[2888] | 1 | module ice_table_mod |
---|
| 2 | |
---|
| 3 | implicit none |
---|
| 4 | |
---|
| 5 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 6 | !!! |
---|
[2961] | 7 | !!! Purpose: Ice table (pore-filling) variables and methods to compute it (dynamic and static) |
---|
[2888] | 8 | !!! Author: LL, 02/2023 |
---|
| 9 | !!! |
---|
| 10 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 11 | |
---|
[2961] | 12 | LOGICAL,SAVE :: icetable_equilibrium ! Boolean to say if the PEM needs to recompute the icetable depth when at equilibrium |
---|
| 13 | LOGICAL,SAVE :: icetable_dynamic ! Boolean to say if the PEM needs to recompute the icetable depth (dynamic method) |
---|
| 14 | real,save,allocatable :: porefillingice_depth(:,:) ! ngrid x nslope: Depth of the ice table [m] |
---|
| 15 | real,save,allocatable :: porefillingice_thickness(:,:) ! ngrid x nslope: Thickness of the ice table [m] |
---|
[2888] | 16 | |
---|
[2961] | 17 | contains |
---|
[2888] | 18 | |
---|
[2961] | 19 | |
---|
| 20 | subroutine ini_ice_table_porefilling(ngrid,nslope) |
---|
| 21 | |
---|
| 22 | implicit none |
---|
| 23 | integer,intent(in) :: ngrid ! number of atmospheric columns |
---|
| 24 | integer,intent(in) :: nslope ! number of slope within a mesh |
---|
| 25 | |
---|
| 26 | allocate(porefillingice_depth(ngrid,nslope)) |
---|
| 27 | allocate(porefillingice_thickness(ngrid,nslope)) |
---|
| 28 | |
---|
| 29 | end subroutine ini_ice_table_porefilling |
---|
| 30 | |
---|
| 31 | subroutine end_ice_table_porefilling |
---|
| 32 | |
---|
| 33 | implicit none |
---|
| 34 | if (allocated(porefillingice_depth)) deallocate(porefillingice_depth) |
---|
| 35 | if (allocated(porefillingice_thickness)) deallocate(porefillingice_thickness) |
---|
| 36 | |
---|
| 37 | end subroutine end_ice_table_porefilling |
---|
| 38 | |
---|
[2980] | 39 | !!! -------------------------------------- |
---|
[2961] | 40 | |
---|
| 41 | SUBROUTINE computeice_table_equilibrium(ngrid,nslope,nsoil_PEM,watercaptag,rhowatersurf_ave,rhowatersoil_ave,regolith_inertia,ice_table_beg,ice_table_thickness) |
---|
[2888] | 42 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 43 | !!! |
---|
[2961] | 44 | !!! Purpose: Compute the ice table depth (pore-filling) knowing the yearly average water |
---|
[2888] | 45 | !!! density at the surface and at depth. |
---|
| 46 | !!! Computations are made following the methods in Schorgofer et al., 2005 |
---|
| 47 | !!! This subroutine only gives the ice table at equilibrium and does not consider exchange with the atmosphere |
---|
| 48 | !!! |
---|
| 49 | !!! Author: LL |
---|
| 50 | !!! |
---|
| 51 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
[2961] | 52 | use math_mod,only: findroot |
---|
| 53 | USE comsoil_h_PEM, only: mlayer_PEM,layer_PEM ! Depth of the vertical grid |
---|
| 54 | USE soil_thermalproperties_mod, only: ice_thermal_properties |
---|
[2888] | 55 | implicit none |
---|
[2961] | 56 | ! inputs |
---|
| 57 | ! ----------- |
---|
[2888] | 58 | integer,intent(in) :: ngrid,nslope,nsoil_PEM ! Size of the physical grid, number of subslope, number of soil layer in the PEM |
---|
| 59 | logical,intent(in) :: watercaptag(ngrid) ! Boolean to check the presence of a perennial glacier |
---|
| 60 | real,intent(in) :: rhowatersurf_ave(ngrid,nslope) ! Water density at the surface, yearly averaged [kg/m^3] |
---|
| 61 | real,intent(in) :: rhowatersoil_ave(ngrid,nsoil_PEM,nslope) ! Water density at depth, computed from clapeyron law's (Murchy and Koop 2005), yearly averaged [kg/m^3] |
---|
[2961] | 62 | real,intent(in) :: regolith_inertia(ngrid,nslope) ! Thermal inertia of the regolith layer [SI] |
---|
| 63 | ! Ouputs |
---|
| 64 | ! ----------- |
---|
| 65 | real,intent(out) :: ice_table_beg(ngrid,nslope) ! ice table depth [m] |
---|
| 66 | real,intent(out) :: ice_table_thickness(ngrid,nslope) ! ice table thickness [m] |
---|
| 67 | ! Local |
---|
| 68 | ! ----------- |
---|
[2888] | 69 | real :: z1,z2 ! intermediate variables used when doing a linear interpolation between two depths to find the root |
---|
[2961] | 70 | integer ig, islope,isoil,isoilend ! loop variables |
---|
[2888] | 71 | real :: diff_rho(nsoil_PEM) ! difference of water vapor density between the surface and at depth [kg/m^3] |
---|
[2961] | 72 | real :: ice_table_end ! depth of the end of the ice table [m] |
---|
| 73 | real :: previous_icetable_depth(ngrid,nslope) ! Ice table computed at previous ice depth [m] |
---|
| 74 | real :: stretch ! stretch factor to improve the convergence of the ice table |
---|
| 75 | real :: wice_inertia ! Water Ice thermal Inertia [USI] |
---|
| 76 | ! Code |
---|
| 77 | ! ----------- |
---|
[2888] | 78 | |
---|
[2961] | 79 | previous_icetable_depth(:,:) = ice_table_beg(:,:) |
---|
[2888] | 80 | do ig = 1,ngrid |
---|
| 81 | if(watercaptag(ig)) then |
---|
[2961] | 82 | ice_table_beg(ig,:) = 0. |
---|
| 83 | ice_table_thickness(ig,:) = layer_PEM(nsoil_PEM) ! Let's assume an infinite ice table (true when geothermal flux is set to 0.) |
---|
[2888] | 84 | else |
---|
| 85 | do islope = 1,nslope |
---|
[2961] | 86 | ice_table_beg(ig,islope) = -1. |
---|
| 87 | ice_table_thickness(ig,islope) = 0. |
---|
[2888] | 88 | do isoil = 1,nsoil_PEM |
---|
| 89 | diff_rho(isoil) = rhowatersurf_ave(ig,islope) - rhowatersoil_ave(ig,isoil,islope) |
---|
| 90 | enddo |
---|
| 91 | if(diff_rho(1) > 0) then ! ice is at the surface |
---|
[2961] | 92 | ice_table_beg(ig,islope) = 0. |
---|
| 93 | do isoilend = 2,nsoil_PEM-1 |
---|
| 94 | if((diff_rho(isoilend).gt.0).and.(diff_rho(isoilend+1).lt.0.)) then |
---|
| 95 | call findroot(diff_rho(isoilend),diff_rho(isoilend+1),mlayer_PEM(isoilend),mlayer_PEM(isoilend+1),ice_table_end) |
---|
| 96 | ice_table_thickness(ig,islope) = ice_table_end - ice_table_beg(ig,islope) |
---|
| 97 | exit |
---|
| 98 | endif |
---|
| 99 | enddo |
---|
[2888] | 100 | else |
---|
| 101 | do isoil = 1,nsoil_PEM -1 ! general case, we find the ice table depth by doing a linear approximation between the two depth, and then solve the first degree equation to find the root |
---|
| 102 | if((diff_rho(isoil).lt.0).and.(diff_rho(isoil+1).gt.0.)) then |
---|
[2961] | 103 | call findroot(diff_rho(isoil),diff_rho(isoil+1),mlayer_PEM(isoil),mlayer_PEM(isoil+1),ice_table_beg(ig,islope)) |
---|
| 104 | ! Now let's find the end of the ice table |
---|
| 105 | ice_table_thickness(ig,islope) = layer_PEM(nsoil_PEM) ! Let's assume an infinite ice table (true when geothermal flux is set to 0.) |
---|
| 106 | do isoilend = isoil+1,nsoil_PEM-1 |
---|
| 107 | if((diff_rho(isoilend).gt.0).and.(diff_rho(isoilend+1).lt.0.)) then |
---|
| 108 | call findroot(diff_rho(isoilend),diff_rho(isoilend+1),mlayer_PEM(isoilend),mlayer_PEM(isoilend+1),ice_table_end) |
---|
| 109 | ice_table_thickness(ig,islope) = ice_table_end - ice_table_beg(ig,islope) |
---|
| 110 | exit |
---|
| 111 | endif |
---|
| 112 | enddo |
---|
[2888] | 113 | endif !diff_rho(z) <0 & diff_rho(z+1) > 0 |
---|
| 114 | enddo |
---|
| 115 | endif ! diff_rho(1) > 0 |
---|
| 116 | enddo |
---|
| 117 | endif ! watercaptag |
---|
| 118 | enddo |
---|
[2961] | 119 | |
---|
| 120 | ! Small trick to speed up the convergence, Oded's idea. |
---|
| 121 | do islope = 1,nslope |
---|
| 122 | do ig = 1,ngrid |
---|
| 123 | if((ice_table_beg(ig,islope).gt.previous_icetable_depth(ig,islope)).and.(previous_icetable_depth(ig,islope).ge.0)) then |
---|
| 124 | call ice_thermal_properties(.false.,1.,regolith_inertia(ig,islope),wice_inertia) |
---|
| 125 | stretch = (regolith_inertia(ig,islope)/wice_inertia)**2 |
---|
| 126 | |
---|
| 127 | ice_table_thickness(ig,islope) = ice_table_thickness(ig,islope) + (ice_table_beg(ig,islope) - & |
---|
| 128 | previous_icetable_depth(ig,islope)+(ice_table_beg(ig,islope) - previous_icetable_depth(ig,islope))/stretch) |
---|
| 129 | ice_table_beg(ig,islope) = previous_icetable_depth(ig,islope)+(ice_table_beg(ig,islope) - previous_icetable_depth(ig,islope))/stretch |
---|
| 130 | endif |
---|
| 131 | enddo |
---|
| 132 | enddo |
---|
| 133 | |
---|
[2888] | 134 | RETURN |
---|
| 135 | END |
---|
| 136 | |
---|
[2980] | 137 | !!! -------------------------------------- |
---|
[2961] | 138 | |
---|
[3031] | 139 | |
---|
| 140 | SUBROUTINE compute_massh2o_exchange_ssi(ngrid,nslope,nsoil_PEM,former_ice_table_thickness,new_ice_table_thickness,ice_table_depth,tsoil,delta_m_h2o) |
---|
| 141 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 142 | !!! |
---|
| 143 | !!! Purpose: Compute the mass of H2O that has sublimated from the ice table / condensed |
---|
| 144 | !!! |
---|
| 145 | !!! Author: LL |
---|
| 146 | !!! |
---|
| 147 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 148 | use comsoil_h_PEM, only: mlayer_PEM |
---|
| 149 | use comslope_mod, only: subslope_dist,def_slope_mean |
---|
| 150 | use comconst_mod,only: pi |
---|
[3032] | 151 | use constants_marspem_mod,only:porosity |
---|
[3031] | 152 | implicit none |
---|
| 153 | ! inputs |
---|
| 154 | ! ----------- |
---|
| 155 | integer,intent(in) :: ngrid,nslope,nsoil_PEM ! Size of the physical grid, number of subslope, number of soil layer in the PEM |
---|
| 156 | real,intent(in) :: former_ice_table_thickness(ngrid,nslope) ! ice table thickness at the former iteration [m] |
---|
| 157 | real,intent(in) :: new_ice_table_thickness(ngrid,nslope) ! ice table thickness at the current iteration [m] |
---|
| 158 | real,intent(out) :: ice_table_depth(ngrid,nslope) ! ice table depth [m] |
---|
| 159 | real,intent(in) :: tsoil(ngrid,nsoil_PEM,nslope) ! Soil temperature [K] |
---|
| 160 | ! outputs |
---|
| 161 | ! ----------- |
---|
| 162 | real,intent(out) :: delta_m_h2o(ngrid) ! Mass of H2O ice that has been condensed on the ice table / sublimates from the ice table [kg/m^2] |
---|
| 163 | |
---|
| 164 | ! local |
---|
| 165 | real :: rho(ngrid,nslope) ! density of water ice [kg/m^3] |
---|
| 166 | integer :: ig,islope,ilay,iref ! loop index |
---|
| 167 | real :: Tice(ngrid,nslope) ! ice temperature [k] |
---|
| 168 | ! Code |
---|
| 169 | ! ----------- |
---|
| 170 | rho(:,:) = 0. |
---|
| 171 | Tice(:,:) = 0. |
---|
| 172 | !1. First let's compute Tice using a linear interpolation between the mlayer level |
---|
| 173 | do ig = 1,ngrid |
---|
| 174 | do islope = 1,nslope |
---|
| 175 | if(ice_table_depth(ig,islope).gt.0.) then |
---|
| 176 | if (ice_table_depth(ig,islope).lt. 1e-10) then |
---|
| 177 | Tice(ig,islope) = tsoil(ig,1,islope) |
---|
| 178 | else |
---|
| 179 | iref=0 ! initialize iref |
---|
| 180 | do ilay=1,nsoil_PEM ! loop on layers to find the beginning of the ice table |
---|
| 181 | if (ice_table_depth(ig,islope).ge.mlayer_PEM(ilay)) then |
---|
| 182 | iref=ilay ! pure regolith layer up to here |
---|
| 183 | else |
---|
| 184 | ! correct iref was obtained in previous cycle |
---|
| 185 | exit |
---|
| 186 | endif |
---|
| 187 | enddo |
---|
| 188 | if(iref.eq.nsoil_PEM) then |
---|
| 189 | Tice(ig,islope) = tsoil(ig,nsoil_PEM,islope) |
---|
| 190 | else |
---|
| 191 | Tice(ig,islope) = (tsoil(ig,iref+1,islope) - tsoil(ig,iref,islope))/(mlayer_PEM(iref+1) - mlayer_PEM(iref))* & |
---|
| 192 | (ice_table_depth(ig,islope) - mlayer_PEM(iref)) + tsoil(ig,iref,islope) |
---|
| 193 | endif |
---|
| 194 | rho(ig,islope) = -3.5353e-4*Tice(ig,islope)**2+ 0.0351* Tice(ig,islope) + 933.5030 ! Rottgers, 2012 |
---|
| 195 | endif |
---|
| 196 | endif |
---|
| 197 | enddo |
---|
| 198 | enddo |
---|
| 199 | |
---|
| 200 | |
---|
| 201 | !2. Let's compute the amount of ice that has sublimated in each subslope |
---|
| 202 | do ig = 1,ngrid |
---|
| 203 | do islope = 1,nslope |
---|
[3032] | 204 | delta_m_h2o(ig) = delta_m_h2o(ig) + porosity*rho(ig,islope)*(new_ice_table_thickness(ig,islope) - former_ice_table_thickness(ig,islope)) & ! convention > 0. <=> it condenses |
---|
[3031] | 205 | *subslope_dist(ig,islope)/cos(def_slope_mean(islope)*pi/180.) |
---|
| 206 | enddo |
---|
| 207 | enddo |
---|
| 208 | |
---|
| 209 | return |
---|
| 210 | end subroutine |
---|
| 211 | |
---|
| 212 | !!! -------------------------------------- |
---|
| 213 | |
---|
[2902] | 214 | SUBROUTINE find_layering_icetable(porefill,psat_soil,psat_surf,pwat_surf,psat_bottom,B,index_IS,depth_filling,index_filling,index_geothermal,depth_geothermal,dz_etadz_rho) |
---|
| 215 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 216 | !!! |
---|
| 217 | !!! Purpose: Compute layering between dry soil, pore filling ice, and ice sheet based on Schorgofer, Icarus (2010). Adapted from NS MSIM |
---|
| 218 | !!! |
---|
| 219 | !!! Author: LL |
---|
| 220 | !!! |
---|
| 221 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 222 | use comsoil_h_PEM,only: nsoilmx_PEM,mlayer_PEM |
---|
[2961] | 223 | use math_mod, only: deriv1,deriv1_onesided,colint,findroot,deriv2_simple |
---|
[2902] | 224 | implicit none |
---|
| 225 | ! inputs |
---|
| 226 | ! ------ |
---|
[2888] | 227 | |
---|
[2902] | 228 | real,intent(in) :: porefill(nsoilmx_PEM) ! Fraction of pore space filled with ice [Unitless] 0 <= f <= 1 for pore ice |
---|
| 229 | real,intent(in) :: psat_soil(nsoilmx_PEM) ! Soil water pressure at saturation, yearly averaged [Pa] |
---|
| 230 | real,intent(in) :: psat_surf ! surface water pressure at saturation, yearly averaged [Pa] |
---|
| 231 | real,intent(in) :: pwat_surf ! Water vapor pressure at the surface, not necesseraly at saturation, yearly averaged [Pa] |
---|
| 232 | real,intent(in) :: psat_bottom ! Boundary conditions for soil vapor pressure [Pa] |
---|
| 233 | real,intent(in) :: B ! constant (Eq. 8 from Schorgofer, Icarus (2010).) |
---|
| 234 | integer, intent(in) :: index_IS ! index of the soil layer where the ice sheet begins [1] |
---|
| 235 | real, intent(inout) :: depth_filling ! depth where pore filling begins [m] |
---|
[2888] | 236 | |
---|
[2902] | 237 | ! outputs |
---|
| 238 | ! ------- |
---|
| 239 | integer,intent(out) :: index_filling ! index where the pore filling begins [1] |
---|
| 240 | integer, intent(out) :: index_geothermal ! index where the ice table stops [1] |
---|
| 241 | real, intent(out) :: depth_geothermal ! depth where the ice table stops [m] |
---|
| 242 | real, intent(out) :: dz_etadz_rho(nsoilmx_PEM) ! \partial z(eta \partial z rho), eta is the constriction, used later for pore filling increase |
---|
| 243 | |
---|
| 244 | ! local |
---|
| 245 | |
---|
| 246 | real :: eta(nsoilmx_PEM) ! constriction |
---|
| 247 | integer :: ilay ! index for loop |
---|
| 248 | real :: old_depth_filling ! depth_filling saved |
---|
| 249 | real :: dz_psat(nsoilmx_PEM) ! first derivative of the vapor pressure at saturationn |
---|
| 250 | integer :: index_tmp ! for loop |
---|
| 251 | real :: Jdry ! flux trought the dry layer |
---|
| 252 | real :: Jsat ! flux trought the ice layer |
---|
| 253 | real :: Jdry_prevlay,Jsat_prevlay ! same but for the previous ice layer |
---|
| 254 | integer :: index_firstice ! first index where ice appears (i.e., f > 0) |
---|
| 255 | real :: dz_eta(nsoilmx_PEM) ! \partial z \eta |
---|
| 256 | real :: dz_eta_low ! same but evaluated at the interface for ice |
---|
| 257 | real :: dzz_psat(nsoilmx_PEM) ! \partial \partial psat |
---|
| 258 | real :: massfillabove,massfillafter ! h2O mass above and after index_geothermal |
---|
| 259 | |
---|
| 260 | ! constant |
---|
| 261 | real :: pvap2rho = 18.e-3/8.314 |
---|
| 262 | ! |
---|
| 263 | |
---|
| 264 | ! 0. Compute constriction over the layer |
---|
| 265 | ! Within the ice sheet, constriction is set to 0. Elsewhere, constriction = (1-porefilling)**2 |
---|
| 266 | if (index_IS.lt.0) then |
---|
| 267 | index_tmp = nsoilmx_PEM |
---|
| 268 | do ilay = 1,nsoilmx_PEM |
---|
| 269 | call constriction(porefill(ilay),eta(ilay)) |
---|
| 270 | enddo |
---|
| 271 | else |
---|
| 272 | index_tmp = index_IS |
---|
| 273 | do ilay = 1,index_IS-1 |
---|
| 274 | call constriction(porefill(ilay),eta(ilay)) |
---|
| 275 | enddo |
---|
| 276 | do ilay = index_IS,nsoilmx_PEM |
---|
| 277 | eta(ilay) = 0. |
---|
| 278 | enddo |
---|
| 279 | endif |
---|
| 280 | |
---|
| 281 | ! 1. Depth at which pore filling occurs. We solve Eq. 9 from Schorgofer, Icarus (2010) |
---|
| 282 | |
---|
| 283 | old_depth_filling = depth_filling |
---|
| 284 | |
---|
| 285 | call deriv1(mlayer_PEM,nsoilmx_PEM,psat_soil,psat_surf,psat_bottom,dz_psat) |
---|
| 286 | |
---|
| 287 | do ilay = 1,index_tmp |
---|
| 288 | Jdry = (psat_soil(ilay) - pwat_surf)/mlayer_PEM(ilay) ! left member of Eq. 9 from Schorgofer, Icarus (2010) |
---|
| 289 | Jsat = eta(ilay)*dz_psat(ilay) !right member of Eq. 9 from Schorgofer, Icarus (2010) |
---|
| 290 | if((Jdry - Jsat).le.0) then |
---|
| 291 | index_filling = ilay |
---|
| 292 | exit |
---|
| 293 | endif |
---|
| 294 | enddo |
---|
| 295 | |
---|
| 296 | if(index_filling.eq.1) depth_filling = mlayer_PEM(1) |
---|
| 297 | |
---|
| 298 | if(index_filling.gt.1) then |
---|
| 299 | Jdry_prevlay = (psat_soil(index_filling-1) - pwat_surf)/mlayer_PEM(index_filling-1) |
---|
| 300 | Jsat_prevlay = eta(index_filling-1)*dz_psat(index_filling-1) |
---|
| 301 | call findroot(Jdry-Jsat,Jdry_prevlay-Jsat_prevlay,mlayer_PEM(index_filling),mlayer_PEM(index_filling-1),depth_filling) |
---|
| 302 | endif |
---|
| 303 | |
---|
| 304 | |
---|
| 305 | ! 2. Compute d_z (eta* d_z(rho)) (last term in Eq. 13 of Schorgofer, Icarus (2010)) |
---|
| 306 | |
---|
| 307 | |
---|
| 308 | ! 2.0 preliminary: depth to shallowest ice (discontinuity at interface) |
---|
| 309 | |
---|
| 310 | index_firstice = -1 |
---|
| 311 | do ilay = 1,nsoilmx_PEM |
---|
| 312 | if (porefill(ilay).le.0.) then |
---|
| 313 | index_firstice = ilay ! first point with ice |
---|
| 314 | exit |
---|
| 315 | endif |
---|
| 316 | enddo |
---|
| 317 | |
---|
| 318 | ! 2.1: now we can computeCompute d_z (eta* d_z(rho)) |
---|
| 319 | |
---|
| 320 | call deriv1(mlayer_PEM,nsoilmx_PEM,eta,1.,eta(nsoilmx_PEM-1),dz_eta) |
---|
| 321 | |
---|
| 322 | if ((index_firstice.gt.0).and.(index_firstice.lt.nsoilmx_PEM-2)) then |
---|
| 323 | call deriv1_onesided(index_firstice,mlayer_PEM,nsoilmx_PEM,eta,dz_eta(index_firstice)) |
---|
| 324 | endif |
---|
| 325 | |
---|
| 326 | call deriv2_simple(mlayer_PEM,nsoilmx_PEM,psat_soil,psat_surf,psat_bottom,dzz_psat) |
---|
| 327 | dz_etadz_rho(:) = pvap2rho*(dz_eta(:)*dz_psat(:) + eta(:)*dzz_psat(:)) |
---|
| 328 | |
---|
| 329 | ! 3. Ice table boundary due to geothermal heating |
---|
| 330 | |
---|
| 331 | if(index_IS.gt.0) index_geothermal = -1 |
---|
| 332 | if(index_geothermal.lt.0) depth_geothermal = -1. |
---|
| 333 | if((index_geothermal.gt.0).and.(index_IS.lt.0)) then ! Eq. 21 from Schorfoger, Icarus (2010) |
---|
| 334 | index_geothermal = -1 |
---|
| 335 | do ilay=2,nsoilmx_PEM |
---|
| 336 | if (dz_psat(ilay).gt.0.) then ! first point with reversed flux |
---|
| 337 | index_geothermal=ilay |
---|
| 338 | call findroot(dz_psat(ilay-1),dz_psat(ilay),mlayer_PEM(ilay-1),mlayer_PEM(ilay),depth_geothermal) |
---|
| 339 | exit |
---|
| 340 | endif |
---|
| 341 | enddo |
---|
| 342 | else |
---|
| 343 | index_geothermal = -1 |
---|
| 344 | endif |
---|
| 345 | if ((index_geothermal.gt.0).and.(index_IS.lt.0)) then ! Eq. 24 from Schorgofer, Icarus (2010) |
---|
| 346 | call colint(porefill(:)/eta(:),mlayer_PEM,nsoilmx_PEM,index_geothermal-1,nsoilmx_PEM,massfillabove) |
---|
| 347 | index_tmp = -1 |
---|
| 348 | do ilay=index_geothermal,nsoilmx_PEM |
---|
| 349 | if (minval(eta(ilay:nsoilmx_PEM)).le.0.) cycle ! eta=0 means completely full |
---|
| 350 | call colint(porefill(:)/eta(:),mlayer_PEM,nsoilmx_PEM,ilay,nsoilmx_PEM,massfillafter) |
---|
| 351 | if (massfillafter<dz_psat(ilay)*pvap2rho*B) then ! usually executes on i=typeG |
---|
| 352 | if (ilay>index_geothermal) then |
---|
| 353 | ! write(34,*) '# adjustment to geotherm depth by',ilay-index_geothermal |
---|
| 354 | call findroot(dz_psat(ilay-1)*pvap2rho*B-massfillabove, & |
---|
| 355 | dz_psat(ilay)*pvap2rho*B-massfillafter,mlayer_PEM(ilay-1),mlayer_PEM(ilay),depth_geothermal) |
---|
| 356 | ! if (depth_geothermal.gt.mlayer_PEM(ilay) .or. depth_geothermal.lt.<mlayer_PEM(ilay-1)) write(34,*) |
---|
| 357 | ! '# WARNING: zdepthG interpolation failed',ilay,mlayer_PEM(ilay-1),depth_geothermal,mlayer_PEM(ilay) |
---|
| 358 | index_tmp=ilay |
---|
| 359 | endif |
---|
| 360 | ! otherwise leave depth_geothermal unchanged |
---|
| 361 | exit |
---|
| 362 | endif |
---|
| 363 | massfillabove = massfillafter |
---|
| 364 | enddo |
---|
| 365 | if (index_tmp.gt.0) index_geothermal = index_tmp |
---|
| 366 | end if |
---|
| 367 | return |
---|
| 368 | end subroutine |
---|
| 369 | |
---|
[2980] | 370 | !!! -------------------------------------- |
---|
[2902] | 371 | |
---|
| 372 | SUBROUTINE constriction(porefill,eta) |
---|
| 373 | |
---|
| 374 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 375 | !!! |
---|
| 376 | !!! Purpose: Compute the constriction of vapor flux by pore ice |
---|
| 377 | !!! |
---|
| 378 | !!! Author: LL |
---|
| 379 | !!! |
---|
| 380 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 381 | implicit none |
---|
| 382 | real,intent(in) :: porefill ! pore filling fraction |
---|
| 383 | real,intent(out) :: eta ! constriction |
---|
| 384 | |
---|
| 385 | !!! |
---|
| 386 | |
---|
| 387 | if (porefill.le.0.) eta = 1. |
---|
| 388 | if ((porefill.gt.0.) .and.(porefill.lt.1.)) then |
---|
| 389 | eta = (1-porefill)**2 ! Hudson et al., JGR, 2009 |
---|
| 390 | endif |
---|
| 391 | if (porefill.le.1.) eta = 0. |
---|
| 392 | return |
---|
[2961] | 393 | end subroutine |
---|
[2902] | 394 | |
---|
[2961] | 395 | end module |
---|