[3777] | 1 | #!/usr/bin/env python3 |
---|
| 2 | ####################################################################################################### |
---|
| 3 | ### Python script to output the stratification data over time from the "restartpem#.nc" files files ### |
---|
| 4 | ####################################################################################################### |
---|
[3458] | 5 | |
---|
[3777] | 6 | |
---|
[3458] | 7 | import os |
---|
[3771] | 8 | import sys |
---|
[3458] | 9 | import numpy as np |
---|
[3777] | 10 | from glob import glob |
---|
[3458] | 11 | from netCDF4 import Dataset |
---|
| 12 | import matplotlib.pyplot as plt |
---|
[3777] | 13 | from scipy.interpolate import interp1d |
---|
[3458] | 14 | |
---|
[3777] | 15 | |
---|
[3771] | 16 | def get_user_inputs(): |
---|
[3777] | 17 | """ |
---|
| 18 | Prompt the user for: |
---|
| 19 | - folder_path: directory containing NetCDF files (default: "starts") |
---|
| 20 | - base_name: base filename (default: "restartpem") |
---|
| 21 | - infofile: name of the PEM info file (default: "info_PEM.txt") |
---|
| 22 | Validates existence of folder and infofile before returning. |
---|
| 23 | """ |
---|
| 24 | folder_path = input( |
---|
| 25 | "Enter the folder path containing the NetCDF files " |
---|
| 26 | "(press Enter for default [starts]): " |
---|
| 27 | ).strip() or "starts" |
---|
[3771] | 28 | while not os.path.isdir(folder_path): |
---|
[3777] | 29 | print(f" » \"{folder_path}\" does not exist or is not a directory.") |
---|
| 30 | folder_path = input( |
---|
| 31 | "Enter a valid folder path (press Enter for default [starts]): " |
---|
| 32 | ).strip() or "starts" |
---|
[3458] | 33 | |
---|
[3777] | 34 | base_name = input( |
---|
| 35 | "Enter the base name of the NetCDF files " |
---|
| 36 | "(press Enter for default [restartpem]): " |
---|
| 37 | ).strip() or "restartpem" |
---|
[3458] | 38 | |
---|
[3777] | 39 | infofile = input( |
---|
| 40 | "Enter the name of the PEM info file " |
---|
| 41 | "(press Enter for default [info_PEM.txt]): " |
---|
| 42 | ).strip() or "info_PEM.txt" |
---|
[3771] | 43 | while not os.path.isfile(infofile): |
---|
[3777] | 44 | print(f" » \"{infofile}\" does not exist or is not a file.") |
---|
| 45 | infofile = input( |
---|
| 46 | "Enter a valid PEM info filename (press Enter for default [info_PEM.txt]): " |
---|
| 47 | ).strip() or "info_PEM.txt" |
---|
[3771] | 48 | |
---|
| 49 | return folder_path, base_name, infofile |
---|
| 50 | |
---|
[3458] | 51 | |
---|
[3777] | 52 | def list_netcdf_files(folder_path, base_name): |
---|
| 53 | """ |
---|
| 54 | List and sort all NetCDF files matching the pattern {base_name}#.nc |
---|
| 55 | in folder_path. Returns a sorted list of full file paths. |
---|
| 56 | """ |
---|
| 57 | pattern = os.path.join(folder_path, f"{base_name}[0-9]*.nc") |
---|
| 58 | all_files = glob(pattern) |
---|
| 59 | if not all_files: |
---|
| 60 | return [] |
---|
[3458] | 61 | |
---|
[3777] | 62 | def extract_index(pathname): |
---|
| 63 | fname = os.path.basename(pathname) |
---|
| 64 | idx_str = fname[len(base_name):-3] |
---|
| 65 | return int(idx_str) if idx_str.isdigit() else float('inf') |
---|
| 66 | |
---|
| 67 | sorted_files = sorted(all_files, key=extract_index) |
---|
| 68 | return sorted_files |
---|
| 69 | |
---|
| 70 | |
---|
| 71 | def open_sample_dataset(file_path): |
---|
| 72 | """ |
---|
| 73 | Open a single NetCDF file and extract: |
---|
| 74 | - ngrid, nslope |
---|
| 75 | - longitude, latitude |
---|
| 76 | Returns (ngrid, nslope, longitude_array, latitude_array). |
---|
| 77 | """ |
---|
| 78 | with Dataset(file_path, 'r') as ds: |
---|
| 79 | ngrid = ds.dimensions['physical_points'].size |
---|
| 80 | nslope = ds.dimensions['nslope'].size |
---|
| 81 | longitude = ds.variables['longitude'][:].copy() |
---|
| 82 | latitude = ds.variables['latitude'][:].copy() |
---|
| 83 | return ngrid, nslope, longitude, latitude |
---|
| 84 | |
---|
| 85 | |
---|
| 86 | def collect_stratification_variables(files, base_name): |
---|
| 87 | """ |
---|
| 88 | Scan all files to collect: |
---|
| 89 | - variable names for each stratification property |
---|
| 90 | - max number of strata (max_nb_str) |
---|
| 91 | - global min base elevation and max top elevation |
---|
| 92 | Returns: |
---|
| 93 | - var_info: dict mapping each property_name -> sorted list of var names |
---|
| 94 | - max_nb_str: int |
---|
| 95 | - min_base_elev: float |
---|
| 96 | - max_top_elev: float |
---|
| 97 | """ |
---|
[3458] | 98 | max_nb_str = 0 |
---|
[3777] | 99 | min_base_elev = np.inf |
---|
| 100 | max_top_elev = -np.inf |
---|
[3771] | 101 | |
---|
[3777] | 102 | property_markers = { |
---|
| 103 | 'heights': 'stratif_slope', # "..._top_elevation" |
---|
| 104 | 'co2_ice': 'h_co2ice', |
---|
| 105 | 'h2o_ice': 'h_h2oice', |
---|
| 106 | 'dust': 'h_dust', |
---|
| 107 | 'pore': 'h_pore', |
---|
[3790] | 108 | 'pore_ice': 'poreice_volfrac' |
---|
[3777] | 109 | } |
---|
| 110 | var_info = {prop: set() for prop in property_markers} |
---|
[3458] | 111 | |
---|
[3777] | 112 | for file_path in files: |
---|
| 113 | with Dataset(file_path, 'r') as ds: |
---|
| 114 | if 'nb_str_max' in ds.dimensions: |
---|
| 115 | max_nb_str = max(max_nb_str, ds.dimensions['nb_str_max'].size) |
---|
[3458] | 116 | |
---|
[3777] | 117 | nslope = ds.dimensions['nslope'].size |
---|
| 118 | for k in range(1, nslope + 1): |
---|
| 119 | var_name = f"stratif_slope{k:02d}_top_elevation" |
---|
| 120 | if var_name in ds.variables: |
---|
| 121 | arr = ds.variables[var_name][:] |
---|
| 122 | min_base_elev = min(min_base_elev, np.min(arr)) |
---|
| 123 | max_top_elev = max(max_top_elev, np.max(arr)) |
---|
| 124 | var_info['heights'].add(var_name) |
---|
[3458] | 125 | |
---|
[3777] | 126 | for full_var in ds.variables: |
---|
| 127 | for prop, marker in property_markers.items(): |
---|
| 128 | if (marker in full_var) and prop != 'heights': |
---|
| 129 | var_info[prop].add(full_var) |
---|
[3458] | 130 | |
---|
[3777] | 131 | for prop in var_info: |
---|
| 132 | var_info[prop] = sorted(var_info[prop]) |
---|
[3458] | 133 | |
---|
[3777] | 134 | return var_info, max_nb_str, min_base_elev, max_top_elev |
---|
[3458] | 135 | |
---|
| 136 | |
---|
[3777] | 137 | def load_full_datasets(files): |
---|
| 138 | """ |
---|
| 139 | Open all NetCDF files and return a list of Dataset objects. |
---|
| 140 | (They should be closed by the caller after use.) |
---|
| 141 | """ |
---|
| 142 | return [Dataset(fp, 'r') for fp in files] |
---|
| 143 | |
---|
| 144 | |
---|
| 145 | def extract_stratification_data(datasets, var_info, ngrid, nslope, max_nb_str): |
---|
| 146 | """ |
---|
| 147 | Build: |
---|
| 148 | - heights_data[t_idx][isl] = 2D array (ngrid, n_strata_current) of top_elevations. |
---|
| 149 | - raw_prop_arrays[prop] = 4D array (ngrid, ntime, nslope, max_nb_str) of per-strata values. |
---|
| 150 | Returns: |
---|
| 151 | - heights_data: list (ntime) of lists (nslope) of 2D arrays |
---|
| 152 | - raw_prop_arrays: dict mapping each property_name -> 4D array |
---|
| 153 | - ntime: number of time steps (files) |
---|
| 154 | """ |
---|
| 155 | ntime = len(datasets) |
---|
| 156 | |
---|
| 157 | heights_data = [ |
---|
| 158 | [None for _ in range(nslope)] |
---|
| 159 | for _ in range(ntime) |
---|
| 160 | ] |
---|
| 161 | for t_idx, ds in enumerate(datasets): |
---|
| 162 | for var_name in var_info['heights']: |
---|
| 163 | slope_idx = int(var_name.split("slope")[1].split("_")[0]) - 1 |
---|
| 164 | if 0 <= slope_idx < nslope: |
---|
| 165 | raw = ds.variables[var_name][0, :, :] # (n_strata, ngrid) |
---|
| 166 | heights_data[t_idx][slope_idx] = raw.T # (ngrid, n_strata) |
---|
| 167 | |
---|
| 168 | raw_prop_arrays = {} |
---|
| 169 | for prop in var_info: |
---|
| 170 | if prop == 'heights': |
---|
| 171 | continue |
---|
| 172 | raw_prop_arrays[prop] = np.zeros((ngrid, ntime, nslope, max_nb_str), dtype=np.float32) |
---|
| 173 | |
---|
| 174 | def slope_index_from_var(vname): |
---|
| 175 | return int(vname.split("slope")[1].split("_")[0]) - 1 |
---|
| 176 | |
---|
| 177 | for prop in raw_prop_arrays: |
---|
| 178 | slope_map = {} |
---|
| 179 | for vname in var_info[prop]: |
---|
| 180 | isl = slope_index_from_var(vname) |
---|
| 181 | if 0 <= isl < nslope: |
---|
| 182 | slope_map[isl] = vname |
---|
| 183 | |
---|
| 184 | arr = raw_prop_arrays[prop] |
---|
| 185 | for t_idx, ds in enumerate(datasets): |
---|
| 186 | for isl, var_name in slope_map.items(): |
---|
| 187 | raw = ds.variables[var_name][0, :, :] # (n_strata, ngrid) |
---|
| 188 | n_strata_current = raw.shape[0] |
---|
| 189 | arr[:, t_idx, isl, :n_strata_current] = raw.T |
---|
| 190 | |
---|
| 191 | return heights_data, raw_prop_arrays, ntime |
---|
| 192 | |
---|
| 193 | |
---|
| 194 | def normalize_to_fractions(raw_prop_arrays): |
---|
| 195 | """ |
---|
| 196 | Given raw_prop_arrays for 'co2_ice', 'h2o_ice', 'dust', 'pore' (in meters), |
---|
| 197 | normalize each set of strata so that the sum of those four = 1 per strata. |
---|
| 198 | Returns: |
---|
| 199 | - frac_arrays: dict mapping same keys -> 4D arrays of fractions (0..1). |
---|
| 200 | """ |
---|
| 201 | co2 = raw_prop_arrays['co2_ice'] |
---|
| 202 | h2o = raw_prop_arrays['h2o_ice'] |
---|
| 203 | dust = raw_prop_arrays['dust'] |
---|
| 204 | pore = raw_prop_arrays['pore'] |
---|
| 205 | |
---|
| 206 | total = co2 + h2o + dust + pore |
---|
| 207 | mask = total > 0.0 |
---|
| 208 | |
---|
| 209 | frac_co2 = np.zeros_like(co2, dtype=np.float32) |
---|
| 210 | frac_h2o = np.zeros_like(h2o, dtype=np.float32) |
---|
| 211 | frac_dust = np.zeros_like(dust, dtype=np.float32) |
---|
| 212 | frac_pore = np.zeros_like(pore, dtype=np.float32) |
---|
| 213 | |
---|
| 214 | frac_co2[mask] = co2[mask] / total[mask] |
---|
| 215 | frac_h2o[mask] = h2o[mask] / total[mask] |
---|
| 216 | frac_dust[mask] = dust[mask] / total[mask] |
---|
| 217 | frac_pore[mask] = pore[mask] / total[mask] |
---|
| 218 | |
---|
| 219 | return { |
---|
| 220 | 'co2_ice': frac_co2, |
---|
| 221 | 'h2o_ice': frac_h2o, |
---|
| 222 | 'dust': frac_dust, |
---|
| 223 | 'pore': frac_pore |
---|
| 224 | } |
---|
| 225 | |
---|
| 226 | |
---|
| 227 | def read_infofile(file_name): |
---|
| 228 | """ |
---|
| 229 | Reads "info_PEM.txt". Expects: |
---|
| 230 | - First line: parameters (ignored). |
---|
| 231 | - Each subsequent line: floats where first value is timestamp. |
---|
| 232 | Returns: 1D numpy array of timestamps. |
---|
| 233 | """ |
---|
| 234 | date_time = [] |
---|
| 235 | with open(file_name, 'r') as fp: |
---|
| 236 | fp.readline() |
---|
| 237 | for line in fp: |
---|
| 238 | parts = line.strip().split() |
---|
| 239 | if not parts: |
---|
| 240 | continue |
---|
| 241 | try: |
---|
| 242 | date_time.append(float(parts[0])) |
---|
| 243 | except ValueError: |
---|
| 244 | continue |
---|
| 245 | return np.array(date_time, dtype=np.float64) |
---|
| 246 | |
---|
| 247 | |
---|
| 248 | def get_yes_no_input(prompt: str) -> bool: |
---|
| 249 | """ |
---|
| 250 | Prompt the user with a yes/no question. Returns True for yes, False for no. |
---|
| 251 | """ |
---|
[3771] | 252 | while True: |
---|
[3777] | 253 | choice = input(f"{prompt} (y/n): ").strip().lower() |
---|
| 254 | if choice in ['y', 'yes']: |
---|
| 255 | return True |
---|
| 256 | elif choice in ['n', 'no']: |
---|
| 257 | return False |
---|
| 258 | else: |
---|
| 259 | print("Please respond with y or n.") |
---|
| 260 | |
---|
| 261 | |
---|
| 262 | def prompt_discretization_step(max_top_elev): |
---|
| 263 | """ |
---|
| 264 | Prompt for a positive float dz such that 0 < dz <= max_top_elev. |
---|
| 265 | """ |
---|
| 266 | while True: |
---|
| 267 | entry = input( |
---|
| 268 | "Enter the discretization step of the reference grid for the elevation [m]: " |
---|
| 269 | ).strip() |
---|
[3771] | 270 | try: |
---|
[3777] | 271 | dz = float(entry) |
---|
[3771] | 272 | if dz <= 0: |
---|
[3777] | 273 | print(" » Discretization step must be strictly positive!") |
---|
[3771] | 274 | continue |
---|
[3777] | 275 | if dz > max_top_elev: |
---|
| 276 | print( |
---|
| 277 | f" » {dz:.3e} m is greater than the maximum top elevation " |
---|
| 278 | f"({max_top_elev:.3e} m). Please enter a smaller value." |
---|
| 279 | ) |
---|
[3771] | 280 | continue |
---|
[3777] | 281 | return dz |
---|
[3771] | 282 | except ValueError: |
---|
[3777] | 283 | print(" » Invalid numeric value. Please try again.") |
---|
[3771] | 284 | |
---|
[3458] | 285 | |
---|
[3777] | 286 | def interpolate_data_on_refgrid( |
---|
| 287 | heights_data, |
---|
| 288 | prop_arrays, |
---|
| 289 | min_base_for_interp, |
---|
| 290 | max_top_elev, |
---|
| 291 | dz, |
---|
| 292 | exclude_sub=False |
---|
| 293 | ): |
---|
| 294 | """ |
---|
| 295 | Build a reference grid and interpolate strata fractions (0..1) onto it. |
---|
[3458] | 296 | |
---|
[3777] | 297 | Also returns a 'top_index' array of shape (ngrid, ntime, nslope) that |
---|
| 298 | indicates, for each (ig, t_idx, isl), the number of ref_grid levels |
---|
| 299 | covered by the topmost valid stratum. |
---|
[3458] | 300 | |
---|
[3777] | 301 | Args: |
---|
| 302 | - heights_data: list of lists where heights_data[t][isl] is a 2D array |
---|
| 303 | (ngrid, n_strata_current) of top_elevation values. |
---|
| 304 | - prop_arrays: dict mapping each property_name to a 4D array of shape |
---|
| 305 | (ngrid, ntime, nslope, max_nb_str) holding fractions [0..1]. |
---|
| 306 | - min_base_for_interp: float; if exclude_sub=True, this is 0.0. |
---|
| 307 | - max_top_elev: float |
---|
| 308 | - dz: float |
---|
| 309 | - exclude_sub: bool. If True, ignore strata with elevation < 0. |
---|
[3458] | 310 | |
---|
[3777] | 311 | Returns: |
---|
| 312 | - ref_grid: 1D array of elevations (nz,) |
---|
| 313 | - gridded_data: dict mapping each property_name to a 4D array of shape |
---|
| 314 | (ngrid, ntime, nslope, nz) with interpolated fractions. |
---|
| 315 | - top_index: 3D array (ngrid, ntime, nslope) of ints: number of levels |
---|
| 316 | of ref_grid covered by the topmost stratum. |
---|
| 317 | """ |
---|
| 318 | # Build ref_grid, ensuring at least two points if surface-only and dz > max_top_elev |
---|
| 319 | if exclude_sub and (dz > max_top_elev): |
---|
| 320 | ref_grid = np.array([0.0, max_top_elev], dtype=np.float32) |
---|
| 321 | else: |
---|
| 322 | ref_grid = np.arange(min_base_for_interp, max_top_elev + dz / 2, dz) |
---|
| 323 | nz = len(ref_grid) |
---|
| 324 | print(f"> Number of reference grid points = {nz}") |
---|
[3458] | 325 | |
---|
[3777] | 326 | # Dimensions |
---|
| 327 | sample_prop = next(iter(prop_arrays.values())) |
---|
| 328 | ngrid, ntime, nslope, max_nb_str = sample_prop.shape[0:4] |
---|
[3458] | 329 | |
---|
[3777] | 330 | # Prepare outputs |
---|
| 331 | gridded_data = { |
---|
| 332 | prop: np.full((ngrid, ntime, nslope, nz), -1.0, dtype=np.float32) |
---|
| 333 | for prop in prop_arrays |
---|
| 334 | } |
---|
| 335 | top_index = np.zeros((ngrid, ntime, nslope), dtype=np.int32) |
---|
| 336 | |
---|
| 337 | for ig in range(ngrid): |
---|
| 338 | for t_idx in range(ntime): |
---|
| 339 | for isl in range(nslope): |
---|
| 340 | h_mat = heights_data[t_idx][isl] |
---|
| 341 | if h_mat is None: |
---|
| 342 | continue |
---|
| 343 | |
---|
| 344 | raw_h = h_mat[ig, :] # (n_strata_current,) |
---|
| 345 | # Create h_all of length max_nb_str, fill with NaN |
---|
| 346 | h_all = np.full((max_nb_str,), np.nan, dtype=np.float32) |
---|
| 347 | n_strata_current = raw_h.shape[0] |
---|
| 348 | h_all[:n_strata_current] = raw_h |
---|
| 349 | |
---|
| 350 | if exclude_sub: |
---|
| 351 | epsilon = 1e-6 |
---|
| 352 | valid_mask = (h_all >= -epsilon) |
---|
| 353 | else: |
---|
| 354 | valid_mask = (~np.isnan(h_all)) & (h_all != 0.0) |
---|
| 355 | |
---|
| 356 | if not np.any(valid_mask): |
---|
| 357 | continue |
---|
| 358 | |
---|
| 359 | h_valid = h_all[valid_mask] |
---|
| 360 | top_h = np.max(h_valid) |
---|
| 361 | |
---|
| 362 | # Find i_zmax = number of ref_grid levels z <= top_h |
---|
| 363 | i_zmax = np.searchsorted(ref_grid, top_h, side='right') |
---|
| 364 | top_index[ig, t_idx, isl] = i_zmax |
---|
| 365 | |
---|
| 366 | if i_zmax == 0: |
---|
| 367 | # top_h < ref_grid[0], skip interpolation |
---|
| 368 | continue |
---|
| 369 | |
---|
| 370 | for prop, arr in prop_arrays.items(): |
---|
| 371 | prop_profile_all = arr[ig, t_idx, isl, :] # (max_nb_str,) |
---|
| 372 | prop_profile = prop_profile_all[valid_mask] # (n_valid_strata,) |
---|
| 373 | if prop_profile.size == 0: |
---|
| 374 | continue |
---|
| 375 | |
---|
| 376 | # Step‐wise interpolation (kind='next') |
---|
| 377 | f_interp = interp1d( |
---|
| 378 | h_valid, |
---|
| 379 | prop_profile, |
---|
| 380 | kind='next', |
---|
| 381 | bounds_error=False, |
---|
| 382 | fill_value=-1.0 |
---|
| 383 | ) |
---|
| 384 | |
---|
| 385 | # Evaluate for ref_grid[0:i_zmax] |
---|
| 386 | gridded_data[prop][ig, t_idx, isl, :i_zmax] = f_interp(ref_grid[:i_zmax]) |
---|
| 387 | |
---|
| 388 | return ref_grid, gridded_data, top_index |
---|
| 389 | |
---|
| 390 | |
---|
| 391 | def plot_stratification_over_time( |
---|
| 392 | gridded_data, |
---|
| 393 | ref_grid, |
---|
| 394 | top_index, |
---|
| 395 | heights_data, |
---|
| 396 | date_time, |
---|
| 397 | exclude_sub=False, |
---|
| 398 | output_folder="." |
---|
| 399 | ): |
---|
| 400 | """ |
---|
| 401 | For each grid point (ig) and slope (isl), generate a 2×2 figure: |
---|
| 402 | - CO2 ice fraction |
---|
| 403 | - H2O ice fraction |
---|
| 404 | - Dust fraction |
---|
| 405 | - Pore fraction |
---|
| 406 | |
---|
| 407 | Fractions are in [0..1]. Values < 0 (fill) are masked. |
---|
| 408 | Using top_index, any elevation above the last stratum is forced to NaN (white). |
---|
| 409 | |
---|
| 410 | Additionally, draw horizontal violet line segments at each stratum top elevation |
---|
| 411 | only over the interval [date_time[t_idx], date_time[t_idx+1]] where that stratum |
---|
| 412 | exists at time t_idx. This way, boundaries appear only where the strata exist. |
---|
| 413 | """ |
---|
| 414 | import numpy as np |
---|
| 415 | import matplotlib.pyplot as plt |
---|
| 416 | |
---|
| 417 | prop_names = ['co2_ice', 'h2o_ice', 'dust', 'pore'] |
---|
| 418 | titles = ["CO2 ice", "H2O ice", "Dust", "Pore"] |
---|
[3792] | 419 | cmap = plt.get_cmap('turbo').copy() |
---|
[3777] | 420 | cmap.set_under('white') |
---|
| 421 | vmin, vmax = 0.0, 1.0 |
---|
| 422 | |
---|
| 423 | sample_prop = next(iter(gridded_data.values())) |
---|
| 424 | ngrid, ntime, nslope, nz = sample_prop.shape |
---|
| 425 | |
---|
| 426 | if exclude_sub: |
---|
| 427 | positive_indices = np.where(ref_grid >= 0.0)[0] |
---|
| 428 | if positive_indices.size == 0: |
---|
| 429 | print("Warning: no positive elevations in ref_grid → nothing to display.") |
---|
| 430 | return |
---|
| 431 | sub_ref_grid = ref_grid[positive_indices] |
---|
| 432 | else: |
---|
| 433 | positive_indices = np.arange(nz) |
---|
| 434 | sub_ref_grid = ref_grid |
---|
| 435 | |
---|
| 436 | for ig in range(ngrid): |
---|
| 437 | for isl in range(nslope): |
---|
| 438 | fig, axes = plt.subplots(2, 2, figsize=(10, 8)) |
---|
| 439 | fig.suptitle( |
---|
| 440 | f"Content variation over time for (Grid Point {ig+1}, Slope {isl+1})", |
---|
| 441 | fontsize=14 |
---|
| 442 | ) |
---|
| 443 | |
---|
| 444 | # For each time step t_idx, gather this stratum's valid tops |
---|
| 445 | # and draw a line segment from date_time[t_idx] to date_time[t_idx+1]. |
---|
| 446 | # We'll skip t_idx = ntime - 1 since no next point. |
---|
| 447 | # Precompute, for each t_idx, the array of valid top elevations: |
---|
| 448 | valid_tops_per_time = [] |
---|
| 449 | for t_idx in range(ntime): |
---|
| 450 | raw_h = heights_data[t_idx][isl][ig, :] # (n_strata_current,) |
---|
| 451 | # Exclude NaNs or zeros |
---|
| 452 | h_all = raw_h[~np.isnan(raw_h)] |
---|
| 453 | if exclude_sub: |
---|
| 454 | h_all = h_all[h_all >= 0.0] |
---|
| 455 | valid_tops_per_time.append(np.unique(h_all)) |
---|
| 456 | |
---|
| 457 | for idx, prop in enumerate(prop_names): |
---|
| 458 | ax = axes.flat[idx] |
---|
| 459 | data_3d = gridded_data[prop][ig, :, isl, :] # shape (ntime, nz) |
---|
| 460 | mat_full = data_3d.T # shape (nz, ntime) |
---|
| 461 | mat = mat_full[positive_indices, :].copy() # (nz_pos, ntime) |
---|
| 462 | |
---|
| 463 | # Mask fill values (< 0) as NaN |
---|
| 464 | mat[mat < 0.0] = np.nan |
---|
| 465 | |
---|
| 466 | # Mask everything above the top stratum using top_index |
---|
| 467 | for t_idx in range(ntime): |
---|
| 468 | i_zmax = top_index[ig, t_idx, isl] |
---|
| 469 | if i_zmax <= positive_indices[0]: |
---|
| 470 | mat[:, t_idx] = np.nan |
---|
| 471 | else: |
---|
| 472 | count_z = np.count_nonzero(positive_indices < i_zmax) |
---|
| 473 | mat[count_z:, t_idx] = np.nan |
---|
| 474 | |
---|
| 475 | # Draw pcolormesh |
---|
| 476 | im = ax.pcolormesh( |
---|
| 477 | date_time, |
---|
| 478 | sub_ref_grid, |
---|
| 479 | mat, |
---|
| 480 | cmap=cmap, |
---|
| 481 | shading='auto', |
---|
| 482 | vmin=vmin, |
---|
| 483 | vmax=vmax |
---|
| 484 | ) |
---|
| 485 | ax.set_title(titles[idx], fontsize=12) |
---|
| 486 | ax.set_xlabel("Time (y)") |
---|
| 487 | ax.set_ylabel("Elevation (m)") |
---|
| 488 | |
---|
| 489 | # Draw horizontal violet segments only where strata exist |
---|
| 490 | for t_idx in range(ntime - 1): |
---|
| 491 | h_vals = valid_tops_per_time[t_idx] |
---|
| 492 | if h_vals.size == 0: |
---|
| 493 | continue |
---|
| 494 | t_left = date_time[t_idx] |
---|
| 495 | t_right = date_time[t_idx + 1] |
---|
| 496 | for h in h_vals: |
---|
| 497 | # Only draw if h falls within sub_ref_grid |
---|
| 498 | if h < sub_ref_grid[0] or h > sub_ref_grid[-1]: |
---|
| 499 | continue |
---|
| 500 | ax.hlines( |
---|
| 501 | y=h, |
---|
| 502 | xmin=t_left, |
---|
| 503 | xmax=t_right, |
---|
| 504 | color='violet', |
---|
| 505 | linewidth=0.7, |
---|
| 506 | linestyle='-' |
---|
| 507 | ) |
---|
| 508 | |
---|
| 509 | # Reserve extra space on the right for the colorbar |
---|
| 510 | fig.subplots_adjust(right=0.88) |
---|
| 511 | |
---|
| 512 | # Place a single shared colorbar in its own axes |
---|
| 513 | cbar_ax = fig.add_axes([0.90, 0.15, 0.02, 0.7]) |
---|
| 514 | fig.colorbar( |
---|
| 515 | im, |
---|
| 516 | cax=cbar_ax, |
---|
| 517 | orientation='vertical', |
---|
| 518 | label="Content" |
---|
| 519 | ) |
---|
| 520 | |
---|
| 521 | # Tight layout excluding the region we reserved (0.88) |
---|
| 522 | fig.tight_layout(rect=[0, 0, 0.88, 1.0]) |
---|
| 523 | |
---|
| 524 | fname = os.path.join( |
---|
| 525 | output_folder, f"layering_evolution_ig{ig+1}_is{isl+1}.png" |
---|
| 526 | ) |
---|
| 527 | fig.savefig(fname, dpi=150) |
---|
| 528 | plt.show() |
---|
| 529 | plt.close(fig) |
---|
| 530 | |
---|
| 531 | |
---|
| 532 | def main(): |
---|
| 533 | # 1) Get user inputs |
---|
| 534 | folder_path, base_name, infofile = get_user_inputs() |
---|
| 535 | |
---|
| 536 | # 2) List and verify NetCDF files |
---|
| 537 | files = list_netcdf_files(folder_path, base_name) |
---|
| 538 | if not files: |
---|
| 539 | print(f"No NetCDF files named \"{base_name}#.nc\" found in \"{folder_path}\". Exiting.") |
---|
| 540 | sys.exit(1) |
---|
| 541 | nfile = len(files) |
---|
| 542 | print(f"> Found {nfile} NetCDF file(s) matching \"{base_name}#.nc\".") |
---|
| 543 | |
---|
| 544 | # 3) Open one sample to get ngrid, nslope, lon/lat |
---|
| 545 | sample_file = files[0] |
---|
| 546 | ngrid, nslope, longitude, latitude = open_sample_dataset(sample_file) |
---|
| 547 | print(f"> ngrid = {ngrid}") |
---|
| 548 | print(f"> nslope = {nslope}") |
---|
| 549 | |
---|
| 550 | # 4) Scan all files to collect variable info + global min/max elevations |
---|
| 551 | var_info, max_nb_str, min_base_elev, max_top_elev = collect_stratification_variables( |
---|
| 552 | files, base_name |
---|
| 553 | ) |
---|
| 554 | print(f"> max(nb_str_max) = {max_nb_str}") |
---|
| 555 | print(f"> min(base_elevation) = {min_base_elev:.3f}") |
---|
| 556 | print(f"> max(top_elevation) = {max_top_elev:.3f}") |
---|
| 557 | |
---|
| 558 | # 5) Open all datasets for extraction |
---|
| 559 | datasets = load_full_datasets(files) |
---|
| 560 | |
---|
| 561 | # 6) Extract raw stratification data |
---|
| 562 | heights_data, raw_prop_arrays, ntime = extract_stratification_data( |
---|
| 563 | datasets, var_info, ngrid, nslope, max_nb_str |
---|
| 564 | ) |
---|
| 565 | |
---|
| 566 | # 7) Close all datasets |
---|
| 567 | for ds in datasets: |
---|
| 568 | ds.close() |
---|
| 569 | |
---|
| 570 | # 8) Normalize raw prop arrays to volume fractions |
---|
| 571 | frac_arrays = normalize_to_fractions(raw_prop_arrays) |
---|
| 572 | |
---|
| 573 | # 9) Ask whether to show subsurface |
---|
| 574 | show_subsurface = get_yes_no_input("Show subsurface layers?") |
---|
| 575 | exclude_sub = not show_subsurface |
---|
| 576 | |
---|
| 577 | if exclude_sub: |
---|
| 578 | min_base_for_interp = 0.0 |
---|
| 579 | print("> Will interpolate only elevations >= 0 m (surface strata).") |
---|
| 580 | else: |
---|
| 581 | min_base_for_interp = min_base_elev |
---|
| 582 | print(f"> Will interpolate full depth (min base = {min_base_elev:.3f} m).") |
---|
| 583 | |
---|
| 584 | # 10) Prompt for discretization step |
---|
| 585 | dz = prompt_discretization_step(max_top_elev) |
---|
| 586 | |
---|
| 587 | # 11) Build reference grid and interpolate (returns top_index as well) |
---|
| 588 | ref_grid, gridded_data, top_index = interpolate_data_on_refgrid( |
---|
| 589 | heights_data, |
---|
| 590 | frac_arrays, |
---|
| 591 | min_base_for_interp, |
---|
| 592 | max_top_elev, |
---|
| 593 | dz, |
---|
| 594 | exclude_sub=exclude_sub |
---|
| 595 | ) |
---|
| 596 | |
---|
| 597 | # 12) Read time stamps from "info_PEM.txt" |
---|
| 598 | date_time = read_infofile(infofile) |
---|
| 599 | if date_time.size != ntime: |
---|
| 600 | print( |
---|
| 601 | "Warning: number of timestamps does not match number of NetCDF files " |
---|
| 602 | f"({date_time.size} vs {ntime})." |
---|
| 603 | ) |
---|
| 604 | |
---|
| 605 | # 13) Plot and save figures (passing top_index and heights_data) |
---|
| 606 | plot_stratification_over_time( |
---|
| 607 | gridded_data, |
---|
| 608 | ref_grid, |
---|
| 609 | top_index, |
---|
| 610 | heights_data, |
---|
| 611 | date_time, |
---|
| 612 | exclude_sub=exclude_sub, |
---|
| 613 | output_folder="." |
---|
| 614 | ) |
---|
| 615 | |
---|
| 616 | |
---|
| 617 | if __name__ == "__main__": |
---|
| 618 | main() |
---|
| 619 | |
---|