[3320] | 1 | MODULE ice_table_mod |
---|
[2888] | 2 | |
---|
[3320] | 3 | implicit none |
---|
[2888] | 4 | |
---|
| 5 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 6 | !!! |
---|
[2961] | 7 | !!! Purpose: Ice table (pore-filling) variables and methods to compute it (dynamic and static) |
---|
[2888] | 8 | !!! Author: LL, 02/2023 |
---|
| 9 | !!! |
---|
| 10 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 11 | |
---|
[3498] | 12 | logical :: icetable_equilibrium ! Boolean to say if the PEM needs to recompute the icetable depth when at equilibrium |
---|
| 13 | logical :: icetable_dynamic ! Boolean to say if the PEM needs to recompute the icetable depth with the dynamic method |
---|
| 14 | real, allocatable, dimension(:,:) :: icetable_depth ! ngrid x nslope: Depth of the ice table [m] |
---|
| 15 | real, allocatable, dimension(:,:) :: icetable_thickness ! ngrid x nslope: Thickness of the ice table [m] |
---|
| 16 | real, allocatable, dimension(:,:,:) :: ice_porefilling ! the amout of porefilling in each layer in each grid [m^3/m^3] |
---|
[2888] | 17 | |
---|
[3321] | 18 | !----------------------------------------------------------------------- |
---|
[3327] | 19 | contains |
---|
[3321] | 20 | !----------------------------------------------------------------------- |
---|
[3493] | 21 | SUBROUTINE ini_ice_table(ngrid,nslope,nsoil) |
---|
[2888] | 22 | |
---|
[3320] | 23 | implicit none |
---|
[2961] | 24 | |
---|
[3320] | 25 | integer, intent(in) :: ngrid ! number of atmospheric columns |
---|
| 26 | integer, intent(in) :: nslope ! number of slope within a mesh |
---|
[3493] | 27 | integer, intent(in) :: nsoil ! number of soil layers |
---|
[2961] | 28 | |
---|
[3493] | 29 | allocate(icetable_depth(ngrid,nslope)) |
---|
[3512] | 30 | allocate(icetable_thickness(ngrid,nslope)) |
---|
| 31 | allocate(ice_porefilling(ngrid,nsoil,nslope)) |
---|
[2961] | 32 | |
---|
[3493] | 33 | END SUBROUTINE ini_ice_table |
---|
[2961] | 34 | |
---|
[3321] | 35 | !----------------------------------------------------------------------- |
---|
[3493] | 36 | SUBROUTINE end_ice_table |
---|
[2961] | 37 | |
---|
[3320] | 38 | implicit none |
---|
[2961] | 39 | |
---|
[3493] | 40 | if (allocated(icetable_depth)) deallocate(icetable_depth) |
---|
| 41 | if (allocated(icetable_thickness)) deallocate(icetable_thickness) |
---|
| 42 | if (allocated(ice_porefilling)) deallocate(ice_porefilling) |
---|
[2961] | 43 | |
---|
[3493] | 44 | END SUBROUTINE end_ice_table |
---|
[2961] | 45 | |
---|
[3321] | 46 | !------------------------------------------------------------------------------------------------------ |
---|
[3320] | 47 | SUBROUTINE computeice_table_equilibrium(ngrid,nslope,nsoil_PEM,watercaptag,rhowatersurf_ave,rhowatersoil_ave,regolith_inertia,ice_table_beg,ice_table_thickness) |
---|
[2888] | 48 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 49 | !!! |
---|
[2961] | 50 | !!! Purpose: Compute the ice table depth (pore-filling) knowing the yearly average water |
---|
[2888] | 51 | !!! density at the surface and at depth. |
---|
| 52 | !!! Computations are made following the methods in Schorgofer et al., 2005 |
---|
[3320] | 53 | !!! This SUBROUTINE only gives the ice table at equilibrium and does not consider exchange with the atmosphere |
---|
| 54 | !!! |
---|
[2888] | 55 | !!! Author: LL |
---|
| 56 | !!! |
---|
| 57 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
[3320] | 58 | use math_mod, only: findroot |
---|
| 59 | use comsoil_h_PEM, only: mlayer_PEM, layer_PEM ! Depth of the vertical grid |
---|
| 60 | use soil_thermalproperties_mod, only: ice_thermal_properties |
---|
| 61 | |
---|
| 62 | implicit none |
---|
| 63 | |
---|
[3327] | 64 | ! Inputs |
---|
| 65 | ! ------ |
---|
[3320] | 66 | integer, intent(in) :: ngrid, nslope, nsoil_PEM ! Size of the physical grid, number of subslope, number of soil layer in the PEM |
---|
| 67 | logical, dimension(ngrid), intent(in) :: watercaptag ! Boolean to check the presence of a perennial glacier |
---|
| 68 | real, dimension(ngrid,nslope), intent(in) :: rhowatersurf_ave ! Water density at the surface, yearly averaged [kg/m^3] |
---|
| 69 | real, dimension(ngrid,nsoil_PEM,nslope), intent(in) :: rhowatersoil_ave ! Water density at depth, computed from clapeyron law's (Murchy and Koop 2005), yearly averaged [kg/m^3] |
---|
| 70 | real, dimension(ngrid,nslope), intent(in) :: regolith_inertia ! Thermal inertia of the regolith layer [SI] |
---|
[3327] | 71 | ! Ouputs |
---|
| 72 | ! ------ |
---|
[3320] | 73 | real, dimension(ngrid,nslope), intent(out) :: ice_table_beg ! ice table depth [m] |
---|
| 74 | real, dimension(ngrid,nslope), intent(out) :: ice_table_thickness ! ice table thickness [m] |
---|
[3327] | 75 | ! Locals |
---|
| 76 | ! ------ |
---|
[3321] | 77 | integer :: ig, islope, isoil, isoilend ! loop variables |
---|
| 78 | real, dimension(nsoil_PEM) :: diff_rho ! difference of water vapor density between the surface and at depth [kg/m^3] |
---|
| 79 | real :: ice_table_end ! depth of the end of the ice table [m] |
---|
| 80 | real, dimension(ngrid,nslope) :: previous_icetable_depth ! Ice table computed at previous ice depth [m] |
---|
| 81 | real :: stretch ! stretch factor to improve the convergence of the ice table |
---|
| 82 | real :: wice_inertia ! Water Ice thermal Inertia [USI] |
---|
[3327] | 83 | ! Code |
---|
| 84 | ! ---- |
---|
[3321] | 85 | previous_icetable_depth = ice_table_beg |
---|
[3320] | 86 | do ig = 1,ngrid |
---|
| 87 | if (watercaptag(ig)) then |
---|
| 88 | ice_table_beg(ig,:) = 0. |
---|
| 89 | ice_table_thickness(ig,:) = layer_PEM(nsoil_PEM) ! Let's assume an infinite ice table (true when geothermal flux is set to 0.) |
---|
| 90 | else |
---|
[2888] | 91 | do islope = 1,nslope |
---|
[3320] | 92 | ice_table_beg(ig,islope) = -1. |
---|
| 93 | ice_table_thickness(ig,islope) = 0. |
---|
| 94 | do isoil = 1,nsoil_PEM |
---|
| 95 | diff_rho(isoil) = rhowatersurf_ave(ig,islope) - rhowatersoil_ave(ig,isoil,islope) |
---|
| 96 | enddo |
---|
| 97 | if (diff_rho(1) > 0) then ! ice is at the surface |
---|
| 98 | ice_table_beg(ig,islope) = 0. |
---|
[3321] | 99 | do isoilend = 2,nsoil_PEM - 1 |
---|
| 100 | if (diff_rho(isoilend) > 0 .and. diff_rho(isoilend + 1) < 0.) then |
---|
[3320] | 101 | call findroot(diff_rho(isoilend),diff_rho(isoilend + 1),mlayer_PEM(isoilend),mlayer_PEM(isoilend + 1),ice_table_end) |
---|
| 102 | ice_table_thickness(ig,islope) = ice_table_end - ice_table_beg(ig,islope) |
---|
| 103 | exit |
---|
| 104 | endif |
---|
| 105 | enddo |
---|
| 106 | else |
---|
| 107 | do isoil = 1,nsoil_PEM - 1 ! general case, we find the ice table depth by doing a linear approximation between the two depth, and then solve the first degree equation to find the root |
---|
| 108 | if (diff_rho(isoil) < 0 .and. diff_rho(isoil + 1) > 0.) then |
---|
| 109 | call findroot(diff_rho(isoil),diff_rho(isoil + 1),mlayer_PEM(isoil),mlayer_PEM(isoil + 1),ice_table_beg(ig,islope)) |
---|
| 110 | ! Now let's find the end of the ice table |
---|
| 111 | ice_table_thickness(ig,islope) = layer_PEM(nsoil_PEM) ! Let's assume an infinite ice table (true when geothermal flux is set to 0.) |
---|
[3321] | 112 | do isoilend = isoil + 1,nsoil_PEM - 1 |
---|
[3320] | 113 | if (diff_rho(isoilend) > 0 .and. diff_rho(isoilend + 1) < 0.) then |
---|
| 114 | call findroot(diff_rho(isoilend),diff_rho(isoilend + 1),mlayer_PEM(isoilend),mlayer_PEM(isoilend + 1),ice_table_end) |
---|
| 115 | ice_table_thickness(ig,islope) = ice_table_end - ice_table_beg(ig,islope) |
---|
| 116 | exit |
---|
| 117 | endif |
---|
| 118 | enddo |
---|
[3321] | 119 | endif ! diff_rho(z) <0 & diff_rho(z+1) > 0 |
---|
[3320] | 120 | enddo |
---|
| 121 | endif ! diff_rho(1) > 0 |
---|
[2888] | 122 | enddo |
---|
[3320] | 123 | endif ! watercaptag |
---|
| 124 | enddo |
---|
[2961] | 125 | |
---|
| 126 | ! Small trick to speed up the convergence, Oded's idea. |
---|
[3320] | 127 | do islope = 1,nslope |
---|
| 128 | do ig = 1,ngrid |
---|
| 129 | if (ice_table_beg(ig,islope) > previous_icetable_depth(ig,islope) .and. previous_icetable_depth(ig,islope) >= 0) then |
---|
[2961] | 130 | call ice_thermal_properties(.false.,1.,regolith_inertia(ig,islope),wice_inertia) |
---|
| 131 | stretch = (regolith_inertia(ig,islope)/wice_inertia)**2 |
---|
| 132 | ice_table_thickness(ig,islope) = ice_table_thickness(ig,islope) + (ice_table_beg(ig,islope) - & |
---|
[3320] | 133 | previous_icetable_depth(ig,islope) + (ice_table_beg(ig,islope) - previous_icetable_depth(ig,islope))/stretch) |
---|
| 134 | ice_table_beg(ig,islope) = previous_icetable_depth(ig,islope) + (ice_table_beg(ig,islope) - previous_icetable_depth(ig,islope))/stretch |
---|
| 135 | endif |
---|
| 136 | enddo |
---|
| 137 | enddo |
---|
[2961] | 138 | |
---|
[3321] | 139 | END SUBROUTINE computeice_table_equilibrium |
---|
[2888] | 140 | |
---|
[3321] | 141 | !----------------------------------------------------------------------- |
---|
[3320] | 142 | SUBROUTINE compute_massh2o_exchange_ssi(ngrid,nslope,nsoil_PEM,former_ice_table_thickness,new_ice_table_thickness,ice_table_depth,tsurf,tsoil,delta_m_h2o) |
---|
[3031] | 143 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 144 | !!! |
---|
[3320] | 145 | !!! Purpose: Compute the mass of H2O that has sublimated from the ice table / condensed |
---|
| 146 | !!! |
---|
[3031] | 147 | !!! Author: LL |
---|
| 148 | !!! |
---|
| 149 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
[3320] | 150 | use comsoil_h_PEM, only: mlayer_PEM |
---|
| 151 | use comslope_mod, only: subslope_dist, def_slope_mean |
---|
| 152 | use constants_marspem_mod, only: porosity |
---|
[3082] | 153 | #ifndef CPP_STD |
---|
| 154 | use comcstfi_h, only: pi |
---|
| 155 | #else |
---|
| 156 | use comcstfi_mod, only: pi |
---|
| 157 | #endif |
---|
| 158 | |
---|
[3320] | 159 | implicit none |
---|
[3031] | 160 | |
---|
[3327] | 161 | ! Inputs |
---|
| 162 | ! ------ |
---|
[3320] | 163 | integer, intent(in) :: ngrid, nslope, nsoil_PEM ! Size of the physical grid, number of subslope, number of soil layer in the PEM |
---|
| 164 | real, dimension(ngrid,nslope), intent(in) :: former_ice_table_thickness ! ice table thickness at the former iteration [m] |
---|
| 165 | real, dimension(ngrid,nslope), intent(in) :: new_ice_table_thickness ! ice table thickness at the current iteration [m] |
---|
| 166 | real, dimension(ngrid,nslope), intent(in) :: ice_table_depth ! ice table depth [m] |
---|
| 167 | real, dimension(ngrid,nslope), intent(in) :: tsurf ! Surface temperature [K] |
---|
| 168 | real, dimension(ngrid,nsoil_PEM,nslope), intent(in) :: tsoil ! Soil temperature [K] |
---|
[3327] | 169 | ! Outputs |
---|
| 170 | ! ------- |
---|
[3320] | 171 | real, dimension(ngrid), intent(out) :: delta_m_h2o ! Mass of H2O ice that has been condensed on the ice table / sublimates from the ice table [kg/m^2] |
---|
[3327] | 172 | ! Locals |
---|
| 173 | !------- |
---|
[3321] | 174 | integer :: ig, islope, ilay, iref ! loop index |
---|
| 175 | real, dimension(ngrid,nslope) :: rho ! density of water ice [kg/m^3] |
---|
| 176 | real, dimension(ngrid,nslope) :: Tice ! ice temperature [k] |
---|
[3327] | 177 | ! Code |
---|
| 178 | ! ---- |
---|
[3320] | 179 | rho = 0. |
---|
| 180 | Tice = 0. |
---|
[3031] | 181 | !1. First let's compute Tice using a linear interpolation between the mlayer level |
---|
[3320] | 182 | do ig = 1,ngrid |
---|
| 183 | do islope = 1,nslope |
---|
[3327] | 184 | call compute_Tice_pem(nsoil_PEM,tsoil(ig,:,islope),tsurf(ig,islope),ice_table_depth(ig,islope),Tice(ig,islope)) |
---|
[3320] | 185 | rho(ig,islope) = -3.5353e-4*Tice(ig,islope)**2 + 0.0351* Tice(ig,islope) + 933.5030 ! Rottgers, 2012 |
---|
| 186 | enddo |
---|
| 187 | enddo |
---|
[3031] | 188 | |
---|
| 189 | !2. Let's compute the amount of ice that has sublimated in each subslope |
---|
[3320] | 190 | do ig = 1,ngrid |
---|
| 191 | do islope = 1,nslope |
---|
[3321] | 192 | delta_m_h2o(ig) = delta_m_h2o(ig) + porosity*rho(ig,islope)*(new_ice_table_thickness(ig,islope) - former_ice_table_thickness(ig,islope)) & ! convention > 0. <=> it condenses |
---|
[3320] | 193 | *subslope_dist(ig,islope)/cos(def_slope_mean(islope)*pi/180.) |
---|
| 194 | enddo |
---|
| 195 | enddo |
---|
[3031] | 196 | |
---|
[3321] | 197 | END SUBROUTINE compute_massh2o_exchange_ssi |
---|
[3031] | 198 | |
---|
[3321] | 199 | !----------------------------------------------------------------------- |
---|
[3320] | 200 | SUBROUTINE find_layering_icetable(porefill,psat_soil,psat_surf,pwat_surf,psat_bottom,B,index_IS,depth_filling,index_filling,index_geothermal,depth_geothermal,dz_etadz_rho) |
---|
[2902] | 201 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 202 | !!! |
---|
[3320] | 203 | !!! Purpose: Compute layering between dry soil, pore filling ice, and ice sheet based on Schorgofer, Icarus (2010). Adapted from NS MSIM |
---|
| 204 | !!! |
---|
[2902] | 205 | !!! Author: LL |
---|
| 206 | !!! |
---|
| 207 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
[3320] | 208 | use comsoil_h_PEM, only: nsoilmx_PEM, mlayer_PEM |
---|
| 209 | use math_mod, only: deriv1, deriv1_onesided, colint, findroot, deriv2_simple |
---|
| 210 | |
---|
[2902] | 211 | implicit none |
---|
[3320] | 212 | |
---|
| 213 | ! Inputs |
---|
[2902] | 214 | ! ------ |
---|
[3320] | 215 | real, dimension(nsoilmx_PEM), intent(in) :: porefill ! Fraction of pore space filled with ice [Unitless] 0 <= f <= 1 for pore ice |
---|
| 216 | real, dimension(nsoilmx_PEM), intent(in) :: psat_soil ! Soil water pressure at saturation, yearly averaged [Pa] |
---|
| 217 | real, intent(in) :: psat_surf ! surface water pressure at saturation, yearly averaged [Pa] |
---|
| 218 | real, intent(in) :: pwat_surf ! Water vapor pressure at the surface, not necesseraly at saturation, yearly averaged [Pa] |
---|
| 219 | real, intent(in) :: psat_bottom ! Boundary conditions for soil vapor pressure [Pa] |
---|
| 220 | real, intent(in) :: B ! constant (Eq. 8 from Schorgofer, Icarus (2010).) |
---|
| 221 | integer, intent(in) :: index_IS ! index of the soil layer where the ice sheet begins [1] |
---|
[2902] | 222 | real, intent(inout) :: depth_filling ! depth where pore filling begins [m] |
---|
[3320] | 223 | ! Outputs |
---|
[2902] | 224 | ! ------- |
---|
[3320] | 225 | integer, intent(out) :: index_filling ! index where the pore filling begins [1] |
---|
| 226 | integer, intent(out) :: index_geothermal ! index where the ice table stops [1] |
---|
| 227 | real, intent(out) :: depth_geothermal ! depth where the ice table stops [m] |
---|
| 228 | real, dimension(nsoilmx_PEM), intent(out) :: dz_etadz_rho ! \partial z(eta \partial z rho), eta is the constriction, used later for pore filling increase |
---|
[3327] | 229 | ! Locals |
---|
| 230 | !------- |
---|
[3320] | 231 | real, dimension(nsoilmx_PEM) :: eta ! constriction |
---|
| 232 | real, dimension(nsoilmx_PEM) :: dz_psat ! first derivative of the vapor pressure at saturation |
---|
| 233 | real, dimension(nsoilmx_PEM) :: dz_eta ! \partial z \eta |
---|
| 234 | real, dimension(nsoilmx_PEM) :: dzz_psat ! \partial \partial psat |
---|
| 235 | integer :: ilay, index_tmp ! index for loop |
---|
| 236 | real :: old_depth_filling ! depth_filling saved |
---|
| 237 | real :: Jdry ! flux trought the dry layer |
---|
| 238 | real :: Jsat ! flux trought the ice layer |
---|
| 239 | real :: Jdry_prevlay, Jsat_prevlay ! same but for the previous ice layer |
---|
| 240 | integer :: index_firstice ! first index where ice appears (i.e., f > 0) |
---|
| 241 | real :: massfillabove, massfillafter ! h2O mass above and after index_geothermal |
---|
[3327] | 242 | ! Constant |
---|
| 243 | !--------- |
---|
[3320] | 244 | real, parameter :: pvap2rho = 18.e-3/8.314 |
---|
[3327] | 245 | ! Code |
---|
| 246 | !----- |
---|
[2902] | 247 | ! 0. Compute constriction over the layer |
---|
| 248 | ! Within the ice sheet, constriction is set to 0. Elsewhere, constriction = (1-porefilling)**2 |
---|
[3321] | 249 | if (index_IS < 0) then |
---|
[3320] | 250 | index_tmp = nsoilmx_PEM |
---|
| 251 | do ilay = 1,nsoilmx_PEM |
---|
| 252 | call constriction(porefill(ilay),eta(ilay)) |
---|
| 253 | enddo |
---|
[2902] | 254 | else |
---|
[3320] | 255 | index_tmp = index_IS |
---|
[3321] | 256 | do ilay = 1,index_IS - 1 |
---|
[3320] | 257 | call constriction(porefill(ilay),eta(ilay)) |
---|
| 258 | enddo |
---|
| 259 | do ilay = index_IS,nsoilmx_PEM |
---|
| 260 | eta(ilay) = 0. |
---|
| 261 | enddo |
---|
[2902] | 262 | endif |
---|
| 263 | |
---|
[3320] | 264 | ! 1. Depth at which pore filling occurs. We solve Eq. 9 from Schorgofer, Icarus (2010) |
---|
[2902] | 265 | old_depth_filling = depth_filling |
---|
| 266 | |
---|
[3320] | 267 | call deriv1(mlayer_PEM,nsoilmx_PEM,psat_soil,psat_surf,psat_bottom,dz_psat) |
---|
[2902] | 268 | |
---|
| 269 | do ilay = 1,index_tmp |
---|
[3320] | 270 | Jdry = (psat_soil(ilay) - pwat_surf)/mlayer_PEM(ilay) ! left member of Eq. 9 from Schorgofer, Icarus (2010) |
---|
| 271 | Jsat = eta(ilay)*dz_psat(ilay) !right member of Eq. 9 from Schorgofer, Icarus (2010) |
---|
| 272 | if (Jdry - Jsat <= 0) then |
---|
| 273 | index_filling = ilay |
---|
| 274 | exit |
---|
| 275 | endif |
---|
[2902] | 276 | enddo |
---|
| 277 | |
---|
[3320] | 278 | if (index_filling == 1) then |
---|
| 279 | depth_filling = mlayer_PEM(1) |
---|
| 280 | else if (index_filling > 1) then |
---|
| 281 | Jdry_prevlay = (psat_soil(index_filling - 1) - pwat_surf)/mlayer_PEM(index_filling - 1) |
---|
| 282 | Jsat_prevlay = eta(index_filling - 1)*dz_psat(index_filling - 1) |
---|
| 283 | call findroot(Jdry - Jsat,Jdry_prevlay - Jsat_prevlay,mlayer_PEM(index_filling),mlayer_PEM(index_filling - 1),depth_filling) |
---|
[2902] | 284 | endif |
---|
| 285 | |
---|
| 286 | ! 2. Compute d_z (eta* d_z(rho)) (last term in Eq. 13 of Schorgofer, Icarus (2010)) |
---|
| 287 | ! 2.0 preliminary: depth to shallowest ice (discontinuity at interface) |
---|
| 288 | index_firstice = -1 |
---|
| 289 | do ilay = 1,nsoilmx_PEM |
---|
[3320] | 290 | if (porefill(ilay) <= 0.) then |
---|
[2902] | 291 | index_firstice = ilay ! first point with ice |
---|
| 292 | exit |
---|
| 293 | endif |
---|
| 294 | enddo |
---|
| 295 | |
---|
| 296 | ! 2.1: now we can computeCompute d_z (eta* d_z(rho)) |
---|
[3320] | 297 | call deriv1(mlayer_PEM,nsoilmx_PEM,eta,1.,eta(nsoilmx_PEM - 1),dz_eta) |
---|
[2902] | 298 | |
---|
[3320] | 299 | if (index_firstice > 0 .and. index_firstice < nsoilmx_PEM - 2) call deriv1_onesided(index_firstice,mlayer_PEM,nsoilmx_PEM,eta,dz_eta(index_firstice)) |
---|
[2902] | 300 | |
---|
| 301 | call deriv2_simple(mlayer_PEM,nsoilmx_PEM,psat_soil,psat_surf,psat_bottom,dzz_psat) |
---|
[3320] | 302 | dz_etadz_rho = pvap2rho*(dz_eta*dz_psat + eta*dzz_psat) |
---|
[2902] | 303 | |
---|
| 304 | ! 3. Ice table boundary due to geothermal heating |
---|
[3320] | 305 | if (index_IS > 0) index_geothermal = -1 |
---|
| 306 | if (index_geothermal < 0) depth_geothermal = -1. |
---|
| 307 | if ((index_geothermal > 0).and.(index_IS < 0)) then ! Eq. 21 from Schorfoger, Icarus (2010) |
---|
| 308 | index_geothermal = -1 |
---|
| 309 | do ilay = 2,nsoilmx_PEM |
---|
| 310 | if (dz_psat(ilay) > 0.) then ! first point with reversed flux |
---|
| 311 | index_geothermal = ilay |
---|
| 312 | call findroot(dz_psat(ilay - 1),dz_psat(ilay),mlayer_PEM(ilay - 1),mlayer_PEM(ilay),depth_geothermal) |
---|
| 313 | exit |
---|
[2902] | 314 | endif |
---|
[3320] | 315 | enddo |
---|
| 316 | else |
---|
| 317 | index_geothermal = -1 |
---|
| 318 | endif |
---|
| 319 | if (index_geothermal > 0 .and. index_IS < 0) then ! Eq. 24 from Schorgofer, Icarus (2010) |
---|
[3321] | 320 | call colint(porefill/eta,mlayer_PEM,nsoilmx_PEM,index_geothermal - 1,nsoilmx_PEM,massfillabove) |
---|
[3320] | 321 | index_tmp = -1 |
---|
| 322 | do ilay = index_geothermal,nsoilmx_PEM |
---|
| 323 | if (minval(eta(ilay:nsoilmx_PEM)).le.0.) cycle ! eta=0 means completely full |
---|
[3321] | 324 | call colint(porefill/eta,mlayer_PEM,nsoilmx_PEM,ilay,nsoilmx_PEM,massfillafter) |
---|
[3320] | 325 | if (massfillafter < dz_psat(ilay)*pvap2rho*B) then ! usually executes on i=typeG |
---|
| 326 | if (ilay > index_geothermal) then |
---|
| 327 | ! write(34,*) '# adjustment to geotherm depth by',ilay-index_geothermal |
---|
| 328 | call findroot(dz_psat(ilay - 1)*pvap2rho*B - massfillabove, & |
---|
| 329 | dz_psat(ilay)*pvap2rho*B - massfillafter,mlayer_PEM(ilay - 1),mlayer_PEM(ilay),depth_geothermal) |
---|
| 330 | ! if (depth_geothermal > mlayer_PEM(ilay) .or. depth_geothermal < mlayer_PEM(ilay - 1)) write(*,*) '# WARNING: zdepthG interpolation failed',ilay,mlayer_PEM(ilay - 1),depth_geothermal,mlayer_PEM(ilay) |
---|
| 331 | index_tmp = ilay |
---|
[2902] | 332 | endif |
---|
| 333 | ! otherwise leave depth_geothermal unchanged |
---|
| 334 | exit |
---|
| 335 | endif |
---|
| 336 | massfillabove = massfillafter |
---|
[3320] | 337 | enddo |
---|
| 338 | if (index_tmp > 0) index_geothermal = index_tmp |
---|
| 339 | end if |
---|
[2902] | 340 | |
---|
[3321] | 341 | END SUBROUTINE find_layering_icetable |
---|
[2902] | 342 | |
---|
[3321] | 343 | !----------------------------------------------------------------------- |
---|
[2902] | 344 | SUBROUTINE constriction(porefill,eta) |
---|
| 345 | |
---|
[3320] | 346 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 347 | !!! |
---|
| 348 | !!! Purpose: Compute the constriction of vapor flux by pore ice |
---|
| 349 | !!! |
---|
| 350 | !!! Author: LL |
---|
| 351 | !!! |
---|
| 352 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
[2902] | 353 | |
---|
[3320] | 354 | implicit none |
---|
[2902] | 355 | |
---|
[3320] | 356 | real, intent(in) :: porefill ! pore filling fraction |
---|
| 357 | real, intent(out) :: eta ! constriction |
---|
[2902] | 358 | |
---|
[3320] | 359 | if (porefill <= 0.) then |
---|
| 360 | eta = 1. |
---|
| 361 | else if (0 < porefill .and. porefill < 1.) then |
---|
| 362 | eta = (1-porefill)**2 ! Hudson et al., JGR, 2009 |
---|
| 363 | else |
---|
| 364 | eta = 0. |
---|
| 365 | endif |
---|
| 366 | |
---|
[3321] | 367 | END SUBROUTINE constriction |
---|
[3320] | 368 | |
---|
[3327] | 369 | !----------------------------------------------------------------------- |
---|
| 370 | SUBROUTINE compute_Tice_pem(nsoil, ptsoil, ptsurf, ice_depth, Tice) |
---|
| 371 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 372 | !!! |
---|
| 373 | !!! Purpose: Compute subsurface ice temperature by interpolating the temperatures between the two adjacent cells. |
---|
| 374 | !!! |
---|
| 375 | !!! Author: LL |
---|
| 376 | !!! |
---|
| 377 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 378 | |
---|
| 379 | use comsoil_h_PEM, only: layer_PEM, mlayer_PEM |
---|
| 380 | |
---|
| 381 | implicit none |
---|
| 382 | |
---|
| 383 | ! Inputs |
---|
| 384 | ! ------ |
---|
| 385 | integer, intent(in) :: nsoil ! Number of soil layers |
---|
| 386 | real, dimension(nsoil), intent(in) :: ptsoil ! Soil temperature (K) |
---|
| 387 | real, intent(in) :: ptsurf ! Soil temperature (K) |
---|
| 388 | real, intent(in) :: ice_depth ! Ice depth (m) |
---|
| 389 | |
---|
| 390 | ! Outputs |
---|
| 391 | ! ------ |
---|
| 392 | real, intent(out) :: Tice ! Ice temperatures (K) |
---|
| 393 | |
---|
| 394 | ! Locals |
---|
| 395 | ! ------ |
---|
| 396 | integer :: ik ! Loop variables |
---|
| 397 | integer :: indexice ! Index of the ice |
---|
| 398 | |
---|
| 399 | ! Code |
---|
| 400 | !----- |
---|
| 401 | indexice = -1 |
---|
| 402 | if (ice_depth >= mlayer_PEM(nsoil - 1)) then |
---|
| 403 | Tice = ptsoil(nsoil) |
---|
| 404 | else |
---|
| 405 | if(ice_depth < mlayer_PEM(0)) then |
---|
| 406 | indexice = 0. |
---|
| 407 | else |
---|
| 408 | do ik = 0,nsoil - 2 ! go through all the layers to find the ice locations |
---|
| 409 | if (mlayer_PEM(ik) <= ice_depth .and. mlayer_PEM(ik + 1) > ice_depth) then |
---|
| 410 | indexice = ik + 1 |
---|
| 411 | exit |
---|
| 412 | endif |
---|
| 413 | enddo |
---|
| 414 | endif |
---|
| 415 | if (indexice < 0) then |
---|
| 416 | call abort_physic("compute_Tice_pem","subsurface ice is below the last soil layer",1) |
---|
| 417 | else |
---|
| 418 | if(indexice >= 1) then ! Linear inteprolation between soil temperature |
---|
| 419 | Tice = (ptsoil(indexice) - ptsoil(indexice + 1))/(mlayer_PEM(indexice - 1) - mlayer_PEM(indexice))*(ice_depth - mlayer_PEM(indexice)) + ptsoil(indexice + 1) |
---|
| 420 | else ! Linear inteprolation between the 1st soil temperature and the surface temperature |
---|
| 421 | Tice = (ptsoil(1) - ptsurf)/mlayer_PEM(0)*(ice_depth - mlayer_PEM(0)) + ptsoil(1) |
---|
| 422 | endif ! index ice >= 1 |
---|
| 423 | endif !indexice < 0 |
---|
| 424 | endif ! icedepth > mlayer_PEM(nsoil - 1) |
---|
| 425 | |
---|
| 426 | END SUBROUTINE compute_Tice_pem |
---|
| 427 | |
---|
[3321] | 428 | END MODULE ice_table_mod |
---|