source: trunk/LMDZ.COMMON/libf/evolution/deftank/visu_evol_layering.py @ 3532

Last change on this file since 3532 was 3460, checked in by jbclement, 3 months ago

PEM:
Update and correction for the visualization of the layerings over time.
JBC

  • Property svn:executable set to *
File size: 8.4 KB
Line 
1##############################################################################################
2### Python script to output the stratification data over time from the "startpem.nc" files ###
3##############################################################################################
4
5import os
6import numpy as np
7from netCDF4 import Dataset
8import matplotlib.pyplot as plt
9from scipy import interpolate
10
11#########################
12### Parameters to fill in
13folder_path = "starts"
14base_name = "restartpem"
15dz = 0.1 # Discrization step of the reference grid for the elevation [m]
16infofile = 'info_PEM.txt'
17#########################
18
19
20##############################################################################################
21### Function to read the "startpem.nc" files and process their stratification data
22def process_files(folder_path,base_name):
23    # Find all files in the directory with the pattern {base_name}{num}.nc
24    nfile = 0
25    for file_name in sorted(os.listdir(folder_path)):
26        if file_name.startswith(base_name) and file_name.endswith('.nc'):
27            file_number = file_name[len(base_name):-3]
28            if file_number.isdigit():
29                nfile += 1
30
31    if nfile == 0:
32        print("No files found. Exiting...")
33        return
34
35    # Process each file and collect data
36    datasets = []
37    max_top_elevation = 0
38    max_nb_str = 0
39    ngrid = Dataset(os.path.join(folder_path,base_name + "1.nc"),'r').dimensions['physical_points'].size # ngrid is the same for all files
40    nslope = Dataset(os.path.join(folder_path,base_name + "1.nc"),'r').dimensions['nslope'].size # nslope is the same for all files
41    longitude = Dataset(os.path.join(folder_path,base_name + "1.nc"),'r').variables['longitude'][:]
42    latitude = Dataset(os.path.join(folder_path,base_name + "1.nc"),'r').variables['latitude'][:]
43    for i in range(1,nfile + 1):
44        file_path = os.path.join(folder_path,base_name + str(i) + ".nc")
45        #print(f"Processing file: {file_path}")
46        ds = Dataset(file_path,'r')
47        datasets.append(ds)
48
49        # Track max of nb_str_max
50        max_nb_str = max(ds.dimensions['nb_str_max'].size,max_nb_str)
51
52        # Track max of top_elevation across all slopes
53        for k in range(1,nslope + 1):
54            slope_var_name = f"stratif_slope{k:02d}_top_elevation"
55            max_top_elevation = max(max_top_elevation,np.max(ds.variables[slope_var_name][:]))
56
57    print(f"> number of files    = {nfile}")
58    print(f"> ngrid              = {ngrid}")
59    print(f"> nslope             = {nslope}")
60    print(f"> max(nb_str_max)    = {max_nb_str}")
61    print(f"> max(top_elevation) = {max_top_elevation}")
62
63    # Concatenate stratif variables with dimension 'nb_str_max' along the "Time" dimension
64    stratif_data = []
65    stratif_heights = np.zeros((ngrid,nfile,nslope,max_nb_str))
66    stratif_co2ice = np.zeros((ngrid,nfile,nslope,max_nb_str))
67    stratif_h2oice = np.zeros((ngrid,nfile,nslope,max_nb_str))
68    stratif_dust = np.zeros((ngrid,nfile,nslope,max_nb_str))
69    stratif_air = np.zeros((ngrid,nfile,nslope,max_nb_str))
70    for var_name in datasets[0].variables:
71        if 'top_elevation' in var_name:
72            for i in range(0,ngrid):
73                for j in range(0,nfile):
74                    for k in range(0,nslope):
75                        if f'slope{k + 1:02d}' in var_name:
76                            stratif_heights[i,j,k,:datasets[j].variables[var_name].shape[1]] = datasets[j].variables[var_name][0,:,i]
77            print(f"Processed variable: {var_name}")
78        elif 'co2ice_volfrac' in var_name:
79            for i in range(0,ngrid):
80                for j in range(0,nfile):
81                    for k in range(0,nslope):
82                        if f'slope{k + 1:02d}' in var_name:
83                            stratif_co2ice[i,j,k,:datasets[j].variables[var_name].shape[1]] = datasets[j].variables[var_name][0,:,i]
84            print(f"Processed variable: {var_name}")
85        elif 'h2oice_volfrac' in var_name:
86            for i in range(0,ngrid):
87                for j in range(0,nfile):
88                    for k in range(0,nslope):
89                        if f'slope{k + 1:02d}' in var_name:
90                            stratif_h2oice[i,j,k,:datasets[j].variables[var_name].shape[1]] = datasets[j].variables[var_name][0,:,i]
91            print(f"Processed variable: {var_name}")
92        elif 'dust_volfrac' in var_name:
93            for i in range(0,ngrid):
94                for j in range(0,nfile):
95                    for k in range(0,nslope):
96                        if f'slope{k + 1:02d}' in var_name:
97                            stratif_dust[i,j,k,:datasets[j].variables[var_name].shape[1]] = datasets[j].variables[var_name][0,:,i]
98            print(f"Processed variable: {var_name}")
99        elif 'air_volfrac' in var_name:
100            for i in range(0,ngrid):
101                for j in range(0,nfile):
102                    for k in range(0,nslope):
103                        if f'slope{k + 1:02d}' in var_name:
104                            stratif_air[i,j,k,:datasets[j].variables[var_name].shape[1]] = datasets[j].variables[var_name][0,:,i]
105            print(f"Processed variable: {var_name}")
106
107    # Close the datasets
108    for ds in datasets:
109        ds.close()
110
111    stratif_data = [stratif_heights,stratif_co2ice,stratif_h2oice,stratif_dust,stratif_air]
112    return stratif_data, max_top_elevation, longitude, latitude
113
114### Function to interpolate the stratification data on a reference grid
115def interpolate_data(stratif_data,max_top_elevation,dz):
116    # Define the reference ref_grid
117    ref_grid = np.arange(0,max_top_elevation,dz)
118    print(f"> Number of ref_grid points = {len(ref_grid)}")
119
120    # Interpolate the strata properties on the ref_grid
121    gridded_stratif_data = -1.*np.ones((np.shape(stratif_data)[0] - 1,np.shape(stratif_data)[1],np.shape(stratif_data)[2],np.shape(stratif_data)[3],len(ref_grid)))
122    for iprop in range(1,np.shape(stratif_data)[0]):
123        for i in range(np.shape(stratif_data)[1]):
124            for j in range(np.shape(stratif_data)[2]):
125                for k in range(np.shape(stratif_data)[3]):
126                    i_hmax = np.max(np.nonzero(stratif_data[0][i,j,k,:]))
127                    hmax = stratif_data[0][i,j,k,i_hmax]
128                    i_zmax = np.searchsorted(ref_grid,hmax,'left')
129                    f = interpolate.interp1d(stratif_data[0][i,j,k,:i_hmax + 1],stratif_data[iprop][i,j,k,:i_hmax + 1],kind = 'next')#,fill_value = "extrapolate")
130                    gridded_stratif_data[iprop - 1,i,j,k,:i_zmax] = f(ref_grid[:i_zmax])
131
132    return ref_grid, gridded_stratif_data
133
134### Function to read the "info_PEM.txt" file
135def read_infofile(file_name):
136    with open(file_name,'r') as file:
137        # Read the first line to get the parameters
138        first_line = file.readline().strip()
139        parameters = list(map(float,first_line.split()))
140       
141        # Read the following lines
142        data_lines = []
143        date_time = []
144        for line in file:
145            data = list(map(int,line.split()))
146            data_lines.append(data)
147            date_time.append(data[0])
148
149    return date_time
150
151### Processing
152stratif_data, max_top_elevation, longitude, latitude = process_files(folder_path,base_name)
153ref_grid, gridded_stratif_data = interpolate_data(stratif_data,max_top_elevation,dz)
154date_time = read_infofile(infofile)
155
156### Figures plotting
157subtitle = ['CO2 ice','H2O ice','Dust','Air']
158cmap = plt.get_cmap('viridis').copy()
159cmap.set_under('white')
160for igr in range(np.shape(gridded_stratif_data)[1]):
161    for isl in range(np.shape(gridded_stratif_data)[3]):
162        fig, axes = plt.subplots(2,2,figsize = (10,8))
163        fig.suptitle(f'Contents variation over time in the layered-deposit of grid point {igr + 1} and slope {isl + 1}')
164        iprop = 0
165        for ax in axes.flat:
166            time_mesh, elevation_mesh = np.meshgrid(date_time,ref_grid)
167            #im = ax.imshow(np.transpose(gridded_stratif_data[iprop][0,:,0,:]),aspect = 'auto',cmap = 'viridis',origin = 'lower',extent = [date_time[0],date_time[-1],ref_grid[0],ref_grid[-1]],vmin = 0,vmax = 1)
168            im = ax.pcolormesh(time_mesh,elevation_mesh,np.transpose(gridded_stratif_data[iprop][igr,:,isl,:]),cmap = cmap,shading = 'auto',vmin = 0,vmax = 1)
169            ax.set_title(subtitle[iprop])
170            ax.set(xlabel = 'Time (y)',ylabel = 'Elevation (m)')
171            #ax.label_outer()
172            iprop += 1
173        cbar = fig.colorbar(im,ax = axes.ravel().tolist(),label = 'Content value')
174        plt.savefig(f"layering_evolution_ig{igr + 1}_is{isl + 1}.png")
175        plt.show()
Note: See TracBrowser for help on using the repository browser.