1 | ! |
---|
2 | ! $Id $ |
---|
3 | ! |
---|
4 | SUBROUTINE compute_tendencies_slope(tendencies_h2o_ice,min_h2o_ice_Y1,& |
---|
5 | min_h2o_ice_Y2,iim_input,jjm_input,ngrid,tendencies_h2o_ice_phys,nslope) |
---|
6 | |
---|
7 | IMPLICIT NONE |
---|
8 | |
---|
9 | |
---|
10 | !======================================================================= |
---|
11 | ! |
---|
12 | ! Compute the tendencies of the evolution of water ice over the years |
---|
13 | ! |
---|
14 | !======================================================================= |
---|
15 | |
---|
16 | ! arguments: |
---|
17 | ! ---------- |
---|
18 | |
---|
19 | ! INPUT |
---|
20 | |
---|
21 | INTEGER, intent(in) :: iim_input,jjm_input,ngrid ,nslope ! # of grid points along longitude/latitude/ total |
---|
22 | REAL, intent(in) , dimension(iim_input+1,jjm_input+1,nslope):: min_h2o_ice_Y1 ! LON x LAT field : minimum of water ice at each point for the first year |
---|
23 | REAL, intent(in) , dimension(iim_input+1,jjm_input+1,nslope):: min_h2o_ice_Y2 ! LON x LAT field : minimum of water ice at each point for the second year |
---|
24 | |
---|
25 | ! OUTPUT |
---|
26 | REAL, intent(out) , dimension(iim_input+1,jjm_input+1,nslope) :: tendencies_h2o_ice ! LON x LAT field : difference between the minima = evolution of perenial ice |
---|
27 | REAL, intent(out) , dimension(ngrid,nslope) :: tendencies_h2o_ice_phys ! physical point field : difference between the minima = evolution of perenial ice |
---|
28 | |
---|
29 | ! local: |
---|
30 | ! ------ |
---|
31 | |
---|
32 | INTEGER :: i,j,ig0,islope ! loop variable |
---|
33 | |
---|
34 | !======================================================================= |
---|
35 | |
---|
36 | |
---|
37 | ! We compute the difference |
---|
38 | ! tendencies_h2o_ice(:,:,:)=min_h2o_ice_Y2(:,:,:)-min_h2o_ice_Y1(:,:,:) |
---|
39 | |
---|
40 | DO j=1,jjm_input+1 |
---|
41 | DO i = 1, iim_input |
---|
42 | DO islope = 1, nslope |
---|
43 | tendencies_h2o_ice(i,j,islope)=min_h2o_ice_Y2(i,j,islope)-min_h2o_ice_Y1(i,j,islope) |
---|
44 | enddo |
---|
45 | ENDDO |
---|
46 | ENDDO |
---|
47 | |
---|
48 | print *, "jjm_input+1", jjm_input+1 |
---|
49 | print *, "iim_input+1", iim_input+1 |
---|
50 | print *, "nslope+1", nslope+1 |
---|
51 | |
---|
52 | ! If the difference is too small; there is no evolution |
---|
53 | DO j=1,jjm_input+1 |
---|
54 | DO i = 1, iim_input |
---|
55 | DO islope = 1, nslope |
---|
56 | ! print *, "tendencies_h2o_ice(i,j,islope)LAAA", tendencies_h2o_ice(i,j,islope) |
---|
57 | if(abs(tendencies_h2o_ice(i,j,islope)).LT.1.0E-10) then |
---|
58 | tendencies_h2o_ice(i,j,islope)=0. |
---|
59 | endif |
---|
60 | ! print *, "tendencies_h2o_ice(i,j,islope)HERE", tendencies_h2o_ice(i,j,islope) |
---|
61 | enddo |
---|
62 | ENDDO |
---|
63 | ENDDO |
---|
64 | |
---|
65 | |
---|
66 | ! We reorganise the difference on the physical grid |
---|
67 | tendencies_h2o_ice_phys(1,:)=tendencies_h2o_ice(1,1,:) |
---|
68 | |
---|
69 | ig0 = 2 |
---|
70 | DO j=2,jjm_input |
---|
71 | DO i = 1, iim_input |
---|
72 | tendencies_h2o_ice_phys(ig0,:) =tendencies_h2o_ice(i,j,:) |
---|
73 | ig0= ig0 + 1 |
---|
74 | ENDDO |
---|
75 | ENDDO |
---|
76 | |
---|
77 | tendencies_h2o_ice_phys(ig0,:) = tendencies_h2o_ice(1,jjm_input+1,:) |
---|
78 | |
---|
79 | ! print *, "tendencies_h2o_ice_physze", tendencies_h2o_ice_phys(:,:) |
---|
80 | |
---|
81 | |
---|
82 | END SUBROUTINE compute_tendencies_slope |
---|
83 | |
---|
84 | |
---|
85 | |
---|
86 | |
---|
87 | |
---|