1 | MODULE compute_soiltemp_mod |
---|
2 | |
---|
3 | implicit none |
---|
4 | !----------------------------------------------------------------------- |
---|
5 | ! Author: LL |
---|
6 | ! Purpose: This module gathers the different routines used in the PEM to compute the soil temperature evolution and initialisation. |
---|
7 | ! |
---|
8 | ! Note: depths of layers and mid-layers, soil thermal inertia and |
---|
9 | ! heat capacity are commons in comsoil_PEM.h |
---|
10 | !----------------------------------------------------------------------- |
---|
11 | contains |
---|
12 | !======================================================================= |
---|
13 | |
---|
14 | SUBROUTINE compute_tsoil_pem(ngrid,nsoil,firstcall,therm_i,timestep,tsurf,tsoil) |
---|
15 | |
---|
16 | use comsoil_h_PEM, only: layer_PEM, mlayer_PEM, mthermdiff_PEM, thermdiff_PEM, coefq_PEM, coefd_PEM, mu_PEM, alph_PEM, beta_PEM, fluxgeo |
---|
17 | use comsoil_h, only: volcapa |
---|
18 | |
---|
19 | implicit none |
---|
20 | |
---|
21 | !----------------------------------------------------------------------- |
---|
22 | ! Author: LL |
---|
23 | ! Purpose: Compute soil temperature using an implict 1st order scheme |
---|
24 | ! |
---|
25 | ! Note: depths of layers and mid-layers, soil thermal inertia and |
---|
26 | ! heat capacity are commons in comsoil_PEM.h |
---|
27 | !----------------------------------------------------------------------- |
---|
28 | |
---|
29 | #include "dimensions.h" |
---|
30 | |
---|
31 | ! Inputs: |
---|
32 | ! ------- |
---|
33 | integer, intent(in) :: ngrid ! number of (horizontal) grid-points |
---|
34 | integer, intent(in) :: nsoil ! number of soil layers |
---|
35 | logical, intent(in) :: firstcall ! identifier for initialization call |
---|
36 | real, dimension(ngrid,nsoil), intent(in) :: therm_i ! thermal inertia [SI] |
---|
37 | real, intent(in) :: timestep ! time step [s] |
---|
38 | real, dimension(ngrid), intent(in) :: tsurf ! surface temperature [K] |
---|
39 | ! Outputs: |
---|
40 | !--------- |
---|
41 | real, dimension(ngrid,nsoil), intent(inout) :: tsoil ! soil (mid-layer) temperature [K] |
---|
42 | ! Local: |
---|
43 | !------- |
---|
44 | integer :: ig, ik |
---|
45 | |
---|
46 | ! 0. Initialisations and preprocessing step |
---|
47 | if (firstcall) then |
---|
48 | ! 0.1 Build mthermdiff_PEM(:), the mid-layer thermal diffusivities |
---|
49 | do ig = 1,ngrid |
---|
50 | do ik = 0,nsoil - 1 |
---|
51 | mthermdiff_PEM(ig,ik) = therm_i(ig,ik + 1)*therm_i(ig,ik + 1)/volcapa |
---|
52 | enddo |
---|
53 | enddo |
---|
54 | |
---|
55 | ! 0.2 Build thermdiff(:), the "interlayer" thermal diffusivities |
---|
56 | do ig = 1,ngrid |
---|
57 | do ik = 1,nsoil - 1 |
---|
58 | thermdiff_PEM(ig,ik) = ((layer_PEM(ik) - mlayer_PEM(ik - 1))*mthermdiff_PEM(ig,ik) & |
---|
59 | + (mlayer_PEM(ik) - layer_PEM(ik))*mthermdiff_PEM(ig,ik - 1))/(mlayer_PEM(ik) - mlayer_PEM(ik - 1)) |
---|
60 | enddo |
---|
61 | enddo |
---|
62 | |
---|
63 | ! 0.3 Build coefficients mu_PEM, q_{k+1/2}, d_k, alph_PEM |
---|
64 | ! mu_PEM |
---|
65 | mu_PEM = mlayer_PEM(0)/(mlayer_PEM(1) - mlayer_PEM(0)) |
---|
66 | |
---|
67 | ! q_{1/2} |
---|
68 | coefq_PEM(0) = volcapa*layer_PEM(1)/timestep |
---|
69 | ! q_{k+1/2} |
---|
70 | do ik = 1,nsoil - 1 |
---|
71 | coefq_PEM(ik) = volcapa*(layer_PEM(ik + 1) - layer_PEM(ik))/timestep |
---|
72 | enddo |
---|
73 | |
---|
74 | do ig = 1,ngrid |
---|
75 | ! d_k |
---|
76 | do ik = 1,nsoil - 1 |
---|
77 | coefd_PEM(ig,ik) = thermdiff_PEM(ig,ik)/(mlayer_PEM(ik)-mlayer_PEM(ik - 1)) |
---|
78 | enddo |
---|
79 | |
---|
80 | ! alph_PEM_{N-1} |
---|
81 | alph_PEM(ig,nsoil - 1) = coefd_PEM(ig,nsoil-1)/(coefq_PEM(nsoil - 1) + coefd_PEM(ig,nsoil - 1)) |
---|
82 | ! alph_PEM_k |
---|
83 | do ik = nsoil - 2,1,-1 |
---|
84 | alph_PEM(ig,ik) = coefd_PEM(ig,ik)/(coefq_PEM(ik) + coefd_PEM(ig,ik + 1)*(1. - alph_PEM(ig,ik + 1)) + coefd_PEM(ig,ik)) |
---|
85 | enddo |
---|
86 | enddo ! of do ig=1,ngrid |
---|
87 | endif ! of if (firstcall) |
---|
88 | |
---|
89 | if (.not. firstcall) THEN |
---|
90 | ! 2. Compute soil temperatures |
---|
91 | ! First layer: |
---|
92 | do ig = 1,ngrid |
---|
93 | tsoil(ig,1) = (tsurf(ig) + mu_PEM*beta_PEM(ig,1)*thermdiff_PEM(ig,1)/mthermdiff_PEM(ig,0))/ & |
---|
94 | (1. + mu_PEM*(1. - alph_PEM(ig,1))*thermdiff_PEM(ig,1)/mthermdiff_PEM(ig,0)) |
---|
95 | |
---|
96 | ! Other layers: |
---|
97 | do ik = 1,nsoil - 1 |
---|
98 | tsoil(ig,ik + 1) = alph_PEM(ig,ik)*tsoil(ig,ik) + beta_PEM(ig,ik) |
---|
99 | enddo |
---|
100 | enddo |
---|
101 | endif |
---|
102 | |
---|
103 | ! 2. Compute beta_PEM coefficients (preprocessing for next time step) |
---|
104 | ! Bottom layer, beta_PEM_{N-1} |
---|
105 | do ig = 1,ngrid |
---|
106 | beta_PEM(ig,nsoil - 1) = coefq_PEM(nsoil - 1)*tsoil(ig,nsoil)/(coefq_PEM(nsoil - 1) + coefd_PEM(ig,nsoil - 1)) & |
---|
107 | + fluxgeo/(coefq_PEM(nsoil - 1) + coefd_PEM(ig,nsoil - 1)) |
---|
108 | enddo |
---|
109 | ! Other layers |
---|
110 | do ik = nsoil-2,1,-1 |
---|
111 | do ig = 1,ngrid |
---|
112 | beta_PEM(ig,ik) = (coefq_PEM(ik)*tsoil(ig,ik + 1) + coefd_PEM(ig,ik + 1)*beta_PEM(ig,ik + 1))/ & |
---|
113 | (coefq_PEM(ik) + coefd_PEM(ig,ik + 1)*(1. - alph_PEM(ig,ik + 1)) + coefd_PEM(ig,ik)) |
---|
114 | enddo |
---|
115 | enddo |
---|
116 | |
---|
117 | END SUBROUTINE compute_tsoil_pem |
---|
118 | |
---|
119 | !======================================================================= |
---|
120 | |
---|
121 | SUBROUTINE ini_tsoil_pem(ngrid,nsoil,therm_i,tsurf,tsoil) |
---|
122 | |
---|
123 | use comsoil_h_PEM, only: layer_PEM, mlayer_PEM, mthermdiff_PEM, thermdiff_PEM, coefq_PEM, coefd_PEM, mu_PEM, alph_PEM, beta_PEM, fluxgeo |
---|
124 | use comsoil_h, only: volcapa |
---|
125 | |
---|
126 | implicit none |
---|
127 | |
---|
128 | !----------------------------------------------------------------------- |
---|
129 | ! Author: LL |
---|
130 | ! Purpose: Initialize the soil with the solution of the stationnary problem of Heat Conduction. Boundarry conditions: Tsurf averaged from the PCM; Geothermal flux at the bottom layer |
---|
131 | ! |
---|
132 | ! Note: depths of layers and mid-layers, soil thermal inertia and |
---|
133 | ! heat capacity are commons in comsoil_PEM.h |
---|
134 | !----------------------------------------------------------------------- |
---|
135 | |
---|
136 | #include "dimensions.h" |
---|
137 | |
---|
138 | ! Inputs: |
---|
139 | !-------- |
---|
140 | integer, intent(in) :: ngrid ! number of (horizontal) grid-points |
---|
141 | integer, intent(in) :: nsoil ! number of soil layers |
---|
142 | real, dimension(ngrid,nsoil), intent(in) :: therm_i ! thermal inertia [SI] |
---|
143 | real, dimension(ngrid), intent(in) :: tsurf ! surface temperature [K] |
---|
144 | ! Outputs: |
---|
145 | !--------- |
---|
146 | real, dimension(ngrid,nsoil), intent(inout) :: tsoil ! soil (mid-layer) temperature [K] |
---|
147 | ! Local: |
---|
148 | !------- |
---|
149 | integer :: ig, ik, iloop |
---|
150 | |
---|
151 | ! 0. Initialisations and preprocessing step |
---|
152 | ! 0.1 Build mthermdiff_PEM(:), the mid-layer thermal diffusivities |
---|
153 | do ig = 1,ngrid |
---|
154 | do ik = 0,nsoil - 1 |
---|
155 | mthermdiff_PEM(ig,ik) = therm_i(ig,ik + 1)*therm_i(ig,ik + 1)/volcapa |
---|
156 | enddo |
---|
157 | enddo |
---|
158 | |
---|
159 | ! 0.2 Build thermdiff(:), the "interlayer" thermal diffusivities |
---|
160 | do ig = 1,ngrid |
---|
161 | do ik = 1,nsoil - 1 |
---|
162 | thermdiff_PEM(ig,ik) = ((layer_PEM(ik) - mlayer_PEM(ik - 1))*mthermdiff_PEM(ig,ik) & |
---|
163 | + (mlayer_PEM(ik) - layer_PEM(ik))*mthermdiff_PEM(ig,ik - 1))/(mlayer_PEM(ik) - mlayer_PEM(ik - 1)) |
---|
164 | enddo |
---|
165 | enddo |
---|
166 | |
---|
167 | ! 0.3 Build coefficients mu_PEM, q_{k+1/2}, d_k, alph_PEM |
---|
168 | ! mu_PEM |
---|
169 | mu_PEM = mlayer_PEM(0)/(mlayer_PEM(1) - mlayer_PEM(0)) |
---|
170 | |
---|
171 | ! q_{1/2} |
---|
172 | coefq_PEM(:) = 0. |
---|
173 | ! q_{k+1/2} |
---|
174 | |
---|
175 | do ig = 1,ngrid |
---|
176 | ! d_k |
---|
177 | do ik = 1,nsoil - 1 |
---|
178 | coefd_PEM(ig,ik) = thermdiff_PEM(ig,ik)/(mlayer_PEM(ik) - mlayer_PEM(ik - 1)) |
---|
179 | enddo |
---|
180 | |
---|
181 | ! alph_PEM_{N-1} |
---|
182 | alph_PEM(ig,nsoil - 1) = coefd_PEM(ig,nsoil - 1)/(coefq_PEM(nsoil - 1) + coefd_PEM(ig,nsoil - 1)) |
---|
183 | ! alph_PEM_k |
---|
184 | do ik = nsoil - 2,1,-1 |
---|
185 | alph_PEM(ig,ik) = coefd_PEM(ig,ik)/(coefq_PEM(ik) + coefd_PEM(ig,ik + 1)*(1. - alph_PEM(ig,ik + 1)) + coefd_PEM(ig,ik)) |
---|
186 | enddo |
---|
187 | enddo ! of do ig=1,ngrid |
---|
188 | |
---|
189 | ! 1. Compute beta_PEM coefficients |
---|
190 | ! Bottom layer, beta_PEM_{N-1} |
---|
191 | do ig = 1,ngrid |
---|
192 | beta_PEM(ig,nsoil - 1) = coefq_PEM(nsoil - 1)*tsoil(ig,nsoil)/(coefq_PEM(nsoil - 1) + coefd_PEM(ig,nsoil - 1)) & |
---|
193 | + fluxgeo/(coefq_PEM(nsoil - 1) + coefd_PEM(ig,nsoil - 1)) |
---|
194 | enddo |
---|
195 | ! Other layers |
---|
196 | do ik = nsoil - 2,1,-1 |
---|
197 | do ig = 1,ngrid |
---|
198 | beta_PEM(ig,ik) = (coefq_PEM(ik)*tsoil(ig,ik + 1) + coefd_PEM(ig,ik+1)*beta_PEM(ig,ik + 1))/ & |
---|
199 | (coefq_PEM(ik) + coefd_PEM(ig,ik + 1)*(1. - alph_PEM(ig,ik + 1)) + coefd_PEM(ig,ik)) |
---|
200 | enddo |
---|
201 | enddo |
---|
202 | |
---|
203 | ! 2. Compute soil temperatures |
---|
204 | do iloop = 1,10 !just convergence |
---|
205 | do ig = 1,ngrid |
---|
206 | ! First layer: |
---|
207 | tsoil(ig,1) = (tsurf(ig) + mu_PEM*beta_PEM(ig,1)*thermdiff_PEM(ig,1)/mthermdiff_PEM(ig,0))/ & |
---|
208 | (1. + mu_PEM*(1. - alph_PEM(ig,1))*thermdiff_PEM(ig,1)/mthermdiff_PEM(ig,0)) |
---|
209 | ! Other layers: |
---|
210 | do ik = 1,nsoil - 1 |
---|
211 | tsoil(ig,ik + 1) = alph_PEM(ig,ik)*tsoil(ig,ik) + beta_PEM(ig,ik) |
---|
212 | enddo |
---|
213 | enddo |
---|
214 | enddo ! iloop |
---|
215 | |
---|
216 | END SUBROUTINE ini_tsoil_pem |
---|
217 | |
---|
218 | !======================================================================= |
---|
219 | |
---|
220 | SUBROUTINE shift_tsoil2surf(ngrid,nsoil,nslope,zshift_surf,zlag,tsurf,tsoil) |
---|
221 | |
---|
222 | use comsoil_h_PEM, only: layer_PEM, mlayer_PEM, fluxgeo, thermdiff_PEM, mthermdiff_PEM |
---|
223 | use math_mod, only: solve_steady_heat |
---|
224 | |
---|
225 | implicit none |
---|
226 | |
---|
227 | !----------------------------------------------------------------------- |
---|
228 | ! Author: JBC |
---|
229 | ! Purpose: Shifting the soil temperature profile to follow the surface evolution due to ice condensation/sublimation |
---|
230 | !----------------------------------------------------------------------- |
---|
231 | ! Inputs: |
---|
232 | ! ------- |
---|
233 | integer, intent(in) :: ngrid ! number of (horizontal) grid-points |
---|
234 | integer, intent(in) :: nsoil ! number of soil layers |
---|
235 | integer, intent(in) :: nslope ! number of sub-slopes |
---|
236 | real, dimension(ngrid,nslope), intent(in) :: zshift_surf ! elevation shift for the surface [m] |
---|
237 | real, dimension(ngrid,nslope), intent(in) :: zlag ! newly built lag thickness [m] |
---|
238 | real, dimension(ngrid,nslope), intent(in) :: tsurf ! surface temperature [K] |
---|
239 | ! Outputs: |
---|
240 | ! -------- |
---|
241 | real, dimension(ngrid,nsoil,nslope), intent(inout) :: tsoil ! soil (mid-layer) temperature [K] |
---|
242 | ! Local: |
---|
243 | ! ------ |
---|
244 | integer :: ig, isoil, islope, ishift, ilag, iz |
---|
245 | real :: a, z, zshift_surfloc |
---|
246 | real, dimension(ngrid,nsoil,nslope) :: tsoil_old |
---|
247 | |
---|
248 | write(*,*)"Shifting soil temperature to surface" |
---|
249 | tsoil_old = tsoil |
---|
250 | |
---|
251 | do ig = 1,ngrid |
---|
252 | do islope = 1,nslope |
---|
253 | zshift_surfloc = zshift_surf(ig,islope) |
---|
254 | |
---|
255 | if (zshift_surfloc >= 0.) then ! In case of the surface is higher than initially |
---|
256 | if (zshift_surfloc < mlayer_PEM(0)) then ! Surface change is too small to be taken into account |
---|
257 | ! Nothing to do; we keep the soil temperature profile |
---|
258 | else if (zshift_surfloc >= mlayer_PEM(nsoil - 1)) then ! Surface change is much larger than the discretization |
---|
259 | tsoil(ig,:,islope) = tsurf(ig,islope) |
---|
260 | else |
---|
261 | ishift = 0 |
---|
262 | do while (mlayer_PEM(ishift) <= zshift_surfloc) |
---|
263 | ishift = ishift + 1 ! mlayer indices begin at 0 so this the good index for tsoil! |
---|
264 | enddo |
---|
265 | ! The "new soil" temperature is set to tsurf |
---|
266 | tsoil(ig,:ishift,islope) = tsurf(ig,islope) |
---|
267 | |
---|
268 | do isoil = ishift + 1,nsoil |
---|
269 | ! Position in the old discretization of the depth |
---|
270 | z = mlayer_PEM(isoil - 1) - zshift_surfloc |
---|
271 | ! Find the interval [mlayer_PEM(iz - 1),mlayer_PEM(iz)[ where the position z belongs |
---|
272 | iz = 0 |
---|
273 | do while (mlayer_PEM(iz) <= z) |
---|
274 | iz = iz + 1 |
---|
275 | enddo |
---|
276 | ! Interpolation of the temperature profile from the old discretization |
---|
277 | a = (tsoil_old(ig,iz + 1,islope) - tsoil_old(ig,iz,islope))/(mlayer_PEM(iz) - mlayer_PEM(iz - 1)) |
---|
278 | tsoil(ig,isoil,islope) = a*(z - mlayer_PEM(iz - 1)) + tsoil_old(ig,iz,islope) |
---|
279 | enddo |
---|
280 | endif |
---|
281 | else ! In case of the surface is lower than initially |
---|
282 | if (abs(zshift_surfloc) < mlayer_PEM(0)) then ! Surface change is too small to be taken into account |
---|
283 | ! Nothing to do; we keep the soil temperature profile |
---|
284 | else if (abs(zshift_surfloc) >= mlayer_PEM(nsoil - 1)) then ! Surface change is much larger than the discretization |
---|
285 | call solve_steady_heat(nsoil,mlayer_PEM,layer_PEM,mthermdiff_PEM(ig,:),thermdiff_PEM(ig,:),tsurf(ig,islope),fluxgeo,tsoil(ig,:,islope)) |
---|
286 | else |
---|
287 | if (zlag(ig,islope) < mlayer_PEM(0)) then ! The lag is too thin to be taken into account |
---|
288 | ilag = 0 |
---|
289 | else |
---|
290 | ilag = 0 |
---|
291 | do while (mlayer_PEM(ilag) <= zlag(ig,islope)) |
---|
292 | ilag = ilag + 1 ! mlayer indices begin at 0 so this the good index for tsoil! |
---|
293 | enddo |
---|
294 | ! Position of the lag bottom in the old discretization of the depth |
---|
295 | z = zlag(ig,islope) - zshift_surfloc |
---|
296 | ! Find the interval [mlayer_PEM(iz - 1),mlayer_PEM(iz)[ where the position z belongs |
---|
297 | iz = 0 |
---|
298 | do while (mlayer_PEM(iz) <= z) |
---|
299 | iz = iz + 1 |
---|
300 | enddo |
---|
301 | ! The "new lag" temperature is set to the ice temperature just below |
---|
302 | a = (tsoil_old(ig,iz + 1,islope) - tsoil_old(ig,iz,islope))/(mlayer_PEM(iz) - mlayer_PEM(iz - 1)) |
---|
303 | tsoil(ig,:ilag,islope) = a*(z - mlayer_PEM(iz - 1)) + tsoil_old(ig,iz,islope) |
---|
304 | endif |
---|
305 | |
---|
306 | ishift = nsoil - 1 |
---|
307 | z = mlayer_PEM(nsoil - 1) + zshift_surfloc |
---|
308 | do while (mlayer_PEM(ishift) >= z) |
---|
309 | ishift = ishift - 1 |
---|
310 | enddo |
---|
311 | ishift = ishift + 1 ! Adding 1 is needed to match the good index for tsoil! |
---|
312 | do isoil = ilag + 1,ishift |
---|
313 | ! Position in the old discretization of the depth |
---|
314 | z = mlayer_PEM(isoil - 1) - zshift_surfloc |
---|
315 | ! Find the interval [mlayer_PEM(iz - 1),mlayer_PEM(iz)[ where the position z belongs |
---|
316 | iz = 0 |
---|
317 | do while (mlayer_PEM(iz) <= z) |
---|
318 | iz = iz + 1 |
---|
319 | enddo |
---|
320 | ! Interpolation of the temperature profile from the old discretization |
---|
321 | a = (tsoil_old(ig,iz + 1,islope) - tsoil_old(ig,iz,islope))/(mlayer_PEM(iz) - mlayer_PEM(iz - 1)) |
---|
322 | tsoil(ig,isoil,islope) = a*(z - mlayer_PEM(iz - 1)) + tsoil_old(ig,iz,islope) |
---|
323 | enddo |
---|
324 | |
---|
325 | ! The "new deepest layers" temperature is set by solving the steady heat equation |
---|
326 | call solve_steady_heat(nsoil - ishift + 1,mlayer_PEM(ishift - 1:),layer_PEM(ishift:),mthermdiff_PEM(ig,ishift - 1:),thermdiff_PEM(ig,ishift:),tsoil(ig,ishift,islope),fluxgeo,tsoil(ig,ishift:,islope)) |
---|
327 | endif |
---|
328 | endif |
---|
329 | enddo |
---|
330 | enddo |
---|
331 | |
---|
332 | END SUBROUTINE shift_tsoil2surf |
---|
333 | |
---|
334 | END MODULE compute_soiltemp_mod |
---|