1 | MODULE evol_h2o_ice_s_mod |
---|
2 | |
---|
3 | IMPLICIT NONE |
---|
4 | |
---|
5 | CONTAINS |
---|
6 | |
---|
7 | SUBROUTINE evol_h2o_ice_s(ngrid,nslope,cell_area,delta_h2o_adsorbded,delta_h2o_icetablesublim,qsurf,tendencies_h2o_ice_phys,STOPPING) |
---|
8 | |
---|
9 | use time_evol_mod, only: dt_pem |
---|
10 | use comslope_mod, only: subslope_dist, def_slope_mean |
---|
11 | use criterion_pem_stop_mod, only: criterion_waterice_stop |
---|
12 | #ifndef CPP_STD |
---|
13 | use comcstfi_h, only: pi |
---|
14 | #else |
---|
15 | use comcstfi_mod, only: pi |
---|
16 | #endif |
---|
17 | |
---|
18 | IMPLICIT NONE |
---|
19 | |
---|
20 | !======================================================================= |
---|
21 | ! |
---|
22 | ! Routine that compute the evolution of the water ice |
---|
23 | ! |
---|
24 | !======================================================================= |
---|
25 | |
---|
26 | ! arguments: |
---|
27 | ! ---------- |
---|
28 | |
---|
29 | ! INPUT |
---|
30 | |
---|
31 | INTEGER, intent(in) :: ngrid ! # of grid points along longitude/latitude grid; |
---|
32 | INTEGER, intent(in) :: nslope ! # of subslope |
---|
33 | REAL, intent(in) :: cell_area(ngrid) ! Area of each mesh grid (m^2) |
---|
34 | REAL, intent(in) :: delta_h2o_adsorbded(ngrid) ! Mass of H2O adsorbded/desorbded in the soil (kg/m^2) |
---|
35 | REAL, intent(in) :: delta_h2o_icetablesublim(ngrid) ! Mass of H2O that have condensed/sublimated at the ice table (kg/m^2) |
---|
36 | |
---|
37 | ! OUTPUT |
---|
38 | REAL, INTENT(INOUT) :: qsurf(ngrid,nslope) ! physical point field : Previous and actual density of water ice (kg/m^2) |
---|
39 | REAL, intent(inout) :: tendencies_h2o_ice_phys(ngrid,nslope) ! physical point field : Evolution of perenial ice over one year (kg/m^2/year) |
---|
40 | LOGICAL, INTENT(INOUT) :: STOPPING ! Stopping criterion |
---|
41 | |
---|
42 | ! local: |
---|
43 | ! ---- |
---|
44 | |
---|
45 | INTEGER :: i,j,islope ! loop variable |
---|
46 | REAL :: pos_tend, neg_tend, real_coefficient,negative_part ! Variable to conserve water |
---|
47 | REAL :: new_tendencies(ngrid,nslope) ! Tendencies computed in order to conserve water ice on the surface, only exchange between surface are done |
---|
48 | |
---|
49 | !======================================================================= |
---|
50 | |
---|
51 | STOPPING=.false. |
---|
52 | |
---|
53 | pos_tend=0. |
---|
54 | neg_tend=0. |
---|
55 | if (ngrid.NE.1) then ! to make sure we are not in 1D |
---|
56 | ! We compute the amount of water accumulating and sublimating |
---|
57 | do i=1,ngrid |
---|
58 | if(delta_h2o_adsorbded(i).GT.0) then |
---|
59 | pos_tend=pos_tend+delta_h2o_adsorbded(i)*cell_area(i) |
---|
60 | else |
---|
61 | neg_tend=neg_tend+delta_h2o_adsorbded(i)*cell_area(i) |
---|
62 | endif |
---|
63 | if(delta_h2o_icetablesublim(i).GT.0) then |
---|
64 | pos_tend=pos_tend+delta_h2o_icetablesublim(i)*cell_area(i) |
---|
65 | else |
---|
66 | neg_tend=neg_tend+delta_h2o_icetablesublim(i)*cell_area(i) |
---|
67 | endif |
---|
68 | do islope=1,nslope |
---|
69 | if (qsurf(i,islope).GT.0) then |
---|
70 | if (tendencies_h2o_ice_phys(i,islope).GT.0) then |
---|
71 | pos_tend=pos_tend+tendencies_h2o_ice_phys(i,islope)*cell_area(i)*subslope_dist(i,islope)/cos(def_slope_mean(islope)*pi/180.) |
---|
72 | else |
---|
73 | neg_tend=neg_tend-tendencies_h2o_ice_phys(i,islope)*cell_area(i)*subslope_dist(i,islope)/cos(def_slope_mean(islope)*pi/180.) |
---|
74 | endif |
---|
75 | endif |
---|
76 | enddo |
---|
77 | enddo |
---|
78 | ! We adapt the tendencies to conserve water and do only exchange between grid points |
---|
79 | if(neg_tend.GT.pos_tend .and. pos_tend.GT.0) then ! We are sublimating more in the planet than condensing |
---|
80 | do i=1,ngrid |
---|
81 | do islope=1,nslope |
---|
82 | if(tendencies_h2o_ice_phys(i,islope).LT.0) then ! We lower the sublimating rate by a coefficient |
---|
83 | new_tendencies(i,islope)=tendencies_h2o_ice_phys(i,islope)*(pos_tend/neg_tend) |
---|
84 | else ! We dont't change the accumulating rate |
---|
85 | new_tendencies(i,islope)=tendencies_h2o_ice_phys(i,islope) |
---|
86 | endif |
---|
87 | enddo |
---|
88 | enddo |
---|
89 | elseif(neg_tend.LT.pos_tend .and. neg_tend.GT.0) then ! We are condensing more in the planet than sublimating |
---|
90 | do i=1,ngrid |
---|
91 | do islope=1,nslope |
---|
92 | if(tendencies_h2o_ice_phys(i,islope).LT.0) then ! We dont't change the sublimating rate |
---|
93 | new_tendencies(i,islope)=tendencies_h2o_ice_phys(i,islope) |
---|
94 | else ! We lower the condensing rate by a coefficient |
---|
95 | new_tendencies(i,islope)=tendencies_h2o_ice_phys(i,islope)*(neg_tend/pos_tend) |
---|
96 | endif |
---|
97 | enddo |
---|
98 | enddo |
---|
99 | elseif(pos_tend.EQ.0 .OR. neg_tend.EQ.0) then |
---|
100 | write(*,*) "Reason of stopping : There is either no water ice sublimating or no water ice increasing !!" |
---|
101 | write(*,*) "Tendencies on ice sublimating=", neg_tend |
---|
102 | write(*,*) "Tendencies on ice increasing=", pos_tend |
---|
103 | write(*,*) "This can be due to the absence of water ice in the PCM run!!" |
---|
104 | call criterion_waterice_stop(cell_area,1.,qsurf(:,:)*0.,STOPPING,ngrid,qsurf(:,:)*0.) |
---|
105 | do i=1,ngrid |
---|
106 | do islope=1,nslope |
---|
107 | new_tendencies(i,islope)=0 |
---|
108 | enddo |
---|
109 | enddo |
---|
110 | endif |
---|
111 | negative_part = 0. |
---|
112 | |
---|
113 | ! Evolution of the water ice for each physical point |
---|
114 | do i=1,ngrid |
---|
115 | do islope=1, nslope |
---|
116 | qsurf(i,islope)=qsurf(i,islope)+new_tendencies(i,islope)*dt_pem |
---|
117 | ! We compute the amount of water that is sublimated in excess |
---|
118 | if (qsurf(i,islope).lt.0) then |
---|
119 | negative_part=negative_part-qsurf(i,islope)*cell_area(i)*subslope_dist(i,islope)/cos(def_slope_mean(islope)*pi/180.) |
---|
120 | qsurf(i,islope)=0. |
---|
121 | tendencies_h2o_ice_phys(i,islope)=0. |
---|
122 | endif |
---|
123 | enddo |
---|
124 | enddo |
---|
125 | |
---|
126 | |
---|
127 | if(pos_tend.eq.0) then |
---|
128 | real_coefficient = 0. |
---|
129 | else |
---|
130 | real_coefficient = negative_part/pos_tend ! We compute a coefficient by which we should remove the ice that has been added |
---|
131 | ! to places even if this ice was contributing to an unphysical negative amount |
---|
132 | ! of ice at other places |
---|
133 | endif |
---|
134 | do i=1,ngrid |
---|
135 | do islope=1, nslope |
---|
136 | if(new_tendencies(i,islope).GT.0) then ! In the place of accumulation of ice, we remove a bit of ice in order to conserve water |
---|
137 | qsurf(i,islope)=qsurf(i,islope)-new_tendencies(i,islope)*real_coefficient*dt_pem*cos(def_slope_mean(islope)*pi/180.) |
---|
138 | endif |
---|
139 | enddo |
---|
140 | enddo |
---|
141 | else ! ngrid==1; |
---|
142 | do islope=1, nslope |
---|
143 | qsurf(1,islope)=qsurf(1,islope)+tendencies_h2o_ice_phys(1,islope)*dt_pem |
---|
144 | enddo |
---|
145 | endif |
---|
146 | |
---|
147 | END SUBROUTINE evol_h2o_ice_s |
---|
148 | |
---|
149 | END MODULE evol_h2o_ice_s_mod |
---|