1 | #!/usr/bin/env python3 |
---|
2 | ####################################################################################### |
---|
3 | ### Python script to output the stratification data from the "restartpem#.nc" files ### |
---|
4 | ####################################################################################### |
---|
5 | |
---|
6 | import os |
---|
7 | import sys |
---|
8 | import numpy as np |
---|
9 | import netCDF4 as nc |
---|
10 | import matplotlib.pyplot as plt |
---|
11 | |
---|
12 | |
---|
13 | def get_int_input(prompt: str, min_val: int, max_val: int) -> int: |
---|
14 | """ |
---|
15 | Prompt the user for an integer between min_val and max_val (inclusive). |
---|
16 | If min_val == max_val, return min_val without prompting. |
---|
17 | """ |
---|
18 | if min_val == max_val: |
---|
19 | print(f"{prompt} (only possible value: {min_val})") |
---|
20 | return min_val |
---|
21 | |
---|
22 | while True: |
---|
23 | try: |
---|
24 | value = int(input(f"{prompt} (integer between {min_val} and {max_val}): ")) |
---|
25 | if min_val <= value <= max_val: |
---|
26 | return value |
---|
27 | print(f"Invalid value! Please enter a number between {min_val} and {max_val}.") |
---|
28 | except ValueError: |
---|
29 | print("Invalid input. Please enter a valid integer.") |
---|
30 | |
---|
31 | |
---|
32 | def get_yes_no_input(prompt: str) -> bool: |
---|
33 | """ |
---|
34 | Prompt the user with a yes/no question. Returns True for yes, False for no. |
---|
35 | """ |
---|
36 | while True: |
---|
37 | choice = input(f"{prompt} (y/n): ").strip().lower() |
---|
38 | if choice in ['y', 'yes']: |
---|
39 | return True |
---|
40 | elif choice in ['n', 'no']: |
---|
41 | return False |
---|
42 | else: |
---|
43 | print("Please respond with y or n.") |
---|
44 | |
---|
45 | |
---|
46 | def load_slope_variables(nc_dataset: nc.Dataset, slope_index: int) -> dict: |
---|
47 | """ |
---|
48 | Load all relevant stratification variables for a given slope index (0-based). |
---|
49 | Returns a dict of NumPy arrays. |
---|
50 | """ |
---|
51 | idx_str = str(slope_index + 1).zfill(2) |
---|
52 | vars_base = { |
---|
53 | 'top_elev': f"stratif_slope{idx_str}_top_elevation", |
---|
54 | 'h_co2': f"stratif_slope{idx_str}_h_co2ice", |
---|
55 | 'h_h2o': f"stratif_slope{idx_str}_h_h2oice", |
---|
56 | 'h_dust': f"stratif_slope{idx_str}_h_dust", |
---|
57 | 'h_pore': f"stratif_slope{idx_str}_h_pore", |
---|
58 | 'poreice_volfrac': f"stratif_slope{idx_str}_poreice_volfrac", |
---|
59 | } |
---|
60 | |
---|
61 | data = {} |
---|
62 | for key, var_name in vars_base.items(): |
---|
63 | if var_name not in nc_dataset.variables: |
---|
64 | sys.exit(f"Error: Variable '{var_name}' not found in the NetCDF file.") |
---|
65 | data[key] = nc_dataset.variables[var_name][:] |
---|
66 | return data |
---|
67 | |
---|
68 | |
---|
69 | def calculate_contents(data: dict, grid_index: int, exclude_subsurface: bool) -> (np.ndarray, np.ndarray, np.ndarray): |
---|
70 | """ |
---|
71 | For a given slope's stratification data and a specified grid index (0-based), |
---|
72 | compute the height array, layer thicknesses, and layer-wise volume fractions. |
---|
73 | If exclude_subsurface is True, omit layers whose top elevation <= 0. |
---|
74 | |
---|
75 | Returns: |
---|
76 | - height: 1D array of elevations (length = number_of_layers + 1) |
---|
77 | - contents: 2D array of shape (5, number_of_layers + 1), each row for a component |
---|
78 | - thicknesses: 1D array of layer thicknesses (length = number_of_layers) |
---|
79 | """ |
---|
80 | top = data['top_elev'] |
---|
81 | h_co2 = data['h_co2'] |
---|
82 | h_h2o = data['h_h2o'] |
---|
83 | h_dust = data['h_dust'] |
---|
84 | h_pore = data['h_pore'] |
---|
85 | poreice_volfrac = data['poreice_volfrac'] |
---|
86 | |
---|
87 | layers = top.shape[1] |
---|
88 | # Compute raw height and thickness arrays |
---|
89 | raw_height = np.zeros(layers + 1) |
---|
90 | raw_thickness = np.zeros(layers) |
---|
91 | |
---|
92 | total_thickness0 = ( |
---|
93 | h_co2[0, 0, grid_index] |
---|
94 | + h_h2o[0, 0, grid_index] |
---|
95 | + h_dust[0, 0, grid_index] |
---|
96 | + h_pore[0, 0, grid_index] |
---|
97 | ) |
---|
98 | raw_height[0] = top[0, 0, grid_index] - total_thickness0 |
---|
99 | raw_height[1:] = top[0, :, grid_index] |
---|
100 | |
---|
101 | for i in range(layers): |
---|
102 | raw_thickness[i] = ( |
---|
103 | h_co2[0, i, grid_index] |
---|
104 | + h_h2o[0, i, grid_index] |
---|
105 | + h_dust[0, i, grid_index] |
---|
106 | + h_pore[0, i, grid_index] |
---|
107 | ) |
---|
108 | |
---|
109 | include_mask = np.ones(layers, dtype=bool) |
---|
110 | if exclude_subsurface: |
---|
111 | include_mask = raw_height[1:] > 0 |
---|
112 | if exclude_subsurface and not include_mask.any() and raw_height[0] <= 0: |
---|
113 | sys.exit("Error: No layers remain above the surface (elevation > 0).") |
---|
114 | |
---|
115 | filt_layers = np.where(include_mask)[0] |
---|
116 | num_filt = len(filt_layers) |
---|
117 | height = np.zeros(num_filt + 1) |
---|
118 | thicknesses = np.zeros(num_filt) |
---|
119 | |
---|
120 | if exclude_subsurface and raw_height[0] <= 0: |
---|
121 | height[0] = raw_height[filt_layers[0] + 1] - raw_thickness[filt_layers[0]] |
---|
122 | else: |
---|
123 | height[0] = raw_height[0] |
---|
124 | |
---|
125 | for idx, layer_idx in enumerate(filt_layers): |
---|
126 | height[idx + 1] = raw_height[layer_idx + 1] |
---|
127 | thicknesses[idx] = raw_thickness[layer_idx] |
---|
128 | |
---|
129 | contents = np.zeros((5, num_filt + 1)) |
---|
130 | for idx, layer_idx in enumerate(filt_layers): |
---|
131 | thickness = raw_thickness[layer_idx] |
---|
132 | if thickness <= 0: |
---|
133 | continue |
---|
134 | co2 = h_co2[0, layer_idx, grid_index] / thickness |
---|
135 | h2o = h_h2o[0, layer_idx, grid_index] / thickness |
---|
136 | dust = h_dust[0, layer_idx, grid_index] / thickness |
---|
137 | air = h_pore[0, layer_idx, grid_index] * (1.0 - poreice_volfrac[0, layer_idx, grid_index]) / thickness |
---|
138 | poreice = h_pore[0, layer_idx, grid_index] * poreice_volfrac[0, layer_idx, grid_index] / thickness |
---|
139 | contents[:, idx + 1] = [co2, h2o, dust, air, poreice] |
---|
140 | |
---|
141 | if num_filt > 0: |
---|
142 | contents[:, 0] = contents[:, 1] |
---|
143 | |
---|
144 | return height, contents, thicknesses |
---|
145 | |
---|
146 | |
---|
147 | def plot_profiles(height: np.ndarray, contents: np.ndarray, thicknesses: np.ndarray, labels: tuple[str, ...]) -> None: |
---|
148 | """ |
---|
149 | Create and save plots: |
---|
150 | 1. Simple step profiles (each component in its own subplot) |
---|
151 | 2. Overlaid step profiles (all components on one plot) |
---|
152 | 3. Stacked fill-between profile with relative fractions |
---|
153 | """ |
---|
154 | n_components = contents.shape[0] |
---|
155 | colors = ['r', 'b', 'y', 'violet', 'c'] |
---|
156 | |
---|
157 | # 1. Simple subplots |
---|
158 | fig, axes = plt.subplots(1, n_components, sharey=True, constrained_layout=True) |
---|
159 | fig.suptitle('Simple Content Profiles for Stratification') |
---|
160 | |
---|
161 | for idx, ax in enumerate(axes): |
---|
162 | ax.step(contents[idx, :], height, where='post', color=colors[idx]) |
---|
163 | ax.set_xlim(0, 1) |
---|
164 | ax.set_xlabel('Volume Fraction [m^3/m^3]') |
---|
165 | ax.set_title(labels[idx]) |
---|
166 | if idx == 0: |
---|
167 | ax.set_ylabel('Elevation [m]') |
---|
168 | # Add major and minor grids on y-axis |
---|
169 | ax.grid(which='major', axis='y', linestyle='--', linewidth=0.5, color='0.8') |
---|
170 | ax.minorticks_on() |
---|
171 | ax.grid(which='minor', axis='y', linestyle=':', linewidth=0.3, color='0.9') |
---|
172 | plt.savefig('layering_simple_profiles.png') |
---|
173 | |
---|
174 | # 2. Overlaid step profiles |
---|
175 | plt.figure() |
---|
176 | for idx, label in enumerate(labels): |
---|
177 | plt.step(contents[idx, :], height, where='post', color=colors[idx], label=label) |
---|
178 | plt.grid(axis='x', color='0.95') |
---|
179 | plt.grid(axis='y', color='0.95') |
---|
180 | plt.minorticks_on() |
---|
181 | plt.grid(which='minor', axis='y', linestyle=':', linewidth=0.3, color='0.9') |
---|
182 | plt.xlim(0, 1) |
---|
183 | plt.xlabel('Volume Fraction [m^3/m^3]') |
---|
184 | plt.ylabel('Elevation [m]') |
---|
185 | plt.title('Content Profiles for Stratification') |
---|
186 | plt.legend() |
---|
187 | plt.savefig('layering_overlaid_profiles.png') |
---|
188 | |
---|
189 | # 3. Stacked fill-between profile with relative fractions |
---|
190 | plt.figure() |
---|
191 | cumulative = np.zeros_like(contents[0, :]) |
---|
192 | for idx, label in enumerate(labels): |
---|
193 | plt.fill_betweenx( |
---|
194 | height, |
---|
195 | cumulative, |
---|
196 | cumulative + contents[idx, :], |
---|
197 | step='pre', |
---|
198 | label=label, |
---|
199 | color=colors[idx] |
---|
200 | ) |
---|
201 | cumulative += contents[idx, :] |
---|
202 | plt.vlines(x=0., ymin=height[0], ymax=height[-1], color='k', linestyle='-') |
---|
203 | plt.vlines(x=1., ymin=height[0], ymax=height[-1], color='k', linestyle='-') |
---|
204 | for h in height: |
---|
205 | plt.hlines(y=h, xmin=0.0, xmax=1.0, color='k', linestyle='--', linewidth=0.5) |
---|
206 | plt.xlabel('Volume Fraction [m^3/m^3]') |
---|
207 | plt.ylabel('Elevation [m]') |
---|
208 | plt.title('Stacked Content Profiles for Stratification') |
---|
209 | plt.legend(loc='center left', bbox_to_anchor=(1, 0.5)) |
---|
210 | plt.tight_layout() |
---|
211 | plt.savefig('layering_stacked_profiles.png') |
---|
212 | |
---|
213 | |
---|
214 | def plot_stratum_layer(contents: np.ndarray, istr_index: int, labels: tuple[str, ...]) -> None: |
---|
215 | """ |
---|
216 | Plot detailed composition of the specified stratum index (0-based) as a bar chart. |
---|
217 | """ |
---|
218 | layer_fractions = contents[:, istr_index + 1] |
---|
219 | plt.figure() |
---|
220 | x_positions = np.arange(len(labels)) |
---|
221 | plt.bar(x_positions, layer_fractions, color=['r', 'b', 'y', 'violet', 'c']) |
---|
222 | plt.xticks(x_positions, labels, rotation=45, ha='right') |
---|
223 | plt.ylim(0, 1) |
---|
224 | plt.ylabel('Volume Fraction [m^3/m^3]') |
---|
225 | plt.title(f'Composition of Stratum {istr_index + 1}') |
---|
226 | # Add major and minor grids on y-axis for the histogram |
---|
227 | plt.grid(which='major', axis='y', linestyle='--', linewidth=0.5, color='0.8') |
---|
228 | plt.minorticks_on() |
---|
229 | plt.grid(which='minor', axis='y', linestyle=':', linewidth=0.3, color='0.9') |
---|
230 | plt.tight_layout() |
---|
231 | plt.savefig(f'stratum_{istr_index+1}_composition.png') |
---|
232 | |
---|
233 | |
---|
234 | def main(): |
---|
235 | if len(sys.argv) > 1: |
---|
236 | filename = sys.argv[1] |
---|
237 | else: |
---|
238 | filename = input("Enter the NetCDF file name: ").strip() |
---|
239 | |
---|
240 | if not os.path.isfile(filename): |
---|
241 | sys.exit(f"Error: File '{filename}' does not exist.") |
---|
242 | |
---|
243 | with nc.Dataset(filename, 'r') as dataset: |
---|
244 | required_dims = ['Time', 'physical_points', 'nslope', 'nb_str_max'] |
---|
245 | for dim in required_dims: |
---|
246 | if dim not in dataset.dimensions: |
---|
247 | sys.exit(f"Error: Missing dimension '{dim}' in file.") |
---|
248 | |
---|
249 | ngrid = len(dataset.dimensions['physical_points']) |
---|
250 | nslope = len(dataset.dimensions['nslope']) |
---|
251 | nb_str_max = len(dataset.dimensions['nb_str_max']) |
---|
252 | |
---|
253 | print(f"File '{filename}' opened successfully.") |
---|
254 | print(f"Number of grid points (physical_points): {ngrid}") |
---|
255 | print(f"Number of slopes: {nslope}") |
---|
256 | print(f"Maximum number of strata per slope: {nb_str_max}") |
---|
257 | |
---|
258 | igrid_input = get_int_input( |
---|
259 | "Enter grid point number", 1, ngrid |
---|
260 | ) - 1 |
---|
261 | islope_input = get_int_input( |
---|
262 | "Enter slope number", 1, nslope |
---|
263 | ) - 1 |
---|
264 | |
---|
265 | show_subsurface = get_yes_no_input("Show subsurface layers?") |
---|
266 | exclude_sub = not show_subsurface |
---|
267 | |
---|
268 | # Load data for the chosen slope to determine number of surface strata |
---|
269 | slope_data = load_slope_variables(dataset, islope_input) |
---|
270 | |
---|
271 | # Compute raw heights to count strata above surface |
---|
272 | top = slope_data['top_elev'] |
---|
273 | layers = top.shape[1] |
---|
274 | raw_height = np.zeros(layers + 1) |
---|
275 | # Compute initial subsurface bottom |
---|
276 | h_co2 = slope_data['h_co2'] |
---|
277 | h_h2o = slope_data['h_h2o'] |
---|
278 | h_dust = slope_data['h_dust'] |
---|
279 | h_pore = slope_data['h_pore'] |
---|
280 | total_thickness0 = ( |
---|
281 | h_co2[0, 0, igrid_input] |
---|
282 | + h_h2o[0, 0, igrid_input] |
---|
283 | + h_dust[0, 0, igrid_input] |
---|
284 | + h_pore[0, 0, igrid_input] |
---|
285 | ) |
---|
286 | raw_height[0] = top[0, 0, igrid_input] - total_thickness0 |
---|
287 | raw_height[1:] = top[0, :, igrid_input] |
---|
288 | |
---|
289 | include_mask = np.ones(layers, dtype=bool) |
---|
290 | if exclude_sub: |
---|
291 | include_mask = raw_height[1:] > 0 |
---|
292 | # Count number of strata above surface |
---|
293 | filt_layers = np.where(include_mask)[0] |
---|
294 | nb_str_surf_max = len(filt_layers) |
---|
295 | if not show_subsurface: |
---|
296 | if nb_str_surf_max == 0: |
---|
297 | print("No stratum layers remain after filtering. Cannot proceed.") |
---|
298 | return |
---|
299 | |
---|
300 | # Prompt for stratum index based on surface strata count |
---|
301 | istr_input = get_int_input( |
---|
302 | "Enter stratum index for detailed plot", 1, nb_str_surf_max if exclude_sub else nb_str_max |
---|
303 | ) - 1 |
---|
304 | |
---|
305 | height_arr, contents_arr, thicknesses_arr = calculate_contents( |
---|
306 | slope_data, igrid_input, exclude_sub |
---|
307 | ) |
---|
308 | |
---|
309 | component_labels = ("CO2 Ice", "H2O Ice", "Dust", "Air", "Pore ice") |
---|
310 | |
---|
311 | plot_profiles(height_arr, contents_arr, thicknesses_arr, component_labels) |
---|
312 | plot_stratum_layer(contents_arr, istr_input, component_labels) |
---|
313 | |
---|
314 | # Show all figures at once |
---|
315 | plt.show() |
---|
316 | |
---|
317 | |
---|
318 | if __name__ == '__main__': |
---|
319 | main() |
---|
320 | |
---|