1 | MODULE glaciers_mod |
---|
2 | |
---|
3 | implicit none |
---|
4 | |
---|
5 | |
---|
6 | ! Flags for ice management |
---|
7 | logical :: h2oice_flow ! True by default, to compute H2O ice flow. Read in "run_PEM.def" |
---|
8 | logical :: co2ice_flow ! True by default, to compute CO2 ice flow. Read in "run_PEM.def" |
---|
9 | logical :: metam_h2oice ! False by default, to compute H2O ice metamorphism. Read in "run_PEM.def" |
---|
10 | logical :: metam_co2ice ! False by default, to compute CO2 ice metamorphism. Read in "run_PEM.def" |
---|
11 | |
---|
12 | ! Thresholds for ice management |
---|
13 | real, save :: inf_h2oice_threshold ! To consider the amount of H2O ice as an infinite reservoir |
---|
14 | real, save :: metam_h2oice_threshold ! To consider frost is becoming perennial H2O ice |
---|
15 | real, save :: metam_co2ice_threshold ! To consider frost is becoming perennial CO2 ice |
---|
16 | |
---|
17 | !======================================================================= |
---|
18 | contains |
---|
19 | !======================================================================= |
---|
20 | |
---|
21 | SUBROUTINE flow_co2glaciers(timelen,ngrid,nslope,iflat,subslope_dist,def_slope_mean,vmr_co2_PEM,ps_PCM,global_avg_ps_PCM,global_avg_ps_PEM,co2ice,flag_co2flow,flag_co2flow_mesh) |
---|
22 | |
---|
23 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
24 | !!! |
---|
25 | !!! Purpose: Main for CO2 glaciers evolution: compute maximum thickness, and do |
---|
26 | !!! the ice transfer |
---|
27 | !!! |
---|
28 | !!! |
---|
29 | !!! Author: LL |
---|
30 | !!! |
---|
31 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
32 | |
---|
33 | implicit none |
---|
34 | |
---|
35 | ! arguments |
---|
36 | ! --------- |
---|
37 | |
---|
38 | ! Inputs: |
---|
39 | integer, intent(in) :: timelen, ngrid, nslope, iflat ! number of time sample, physical points, subslopes, index of the flat subslope |
---|
40 | real, dimension(ngrid,nslope), intent(in) :: subslope_dist ! Physical points x Slopes: Distribution of the subgrid slopes |
---|
41 | real, dimension(ngrid), intent(in) :: def_slope_mean ! Physical points: values of the sub grid slope angles |
---|
42 | real, dimension(ngrid,timelen), intent(in) :: vmr_co2_PEM ! Physical x Time field : VMR of co2 in the first layer [mol/mol] |
---|
43 | real, dimension(ngrid,timelen), intent(in) :: ps_PCM ! Physical x Time field: surface pressure given by the PCM [Pa] |
---|
44 | real, intent(in) :: global_avg_ps_PCM ! Global averaged surface pressure from the PCM [Pa] |
---|
45 | real, intent(in) :: global_avg_ps_PEM ! global averaged surface pressure during the PEM iteration [Pa] |
---|
46 | |
---|
47 | ! Ouputs: |
---|
48 | real, dimension(ngrid,nslope), intent(inout) :: co2ice ! Physical x Slope field: co2 ice on the subgrid slopes [kg/m^2] |
---|
49 | real, dimension(ngrid,nslope), intent(inout) :: flag_co2flow ! flag to see if there is flow on the subgrid slopes |
---|
50 | real, dimension(ngrid), intent(inout) :: flag_co2flow_mesh ! same but within the mesh |
---|
51 | |
---|
52 | ! Local |
---|
53 | real, dimension(ngrid,nslope) :: Tcond ! Physical field: CO2 condensation temperature [K] |
---|
54 | real, dimension(ngrid,nslope) :: hmax ! Physical x Slope field: maximum thickness for co2 glacier before flow |
---|
55 | |
---|
56 | !----------------------------- |
---|
57 | write(*,*) "Flow of CO2 glacier" |
---|
58 | |
---|
59 | call computeTcondCO2(timelen,ngrid,nslope,vmr_co2_PEM,ps_PCM,global_avg_ps_PCM,global_avg_ps_PEM,Tcond) |
---|
60 | call compute_hmaxglaciers(ngrid,nslope,iflat,def_slope_mean,Tcond,"co2",hmax) |
---|
61 | call transfer_ice_duringflow(ngrid,nslope,iflat, subslope_dist,def_slope_mean,hmax,Tcond,"co2",co2ice,flag_co2flow,flag_co2flow_mesh) |
---|
62 | |
---|
63 | END SUBROUTINE flow_co2glaciers |
---|
64 | |
---|
65 | !======================================================================= |
---|
66 | |
---|
67 | SUBROUTINE flow_h2oglaciers(timelen,ngrid,nslope,iflat,subslope_dist,def_slope_mean,Tice,h2oice,flag_h2oflow,flag_h2oflow_mesh) |
---|
68 | |
---|
69 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
70 | !!! |
---|
71 | !!! Purpose: Main for H2O glaciers evolution: compute maximum thickness, and do |
---|
72 | !!! the ice transfer |
---|
73 | !!! |
---|
74 | !!! |
---|
75 | !!! Author: LL |
---|
76 | !!! |
---|
77 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
78 | |
---|
79 | implicit none |
---|
80 | |
---|
81 | ! arguments |
---|
82 | ! --------- |
---|
83 | |
---|
84 | ! Inputs: |
---|
85 | integer,intent(in) :: timelen,ngrid,nslope,iflat ! number of time sample, physical points, subslopes, index of the flat subslope |
---|
86 | real,intent(in) :: subslope_dist(ngrid,nslope), def_slope_mean(ngrid) ! Physical points x Slopes : Distribution of the subgrid slopes; Slopes: values of the sub grid slope angles |
---|
87 | real,intent(in) :: Tice(ngrid,nslope) ! Ice Temperature [K] |
---|
88 | ! Ouputs: |
---|
89 | real,intent(inout) :: h2oice(ngrid,nslope) ! Physical x Slope field: co2 ice on the subgrid slopes [kg/m^2] |
---|
90 | real,intent(inout) :: flag_h2oflow(ngrid,nslope) ! flag to see if there is flow on the subgrid slopes |
---|
91 | real,intent(inout) :: flag_h2oflow_mesh(ngrid) ! same but within the mesh |
---|
92 | ! Local |
---|
93 | real :: hmax(ngrid,nslope) ! Physical x Slope field: maximum thickness for co2 glacier before flow |
---|
94 | |
---|
95 | !----------------------------- |
---|
96 | write(*,*) "Flow of H2O glaciers" |
---|
97 | |
---|
98 | call compute_hmaxglaciers(ngrid,nslope,iflat,def_slope_mean,Tice,"h2o",hmax) |
---|
99 | call transfer_ice_duringflow(ngrid,nslope,iflat, subslope_dist,def_slope_mean,hmax,Tice,"h2o",h2oice,flag_h2oflow,flag_h2oflow_mesh) |
---|
100 | |
---|
101 | END SUBROUTINE flow_h2oglaciers |
---|
102 | |
---|
103 | !======================================================================= |
---|
104 | |
---|
105 | SUBROUTINE compute_hmaxglaciers(ngrid,nslope,iflat,def_slope_mean,Tice,name_ice,hmax) |
---|
106 | |
---|
107 | use abort_pem_mod, only: abort_pem |
---|
108 | #ifndef CPP_STD |
---|
109 | use comcstfi_h, only: pi, g |
---|
110 | #else |
---|
111 | use comcstfi_mod, only: pi, g |
---|
112 | #endif |
---|
113 | |
---|
114 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
115 | !!! |
---|
116 | !!! Purpose: Compute the maximum thickness of CO2 and H2O glaciers given a slope angle |
---|
117 | !!! before initating flow |
---|
118 | !!! |
---|
119 | !!! Author: LL,based on work by A.Grau Galofre (LPG) and Isaac Smith (JGR Planets 2022) |
---|
120 | !!! |
---|
121 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
122 | |
---|
123 | implicit none |
---|
124 | |
---|
125 | ! arguments |
---|
126 | ! -------- |
---|
127 | |
---|
128 | ! Inputs |
---|
129 | integer,intent(in) :: ngrid,nslope ! # of grid points and subslopes |
---|
130 | integer,intent(in) :: iflat ! index of the flat subslope |
---|
131 | real,intent(in) :: def_slope_mean(nslope) ! Slope field: Values of the subgrid slope angles [deg] |
---|
132 | real,intent(in) :: Tice(ngrid,nslope) ! Physical field: ice temperature [K] |
---|
133 | character(len=3), intent(in) :: name_ice ! Nature of the ice |
---|
134 | ! Outputs |
---|
135 | real,intent(out) :: hmax(ngrid,nslope) ! Physical grid x Slope field: maximum thickness before flaw [m] |
---|
136 | ! Local |
---|
137 | DOUBLE PRECISION :: tau_d ! characteristic basal drag, understood as the stress that an ice mass flowing under its weight balanced by viscosity. Value obtained from I.Smith |
---|
138 | real :: rho(ngrid,nslope) ! co2 ice density [kg/m^3] |
---|
139 | integer :: ig,islope ! loop variables |
---|
140 | real :: slo_angle |
---|
141 | |
---|
142 | ! 1. Compute rho |
---|
143 | if(name_ice.eq."co2") then |
---|
144 | DO ig = 1,ngrid |
---|
145 | DO islope = 1,nslope |
---|
146 | rho(ig,islope) = (1.72391 - 2.53e-4*Tice(ig,islope)-2.87*1e-7*Tice(ig,islope)**2)*1e3 ! Mangan et al. 2017 |
---|
147 | tau_d = 5.e3 |
---|
148 | ENDDO |
---|
149 | ENDDO |
---|
150 | elseif (name_ice.eq."h2o") then |
---|
151 | DO ig = 1,ngrid |
---|
152 | DO islope = 1,nslope |
---|
153 | rho(ig,islope) = -3.5353e-4*Tice(ig,islope)**2+ 0.0351* Tice(ig,islope) + 933.5030 ! Rottgers, 2012 |
---|
154 | tau_d = 1.e5 |
---|
155 | ENDDO |
---|
156 | ENDDO |
---|
157 | else |
---|
158 | call abort_pem("PEM - Transfer ice","Name of ice is not co2 or h2o",1) |
---|
159 | endif |
---|
160 | |
---|
161 | ! 3. Compute max thickness |
---|
162 | DO ig = 1,ngrid |
---|
163 | DO islope = 1,nslope |
---|
164 | if(islope.eq.iflat) then |
---|
165 | hmax(ig,islope) = 1.e8 |
---|
166 | else |
---|
167 | slo_angle = abs(def_slope_mean(islope)*pi/180.) |
---|
168 | hmax(ig,islope) = tau_d/(rho(ig,islope)*g*slo_angle) |
---|
169 | endif |
---|
170 | ENDDO |
---|
171 | ENDDO |
---|
172 | END SUBROUTINE compute_hmaxglaciers |
---|
173 | |
---|
174 | !======================================================================= |
---|
175 | |
---|
176 | SUBROUTINE transfer_ice_duringflow(ngrid,nslope,iflat,subslope_dist,def_slope_mean,hmax,Tice,name_ice,qice,flag_flow,flag_flowmesh) |
---|
177 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
178 | !!! |
---|
179 | !!! Purpose: Transfer the excess of ice from one subslope to another |
---|
180 | !!! No transfer between mesh at the time |
---|
181 | !!! Author: LL |
---|
182 | !!! |
---|
183 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
184 | |
---|
185 | use abort_pem_mod, only: abort_pem |
---|
186 | #ifndef CPP_STD |
---|
187 | use comcstfi_h, only: pi |
---|
188 | #else |
---|
189 | use comcstfi_mod, only: pi |
---|
190 | #endif |
---|
191 | |
---|
192 | implicit none |
---|
193 | |
---|
194 | ! arguments |
---|
195 | ! -------- |
---|
196 | |
---|
197 | ! Inputs |
---|
198 | integer, intent(in) :: ngrid,nslope !# of physical points and subslope |
---|
199 | integer, intent(in) :: iflat ! index of the flat subslope |
---|
200 | real, intent(in) :: subslope_dist(ngrid,nslope) ! Distribution of the subgrid slopes within the mesh |
---|
201 | real, intent(in) :: def_slope_mean(nslope) ! values of the subgrid slopes |
---|
202 | real, intent(in) :: hmax(ngrid,nslope) ! maximum height of the glaciers before initiating flow [m] |
---|
203 | real, intent(in) :: Tice(ngrid,nslope) ! Ice temperature[K] |
---|
204 | character(len=3), intent(in) :: name_ice ! Nature of the ice |
---|
205 | |
---|
206 | ! Outputs |
---|
207 | real, intent(inout) :: qice(ngrid,nslope) ! CO2 in the subslope [kg/m^2] |
---|
208 | real, intent(inout) :: flag_flow(ngrid,nslope) ! boolean to check if there is flow on a subgrid slope |
---|
209 | real, intent(inout) :: flag_flowmesh(ngrid) ! boolean to check if there is flow in the mesh |
---|
210 | ! Local |
---|
211 | integer ig,islope ! loop |
---|
212 | real rho(ngrid,nslope) ! density of ice, temperature dependant [kg/m^3] |
---|
213 | integer iaval ! ice will be transfered here |
---|
214 | |
---|
215 | ! 0. Compute rho |
---|
216 | if(name_ice.eq."co2") then |
---|
217 | DO ig = 1,ngrid |
---|
218 | DO islope = 1,nslope |
---|
219 | rho(ig,islope) = (1.72391 - 2.53e-4*Tice(ig,islope)-2.87*1e-7*Tice(ig,islope)**2)*1e3 ! Mangan et al. 2017 |
---|
220 | ENDDO |
---|
221 | ENDDO |
---|
222 | elseif (name_ice.eq."h2o") then |
---|
223 | DO ig = 1,ngrid |
---|
224 | DO islope = 1,nslope |
---|
225 | rho(ig,islope) = -3.5353e-4*Tice(ig,islope)**2+ 0.0351* Tice(ig,islope) + 933.5030 ! Rottgers, 2012 |
---|
226 | ENDDO |
---|
227 | ENDDO |
---|
228 | else |
---|
229 | call abort_pem("PEM - Transfer ice","Name of ice is not co2 or h2o",1) |
---|
230 | endif |
---|
231 | |
---|
232 | ! 1. Compute the transfer of ice |
---|
233 | |
---|
234 | DO ig = 1,ngrid |
---|
235 | DO islope = 1,nslope |
---|
236 | IF(islope.ne.iflat) THEN ! ice can be infinite on flat ground |
---|
237 | ! First: check that CO2 ice must flow (excess of ice on the slope), ice can accumulate infinitely on flat ground |
---|
238 | IF(qice(ig,islope).ge.rho(ig,islope)*hmax(ig,islope) * & |
---|
239 | cos(pi*def_slope_mean(islope)/180.)) THEN |
---|
240 | ! Second: determine the flatest slopes possible: |
---|
241 | IF(islope.gt.iflat) THEN |
---|
242 | iaval=islope-1 |
---|
243 | ELSE |
---|
244 | iaval=islope+1 |
---|
245 | ENDIF |
---|
246 | do while ((iaval.ne.iflat).and. & |
---|
247 | (subslope_dist(ig,iaval).eq.0)) |
---|
248 | IF(iaval.gt.iflat) THEN |
---|
249 | iaval=iaval-1 |
---|
250 | ELSE |
---|
251 | iaval=iaval+1 |
---|
252 | ENDIF |
---|
253 | enddo |
---|
254 | qice(ig,iaval) = qice(ig,iaval) + & |
---|
255 | (qice(ig,islope) - rho(ig,islope)*hmax(ig,islope) * & |
---|
256 | cos(pi*def_slope_mean(islope)/180.)) * & |
---|
257 | subslope_dist(ig,islope)/subslope_dist(ig,iaval) * & |
---|
258 | cos(pi*def_slope_mean(iaval)/180.) / & |
---|
259 | cos(pi*def_slope_mean(islope)/180.) |
---|
260 | |
---|
261 | qice(ig,islope)=rho(ig,islope)*hmax(ig,islope) * & |
---|
262 | cos(pi*def_slope_mean(islope)/180.) |
---|
263 | |
---|
264 | flag_flow(ig,islope) = 1. |
---|
265 | flag_flowmesh(ig) = 1. |
---|
266 | ENDIF ! co2ice > hmax |
---|
267 | ENDIF ! iflat |
---|
268 | ENDDO !islope |
---|
269 | ENDDO !ig |
---|
270 | END SUBROUTINE |
---|
271 | |
---|
272 | !======================================================================= |
---|
273 | |
---|
274 | SUBROUTINE computeTcondCO2(timelen,ngrid,nslope,vmr_co2_PEM,ps_PCM,global_avg_ps_PCM,global_avg_ps_PEM,Tcond) |
---|
275 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
276 | !!! |
---|
277 | !!! Purpose: Compute CO2 condensation temperature |
---|
278 | !!! |
---|
279 | !!! Author: LL |
---|
280 | !!! |
---|
281 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
282 | |
---|
283 | use constants_marspem_mod,only : alpha_clap_co2,beta_clap_co2 |
---|
284 | |
---|
285 | implicit none |
---|
286 | |
---|
287 | ! arguments: |
---|
288 | ! ---------- |
---|
289 | |
---|
290 | ! INPUT |
---|
291 | integer, intent(in) :: timelen, ngrid, nslope ! # of timesample, physical points, subslopes |
---|
292 | real, dimension(ngrid,timelen), intent(in) :: vmr_co2_PEM ! Physical points x times field: VMR of CO2 in the first layer [mol/mol] |
---|
293 | real, dimension(ngrid,timelen), intent(in) :: ps_PCM ! Physical points x times field: surface pressure in the PCM [Pa] |
---|
294 | real, intent(in) :: global_avg_ps_PCM ! Global averaged surfacepressure in the PCM [Pa] |
---|
295 | real, intent(in) :: global_avg_ps_PEM ! Global averaged surface pressure computed during the PEM iteration |
---|
296 | |
---|
297 | ! OUTPUT |
---|
298 | real, dimension(ngrid,nslope), intent(out) :: Tcond ! Physical points: condensation temperature of CO2, yearly averaged |
---|
299 | |
---|
300 | ! LOCAL |
---|
301 | integer :: ig, it ! For loop |
---|
302 | real :: ave ! Intermediate to compute average |
---|
303 | |
---|
304 | !!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
305 | do ig = 1,ngrid |
---|
306 | ave = 0 |
---|
307 | do it = 1,timelen |
---|
308 | ave = ave + beta_clap_co2/(alpha_clap_co2 - log(vmr_co2_PEM(ig,it)*ps_PCM(ig,it)*global_avg_ps_PCM/global_avg_ps_PEM/100)) |
---|
309 | enddo |
---|
310 | Tcond(ig,:) = ave/timelen |
---|
311 | enddo |
---|
312 | |
---|
313 | END SUBROUTINE computeTcondCO2 |
---|
314 | |
---|
315 | END MODULE glaciers_mod |
---|