| 1 | SUBROUTINE computeice_table(timelen,ngrid,nslope,nsoil_GCM,nsoil_PEM,tsoil,tsurf,q_co2,q_h2o,ps,ice_table) |
|---|
| 2 | USE comsoil_h, only: inertiedat, volcapa |
|---|
| 3 | USE vertical_layers_mod, ONLY: ap,bp |
|---|
| 4 | USE comsoil_h_PEM, only: layer_PEM |
|---|
| 5 | implicit none |
|---|
| 6 | |
|---|
| 7 | integer,intent(in) :: timelen,ngrid,nslope,nsoil_PEM,nsoil_GCM |
|---|
| 8 | real,intent(in) :: tsoil(ngrid,nsoil_PEM,nslope,timelen) ! soil temperature, timeseries [K] |
|---|
| 9 | real,intent(in) :: tsurf(ngrid,nslope,timelen) ! surface temperature [K] |
|---|
| 10 | real,intent(in) :: q_co2(ngrid,timelen) ! MMR tracer co2 [kg/kg] |
|---|
| 11 | real,intent(in) :: q_h2o(ngrid,timelen) ! MMR tracer h2o [kg/kg] |
|---|
| 12 | real,intent(in) :: ps(ngrid,timelen) ! surface pressure [Pa] |
|---|
| 13 | real,intent(out) :: ice_table(ngrid,nslope) ! ice table [m] |
|---|
| 14 | |
|---|
| 15 | real :: m_h2o = 18.01528E-3 |
|---|
| 16 | real :: m_co2 = 44.01E-3 |
|---|
| 17 | real :: m_noco2 = 33.37E-3 |
|---|
| 18 | real :: A,B,z1,z2 |
|---|
| 19 | real :: alpha = -6143.7 |
|---|
| 20 | real :: beta = 29.9074 |
|---|
| 21 | |
|---|
| 22 | integer ig, islope,isoil,it |
|---|
| 23 | real,allocatable :: mass_mean(:,:) ! mean mass above the surface |
|---|
| 24 | real,allocatable :: zplev_mean(:,:) ! pressure above the surface |
|---|
| 25 | real,allocatable :: pvapor(:,:) ! partial pressure above the surface |
|---|
| 26 | |
|---|
| 27 | real,allocatable :: rhovapor(:,:,:) |
|---|
| 28 | real,allocatable :: rhovapor_avg(:,:) ! mean vapor_density at the surface yearly averaged |
|---|
| 29 | |
|---|
| 30 | real :: psv_surf |
|---|
| 31 | real,allocatable :: rho_soil(:,:,:,:) ! water vapor in the soil |
|---|
| 32 | real,allocatable :: rho_soil_avg(:,:,:) ! water vapor in the soil yearly averaged |
|---|
| 33 | |
|---|
| 34 | real,allocatable :: diff_rho(:,:,:) ! difference of vapor content |
|---|
| 35 | |
|---|
| 36 | allocate(rhovapor(ngrid,nslope,timelen)) |
|---|
| 37 | allocate(rhovapor_avg(ngrid,nslope)) |
|---|
| 38 | allocate(pvapor(ngrid,timelen)) |
|---|
| 39 | |
|---|
| 40 | allocate(mass_mean(ngrid,timelen)) |
|---|
| 41 | allocate(zplev_mean(ngrid,timelen)) |
|---|
| 42 | |
|---|
| 43 | ! 0. Some initializations |
|---|
| 44 | |
|---|
| 45 | A =(1/m_co2 - 1/m_noco2) |
|---|
| 46 | B=1/m_noco2 |
|---|
| 47 | ! 1. Compute rho surface yearly averaged |
|---|
| 48 | |
|---|
| 49 | ! 1.1 Compute the partial pressure of vapor |
|---|
| 50 | !a. the molecular mass into the column |
|---|
| 51 | do ig = 1,ngrid |
|---|
| 52 | mass_mean(ig,:) = 1/(A*q_co2(ig,:) +B) |
|---|
| 53 | enddo |
|---|
| 54 | |
|---|
| 55 | ! b. pressure level |
|---|
| 56 | do it = 1,timelen |
|---|
| 57 | do ig = 1,ngrid |
|---|
| 58 | zplev_mean(ig,it) = ap(1) + bp(1)*ps(ig,it) |
|---|
| 59 | enddo |
|---|
| 60 | enddo |
|---|
| 61 | |
|---|
| 62 | ! c. Vapor pressure |
|---|
| 63 | pvapor(:,:) = mass_mean(:,:)/m_h2o*q_h2o(:,:)*zplev_mean(:,:) |
|---|
| 64 | |
|---|
| 65 | deallocate(mass_mean) |
|---|
| 66 | deallocate(zplev_mean) |
|---|
| 67 | |
|---|
| 68 | ! 1.2 Check if there is frost at the surface and then compute the density |
|---|
| 69 | ! at the surface |
|---|
| 70 | do ig = 1,ngrid |
|---|
| 71 | do islope = 1,nslope |
|---|
| 72 | do it = 1,timelen |
|---|
| 73 | psv_surf = exp(alpha/tsurf(ig,islope,it) +beta) |
|---|
| 74 | if ((isnan(psv_surf)).or.(isnan(pvapor(ig,it)))) then |
|---|
| 75 | write(*,*) 'pb vapor',ig,islope,it |
|---|
| 76 | stop |
|---|
| 77 | endif |
|---|
| 78 | rhovapor(ig,islope,it) = min(psv_surf,pvapor(ig,it))/tsurf(ig,islope,it) |
|---|
| 79 | enddo |
|---|
| 80 | enddo |
|---|
| 81 | enddo |
|---|
| 82 | deallocate(pvapor) |
|---|
| 83 | |
|---|
| 84 | ! 1.3 Density at the surface yearly averaged |
|---|
| 85 | rhovapor_avg(:,:) = SUM(rhovapor(:,:,:),3)/timelen |
|---|
| 86 | |
|---|
| 87 | deallocate(rhovapor) |
|---|
| 88 | |
|---|
| 89 | ! 2. Compute rho soil vapor |
|---|
| 90 | |
|---|
| 91 | allocate(rho_soil_avg(ngrid,nslope,nsoil_PEM)) |
|---|
| 92 | allocate(rho_soil(ngrid,nslope,nsoil_PEM,timelen)) |
|---|
| 93 | |
|---|
| 94 | do ig = 1,ngrid |
|---|
| 95 | do islope = 1,nslope |
|---|
| 96 | do isoil = 1,nsoil_PEM |
|---|
| 97 | do it = 1,timelen |
|---|
| 98 | rho_soil(ig,islope,isoil,it) = exp(alpha/tsoil(ig,isoil,islope,it) +beta)/tsoil(ig,isoil,islope,it) |
|---|
| 99 | enddo |
|---|
| 100 | enddo |
|---|
| 101 | enddo |
|---|
| 102 | enddo |
|---|
| 103 | |
|---|
| 104 | rho_soil_avg(:,:,:) = SUM( rho_soil(:,:,:,:),4)/timelen |
|---|
| 105 | deallocate(rho_soil) |
|---|
| 106 | |
|---|
| 107 | ! 3. Computing ice table |
|---|
| 108 | |
|---|
| 109 | ice_table (:,:) = -1e4 |
|---|
| 110 | |
|---|
| 111 | allocate(diff_rho(ngrid,nslope,nsoil_PEM)) |
|---|
| 112 | |
|---|
| 113 | do isoil = 1,nsoil_PEM |
|---|
| 114 | diff_rho(:,:,isoil) = rhovapor_avg(:,:) - rho_soil_avg(:,:,isoil) |
|---|
| 115 | ! write(*,*) 'diff =',ig,islope,isoil,diff_rho(ig,islope,isoil),rhovapor_avg(ig,islope) ,rho_soil_avg(ig,islope,isoil) |
|---|
| 116 | enddo |
|---|
| 117 | |
|---|
| 118 | deallocate(rhovapor_avg) |
|---|
| 119 | deallocate(rho_soil_avg) |
|---|
| 120 | |
|---|
| 121 | do ig = 1,ngrid |
|---|
| 122 | do islope = 1,nslope |
|---|
| 123 | if(diff_rho(ig,islope,1) > 0) then |
|---|
| 124 | ice_table(ig,islope) = 0. |
|---|
| 125 | else |
|---|
| 126 | do isoil = 1,nsoil_PEM -1 |
|---|
| 127 | if((diff_rho(ig,islope,isoil).lt.0).and.(diff_rho(ig,islope,isoil+1).gt.0.)) then |
|---|
| 128 | z1 = (diff_rho(ig,islope,isoil) - diff_rho(ig,islope,isoil+1))/(layer_PEM(isoil) - layer_PEM(isoil+1)) |
|---|
| 129 | z2 = -layer_PEM(isoil+1)*z1 + diff_rho(ig,islope,isoil+1) |
|---|
| 130 | ice_table(ig,islope) = -z2/z1 |
|---|
| 131 | exit |
|---|
| 132 | endif |
|---|
| 133 | enddo |
|---|
| 134 | endif |
|---|
| 135 | enddo |
|---|
| 136 | enddo |
|---|
| 137 | |
|---|
| 138 | deallocate(diff_rho) |
|---|
| 139 | |
|---|
| 140 | !======================================================================= |
|---|
| 141 | RETURN |
|---|
| 142 | |
|---|
| 143 | |
|---|
| 144 | END |
|---|