 | exit |
---|
176 | endif |
---|
177 | enddo |
---|
178 | |
---|
179 | ! 2.1: now we can computeCompute d_z (eta* d_z(rho)) |
---|
180 | |
---|
181 | call deriv1(mlayer_PEM,nsoilmx_PEM,eta,1.,eta(nsoilmx_PEM-1),dz_eta) |
---|
182 | |
---|
183 | if ((index_firstice.gt.0).and.(index_firstice.lt.nsoilmx_PEM-2)) then |
---|
184 | call deriv1_onesided(index_firstice,mlayer_PEM,nsoilmx_PEM,eta,dz_eta(index_firstice)) |
---|
185 | endif |
---|
186 | |
---|
187 | call deriv2_simple(mlayer_PEM,nsoilmx_PEM,psat_soil,psat_surf,psat_bottom,dzz_psat) |
---|
188 | dz_etadz_rho(:) = pvap2rho*(dz_eta(:)*dz_psat(:) + eta(:)*dzz_psat(:)) |
---|
189 | |
---|
190 | ! 3. Ice table boundary due to geothermal heating |
---|
191 | |
---|
192 | if(index_IS.gt.0) index_geothermal = -1 |
---|
193 | if(index_geothermal.lt.0) depth_geothermal = -1. |
---|
194 | if((index_geothermal.gt.0).and.(index_IS.lt.0)) then ! Eq. 21 from Schorfoger, Icarus (2010) |
---|
195 | index_geothermal = -1 |
---|
196 | do ilay=2,nsoilmx_PEM |
---|
197 | if (dz_psat(ilay).gt.0.) then ! first point with reversed flux |
---|
198 | index_geothermal=ilay |
---|
199 | call findroot(dz_psat(ilay-1),dz_psat(ilay),mlayer_PEM(ilay-1),mlayer_PEM(ilay),depth_geothermal) |
---|
200 | exit |
---|
201 | endif |
---|
202 | enddo |
---|
203 | else |
---|
204 | index_geothermal = -1 |
---|
205 | endif |
---|
206 | if ((index_geothermal.gt.0).and.(index_IS.lt.0)) then ! Eq. 24 from Schorgofer, Icarus (2010) |
---|
207 | call colint(porefill(:)/eta(:),mlayer_PEM,nsoilmx_PEM,index_geothermal-1,nsoilmx_PEM,massfillabove) |
---|
208 | index_tmp = -1 |
---|
209 | do ilay=index_geothermal,nsoilmx_PEM |
---|
210 | if (minval(eta(ilay:nsoilmx_PEM)).le.0.) cycle ! eta=0 means completely full |
---|
211 | call colint(porefill(:)/eta(:),mlayer_PEM,nsoilmx_PEM,ilay,nsoilmx_PEM,massfillafter) |
---|
212 | if (massfillafter<dz_psat(ilay)*pvap2rho*B) then ! usually executes on i=typeG |
---|
213 | if (ilay>index_geothermal) then |
---|
214 | ! write(34,*) '# adjustment to geotherm depth by',ilay-index_geothermal |
---|
215 | call findroot(dz_psat(ilay-1)*pvap2rho*B-massfillabove, & |
---|
216 | dz_psat(ilay)*pvap2rho*B-massfillafter,mlayer_PEM(ilay-1),mlayer_PEM(ilay),depth_geothermal) |
---|
217 | ! if (depth_geothermal.gt.mlayer_PEM(ilay) .or. depth_geothermal.lt.<mlayer_PEM(ilay-1)) write(34,*) |
---|
218 | ! '# WARNING: zdepthG interpolation failed',ilay,mlayer_PEM(ilay-1),depth_geothermal,mlayer_PEM(ilay) |
---|
219 | index_tmp=ilay |
---|
220 | endif |
---|
221 | ! otherwise leave depth_geothermal unchanged |
---|
222 | exit |
---|
223 | endif |
---|
224 | massfillabove = massfillafter |
---|
225 | enddo |
---|
226 | if (index_tmp.gt.0) index_geothermal = index_tmp |
---|
227 | end if |
---|
228 | return |
---|
229 | end subroutine |
---|
230 | |
---|
231 | |
---|
232 | |
---|
233 | |
---|
234 | |
---|
235 | SUBROUTINE findroot(y1,y2,z1,z2,zr) |
---|
236 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
237 | !!! |
---|
238 | !!! Purpose: Compute the root zr, between two values y1 and y2 at depth z1,z2 |
---|
239 | !!! |
---|
240 | !!! Author: LL |
---|
241 | !!! |
---|
242 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
243 | |
---|
244 | implicit none |
---|
245 | real,intent(in) :: y1,y2 ! difference between surface water density and at depth [kg/m^3] |
---|
246 | real,intent(in) :: z1,z2 ! depth [m] |
---|
247 | real,intent(out) :: zr ! depth at which we have zero |
---|
248 | zr = (y1*z2 - y2*z1)/(y1-y2) |
---|
249 | RETURN |
---|
250 | end |
---|
251 | |
---|
252 | SUBROUTINE constriction(porefill,eta) |
---|
253 | |
---|
254 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
255 | !!! |
---|
256 | !!! Purpose: Compute the constriction of vapor flux by pore ice |
---|
257 | !!! |
---|
258 | !!! Author: LL |
---|
259 | !!! |
---|
260 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
261 | implicit none |
---|
262 | real,intent(in) :: porefill ! pore filling fraction |
---|
263 | real,intent(out) :: eta ! constriction |
---|
264 | |
---|
265 | !!! |
---|
266 | |
---|
267 | |
---|
268 | if (porefill.le.0.) eta = 1. |
---|
269 | if ((porefill.gt.0.) .and.(porefill.lt.1.)) then |
---|
270 | eta = (1-porefill)**2 ! Hudson et al., JGR, 2009 |
---|
271 | endif |
---|
272 | if (porefill.le.1.) eta = 0. |
---|
273 | return |
---|
274 | end |
---|
275 | |
---|
276 | |
---|
277 | |
---|
278 | subroutine deriv1(z,nz,y,y0,ybot,dzY) |
---|
279 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
280 | !!! |
---|
281 | !!! Purpose: Compute the first derivative of a function y(z) on an irregular grid |
---|
282 | !!! |
---|
283 | !!! Author: From N.S (N.S, Icarus 2010), impletented here by LL |
---|
284 | !!! |
---|
285 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
286 | implicit none |
---|
287 | |
---|
288 | ! first derivative of a function y(z) on irregular grid |
---|
289 | ! upper boundary conditions: y(0)=y0 |
---|
290 | ! lower boundary condition.: yp = ybottom |
---|
291 | integer, intent(IN) :: nz ! number of layer |
---|
292 | real, intent(IN) :: z(nz) ! depth layer |
---|
293 | real, intent(IN) :: y(nz) ! function which needs to be derived |
---|
294 | real, intent(IN) :: y0,ybot ! boundary conditions |
---|
295 | real, intent(OUT) :: dzY(nz) ! derivative of y w.r.t depth |
---|
296 | ! local |
---|
297 | integer :: j |
---|
298 | real :: hm,hp,c1,c2,c3 |
---|
299 | |
---|
300 | hp = z(2)-z(1) |
---|
301 | c1 = z(1)/(hp*z(2)) |
---|
302 | c2 = 1/z(1) - 1/(z(2)-z(1)) |
---|
303 | c3 = -hp/(z(1)*z(2)) |
---|
304 | dzY(1) = c1*y(2) + c2*y(1) + c3*y0 |
---|
305 | do j=2,nz-1 |
---|
306 | hp = z(j+1)-z(j) |
---|
307 | hm = z(j)-z(j-1) |
---|
308 | c1 = +hm/(hp*(z(j+1)-z(j-1))) |
---|
309 | c2 = 1/hm - 1/hp |
---|
310 | c3 = -hp/(hm*(z(j+1)-z(j-1))) |
---|
311 | dzY(j) = c1*y(j+1) + c2*y(j) + c3*y(j-1) |
---|
312 | enddo |
---|
313 | dzY(nz) = (ybot - y(nz-1))/(2.*(z(nz)-z(nz-1))) |
---|
314 | return |
---|
315 | end subroutine deriv1 |
---|
316 | |
---|
317 | |
---|
318 | |
---|
319 | subroutine deriv2_simple(z,nz,y,y0,yNp1,yp2) |
---|
320 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
321 | !!! |
---|
322 | !!! Purpose: Compute the second derivative of a function y(z) on an irregular grid |
---|
323 | !!! |
---|
324 | !!! Author: N.S (raw copy/paste from MSIM) |
---|
325 | !!! |
---|
326 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
327 | |
---|
328 | ! second derivative y_zz on irregular grid |
---|
329 | ! boundary conditions: y(0)=y0, y(nz+1)=yNp1 |
---|
330 | implicit none |
---|
331 | integer, intent(IN) :: nz |
---|
332 | real, intent(IN) :: z(nz),y(nz),y0,yNp1 |
---|
333 | real, intent(OUT) :: yp2(nz) |
---|
334 | integer j |
---|
335 | real hm,hp,c1,c2,c3 |
---|
336 | |
---|
337 | c1 = +2./((z(2)-z(1))*z(2)) |
---|
338 | c2 = -2./((z(2)-z(1))*z(1)) |
---|
339 | c3 = +2./(z(1)*z(2)) |
---|
340 | yp2(1) = c1*y(2) + c2*y(1) + c3*y0 |
---|
341 | |
---|
342 | do j=2,nz-1 |
---|
343 | hp = z(j+1)-z(j) |
---|
344 | hm = z(j)-z(j-1) |
---|
345 | c1 = +2./(hp*(z(j+1)-z(j-1))) |
---|
346 | c2 = -2./(hp*hm) |
---|
347 | c3 = +2./(hm*(z(j+1)-z(j-1))) |
---|
348 | yp2(j) = c1*y(j+1) + c2*y(j) + c3*y(j-1) |
---|
349 | enddo |
---|
350 | yp2(nz) = (yNp1 - 2*y(nz) + y(nz-1))/(z(nz)-z(nz-1))**2 |
---|
351 | return |
---|
352 | end subroutine deriv2_simple |
---|
353 | |
---|
354 | |
---|
355 | |
---|
356 | subroutine deriv1_onesided(j,z,nz,y,dy_zj) |
---|
357 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
358 | !!! |
---|
359 | !!! Purpose: First derivative of function y(z) at z(j) one-sided derivative on irregular grid |
---|
360 | !!! |
---|
361 | !!! Author: N.S (raw copy/paste from MSIM) |
---|
362 | !!! |
---|
363 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
364 | |
---|
365 | implicit none |
---|
366 | integer, intent(IN) :: nz,j |
---|
367 | real, intent(IN) :: z(nz),y(nz) |
---|
368 | real, intent(out) :: dy_zj |
---|
369 | real h1,h2,c1,c2,c3 |
---|
370 | if (j<1 .or. j>nz-2) then |
---|
371 | dy_zj = -1. |
---|
372 | else |
---|
373 | h1 = z(j+1)-z(j) |
---|
374 | h2 = z(j+2)-z(j+1) |
---|
375 | c1 = -(2*h1+h2)/(h1*(h1+h2)) |
---|
376 | c2 = (h1+h2)/(h1*h2) |
---|
377 | c3 = -h1/(h2*(h1+h2)) |
---|
378 | dy_zj = c1*y(j) + c2*y(j+1) + c3*y(j+2) |
---|
379 | endif |
---|
380 | return |
---|
381 | end subroutine deriv1_onesided |
---|
382 | |
---|
383 | |
---|
384 | subroutine colint(y,z,nz,i1,i2,integral) |
---|
385 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
386 | !!! |
---|
387 | !!! Purpose: Column integrates y on irregular grid |
---|
388 | !!! |
---|
389 | !!! Author: N.S (raw copy/paste from MSIM) |
---|
390 | !!! |
---|
391 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
392 | |
---|
393 | implicit none |
---|
394 | integer, intent(IN) :: nz, i1, i2 |
---|
395 | real, intent(IN) :: y(nz), z(nz) |
---|
396 | real,intent(out) :: integral |
---|
397 | integer i |
---|
398 | real dz(nz) |
---|
399 | |
---|
400 | dz(1) = (z(2)-0.)/2 |
---|
401 | do i=2,nz-1 |
---|
402 | dz(i) = (z(i+1)-z(i-1))/2. |
---|
403 | enddo |
---|
404 | dz(nz) = z(nz)-z(nz-1) |
---|
405 | integral = sum(y(i1:i2)*dz(i1:i2)) |
---|
406 | end subroutine colint |
---|
407 | |
---|
408 | |
---|
409 | |
---|
410 | |
---|
411 | |
---|
412 | |
---|
413 | end module |
---|