1 | MODULE dyn_ss_ice_m_mod |
---|
2 | |
---|
3 | implicit none |
---|
4 | |
---|
5 | CONTAINS |
---|
6 | |
---|
7 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
8 | !!! |
---|
9 | !!! Purpose: Retreat and growth of subsurface ice on Mars |
---|
10 | !!! orbital elements remain constant |
---|
11 | !!! |
---|
12 | !!! |
---|
13 | !!! Author: EV, updated NS MSIM dynamical program for the PEM |
---|
14 | !!! |
---|
15 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
16 | |
---|
17 | SUBROUTINE dyn_ss_ice_m(ssi_depth_in,T1,Tb,nz,thIn,p0,pfrost,porefill_in,porefill,ssi_depth) |
---|
18 | |
---|
19 | !*********************************************************************** |
---|
20 | ! Retreat and growth of subsurface ice on Mars |
---|
21 | ! orbital elements remain constant |
---|
22 | !*********************************************************************** |
---|
23 | use constants_marspem_mod, only: sec_per_sol |
---|
24 | use fast_subs_mars, only: psv, icelayer_mars, NMAX |
---|
25 | #ifndef CPP_STD |
---|
26 | use comcstfi_h, only: pi |
---|
27 | #else |
---|
28 | use comcstfi_mod, only: pi |
---|
29 | #endif |
---|
30 | implicit none |
---|
31 | integer, parameter :: NP=1 ! # of sites |
---|
32 | integer nz, i, k, iloop |
---|
33 | real(8) zmax, delta, z(NMAX), icetime, porosity, icefrac |
---|
34 | real(8), dimension(NP) :: albedo, thIn, rhoc |
---|
35 | real(8), dimension(NP) :: pfrost, p0 |
---|
36 | real(8) newti, stretch, newrhoc, ecc, omega, eps, timestep |
---|
37 | real(8) ssi_depth_in, ssi_depth, T1 |
---|
38 | real(8), dimension(NP) :: zdepthF, zdepthE, zdepthT, zdepthG |
---|
39 | real(8), dimension(NMAX,NP) :: porefill, porefill_in |
---|
40 | real(8), dimension(nz) :: Tb |
---|
41 | real(8), dimension(NP) :: Tmean1, Tmean3, avrho1 |
---|
42 | real(8) tmax, tlast, avrho1prescribed(NP), l1 |
---|
43 | real(8), external :: smartzfac |
---|
44 | |
---|
45 | !if (iargc() /= 1) then |
---|
46 | ! stop 'USAGE: icages ext' |
---|
47 | !endif |
---|
48 | !call getarg( 1, ext ) |
---|
49 | |
---|
50 | if (NP>100) stop 'subroutine icelayer_mars cannot handle this many sites' |
---|
51 | |
---|
52 | ! parameters that never ever change |
---|
53 | porosity = 0.4d0 ! porosity of till |
---|
54 | !rhoc(:) = 1500.*800. ! will be overwritten |
---|
55 | icefrac = 0.98 |
---|
56 | tmax = 1 |
---|
57 | tlast = 0. |
---|
58 | avrho1prescribed(:) = pfrost/T1 ! <0 means absent |
---|
59 | albedo=0.23 |
---|
60 | !avrho1prescribed(:) = 0.16/200. ! units are Pa/K |
---|
61 | |
---|
62 | !open(unit=21,file='lats.'//ext,action='read',status='old',iostat=ierr) |
---|
63 | !if (ierr /= 0) then |
---|
64 | ! print *,'File lats.'//ext,'not found' |
---|
65 | ! stop |
---|
66 | !endif |
---|
67 | do k=1,NP |
---|
68 | !read(21,*) latitude(k),albedo(k),thIn(k),htopo(k) |
---|
69 | ! empirical relation from Mellon & Jakosky |
---|
70 | rhoc(k) = 800.*(150.+100.*sqrt(34.2+0.714*thIn(k))) |
---|
71 | enddo |
---|
72 | !close(21) |
---|
73 | |
---|
74 | ! set eternal grid |
---|
75 | zmax = 25. |
---|
76 | !zfac = smartzfac(nz,zmax,6,0.032d0) |
---|
77 | !call setgrid(nz,z,zmax,zfac) |
---|
78 | l1=2.e-4 |
---|
79 | do iloop=0,nz - 1 |
---|
80 | z(iloop + 1) = l1*(1+iloop**2.9*(1-exp(-real(iloop)/20.))) |
---|
81 | enddo |
---|
82 | |
---|
83 | |
---|
84 | !open(unit=30,file='z.'//ext,action='write',status='unknown') |
---|
85 | !write(30,'(999(f8.5,1x))') z(1:nz) |
---|
86 | !close(30) |
---|
87 | |
---|
88 | !ecc = ecc_in; eps = obl_in*d2r; omega = Lp_in*d2r ! today |
---|
89 | ! total atmospheric pressure |
---|
90 | !p0(:) = 600. |
---|
91 | ! presently 520 Pa at zero elevation (Smith & Zuber, 1998) |
---|
92 | ! do k=1,NP |
---|
93 | ! p0(k)=520*exp(-htopo(k)/10800.) |
---|
94 | ! enddo |
---|
95 | timestep = 1 ! must be integer fraction of 1 ka |
---|
96 | icetime = -tmax-timestep ! earth years |
---|
97 | |
---|
98 | ! initializations |
---|
99 | !Tb = -9999. |
---|
100 | zdepthF(:) = -9999. |
---|
101 | |
---|
102 | !zdepthT(1:NP) = -9999. ! reset again below |
---|
103 | ! zdepthT(1:NP) = 0. |
---|
104 | |
---|
105 | ! print *,'RUNNING MARS_FAST' |
---|
106 | ! print *,'Global model parameters:' |
---|
107 | ! print *,'nz=',nz,' zfac=',zfac,'zmax=',zmax |
---|
108 | ! print *,'porosity=',porosity |
---|
109 | ! print *,'starting at time',icetime,'years' |
---|
110 | ! print *,'time step=',timestep,'years' |
---|
111 | ! print *,'eps=',eps/d2r,'ecc=',ecc,'omega=',omega/d2r |
---|
112 | ! print *,'number of sites=',NP |
---|
113 | ! print *,'Site specific parameters:' |
---|
114 | do k=1,NP |
---|
115 | if (NP>1) print *,' Site ',k |
---|
116 | ! print *,' latitude (deg)',latitude(k),' rho*c (J/m^3/K)',rhoc(k),' thIn=',thIn(k) |
---|
117 | ! print *,' total pressure=',p0(k),'partial pressure=',pfrost(k) |
---|
118 | delta = thIn(k)/rhoc(k)*sqrt(sec_per_sol/pi) |
---|
119 | ! print *,' skin depths (m)',delta,delta*sqrt(solsperyear) |
---|
120 | call soilthprop(porosity,1.d0,rhoc(k),thIn(k),1,newrhoc,newti,icefrac) |
---|
121 | stretch = (newti/thIn(k))*(rhoc(k)/newrhoc) |
---|
122 | do i=1,nz |
---|
123 | if (z(i)<delta) cycle |
---|
124 | ! print *,' ',i-1,' grid points within diurnal skin depth' |
---|
125 | exit |
---|
126 | enddo |
---|
127 | ! print *,' ',zmax/(sqrt(solsperyear)*delta),'times seasonal dry skin depth' |
---|
128 | ! print *,' ',zmax/(sqrt(solsperyear)*delta*stretch),'times seasonal filled skin depth' |
---|
129 | ! print *,' Initial ice depth=',zdepthT(k) |
---|
130 | ! print * |
---|
131 | enddo |
---|
132 | ! call outputmoduleparameters |
---|
133 | ! print * |
---|
134 | |
---|
135 | ! open and name all output files |
---|
136 | ! open(unit=34,file='subout.'//ext,action='write',status='unknown') |
---|
137 | ! open(unit=36,file='depthF.'//ext,action='write',status='unknown') |
---|
138 | ! open(unit=37,file='depths.'//ext,action='write',status='unknown') |
---|
139 | |
---|
140 | ! print *,'Equilibrating initial temperature' |
---|
141 | ! do i=1,4 |
---|
142 | ! call icelayer_mars(0d0,nz,NP,thIn,rhoc,z,porosity,pfrost,Tb,zdepthF, & |
---|
143 | ! & zdepthE,porefill(1:nz,:),Tmean1,Tmean3,zdepthG, & |
---|
144 | ! & latitude,albedo,p0,ecc,omega,eps,icefrac,zdepthT,avrho1, & |
---|
145 | ! & avrho1prescribed) |
---|
146 | ! enddo |
---|
147 | |
---|
148 | !print *,'History begins here' |
---|
149 | porefill(1:nz,1:NP) = porefill_in(1:nz,1:NP) |
---|
150 | zdepthT(1:NP) = ssi_depth_in |
---|
151 | do |
---|
152 | !print *,'Zt0= ',ZdepthT |
---|
153 | call icelayer_mars(timestep,nz,NP,thIn,rhoc,z,porosity,pfrost,Tb,zdepthF, & |
---|
154 | & zdepthE,porefill(1:nz,:),Tmean1,Tmean3,zdepthG, & |
---|
155 | & albedo,p0,icefrac,zdepthT,avrho1, & |
---|
156 | & avrho1prescribed) |
---|
157 | icetime = icetime+timestep |
---|
158 | ! print *,'T_after= ',Tb(:) |
---|
159 | ! print *,'z= ',z(:) |
---|
160 | ! print *,'Zt= ',ZdepthT |
---|
161 | ssi_depth=ZdepthT(1) |
---|
162 | ! if (abs(mod(icetime/100.,1.d0))<1.e-3) then ! output every 1000 years |
---|
163 | ! do k=1,NP |
---|
164 | !write(36,*) icetime,latitude(k),zdepthF(k),porefill(1:nz,k) |
---|
165 | ! compact output format |
---|
166 | ! write(36,'(f10.0,2x,f7.3,1x,f11.5,1x)',advance='no') & |
---|
167 | ! & icetime,latitude(k),zdepthF(k) |
---|
168 | ! call compactoutput(36,porefill(:,k),nz) |
---|
169 | ! write(37,501) icetime,latitude(k),zdepthT(k), & |
---|
170 | ! & Tmean1(k),Tmean3(k),zdepthG(k),avrho1(k) |
---|
171 | ! enddo |
---|
172 | ! endif |
---|
173 | ! print *,icetime |
---|
174 | if (icetime>=tlast) exit |
---|
175 | enddo |
---|
176 | |
---|
177 | ! close(34) |
---|
178 | ! close(36); close(37) |
---|
179 | |
---|
180 | !501 format (f10.0,2x,f7.3,2x,f10.4,2(2x,f6.2),2x,f9.3,2x,g11.4) |
---|
181 | |
---|
182 | end subroutine dyn_ss_ice_m |
---|
183 | |
---|
184 | !======================================================================= |
---|
185 | |
---|
186 | subroutine soilthprop(porosity,fill,rhocobs,tiobs,layertype, & |
---|
187 | & newrhoc,newti,icefrac) |
---|
188 | !*********************************************************************** |
---|
189 | ! soilthprop: assign thermal properties of icy soil or dirty ice |
---|
190 | ! |
---|
191 | ! porositiy = void space / total volume |
---|
192 | ! rhof = density of free ice in space not occupied by regolith [kg/m^3] |
---|
193 | ! fill = rhof/icedensity <=1 (only relevant for layertype 1) |
---|
194 | ! rhocobs = heat capacity per volume of dry regolith [J/m^3] |
---|
195 | ! tiobs = thermal inertia of dry regolith [SI-units] |
---|
196 | ! layertype: 1=interstitial ice, 2=pure ice or ice with dirt |
---|
197 | ! 3=pure ice, 4=ice-cemented soil, 5=custom values |
---|
198 | ! icefrac: fraction of ice in icelayer (only relevant for layertype 2) |
---|
199 | ! output are newti and newrhoc |
---|
200 | !*********************************************************************** |
---|
201 | implicit none |
---|
202 | integer, intent(IN) :: layertype |
---|
203 | real(8), intent(IN) :: porosity, fill, rhocobs, tiobs |
---|
204 | real(8), intent(OUT) :: newti, newrhoc |
---|
205 | real(8), intent(IN) :: icefrac |
---|
206 | real(8) kobs, cice, icedensity, kice |
---|
207 | !parameter (cice=2000.d0, icedensity=926.d0, kice=2.4d0) ! unaffected by scaling |
---|
208 | parameter (cice=1540.d0, icedensity=927.d0, kice=3.2d0) ! at 198 Kelvin |
---|
209 | real(8) fA, ki0, ki, k |
---|
210 | real(8), parameter :: kw=3. ! Mellon et al., JGR 102, 19357 (1997) |
---|
211 | |
---|
212 | kobs = tiobs**2/rhocobs |
---|
213 | ! k, rhoc, and ti are defined in between grid points |
---|
214 | ! rhof and T are defined on grid points |
---|
215 | |
---|
216 | newrhoc = -9999. |
---|
217 | newti = -9999. |
---|
218 | |
---|
219 | select case (layertype) |
---|
220 | case (1) ! interstitial ice |
---|
221 | newrhoc = rhocobs + porosity*fill*icedensity*cice |
---|
222 | if (fill>0.) then |
---|
223 | !--linear addition (option A) |
---|
224 | k = porosity*fill*kice + kobs |
---|
225 | !--Mellon et al. 1997 (option B) |
---|
226 | ki0 = porosity/(1/kobs-(1-porosity)/kw) |
---|
227 | fA = sqrt(fill) |
---|
228 | ki = (1-fA)*ki0 + fA*kice |
---|
229 | !k = kw*ki/((1-porosity)*ki+porosity*kw) |
---|
230 | else |
---|
231 | k = kobs |
---|
232 | endif |
---|
233 | newti = sqrt(newrhoc*k) |
---|
234 | |
---|
235 | case (2) ! massive ice (pure or dirty ice) |
---|
236 | newrhoc = rhocobs*(1.-icefrac)/(1.-porosity) + icefrac*icedensity*cice |
---|
237 | k = icefrac*kice + (1.-icefrac)*kw |
---|
238 | newti = sqrt(newrhoc*k) |
---|
239 | |
---|
240 | case (3) ! all ice, special case of layertype 2, which doesn't use porosity |
---|
241 | newrhoc = icedensity*cice |
---|
242 | k = kice |
---|
243 | newti = sqrt(newrhoc*k) |
---|
244 | |
---|
245 | case (4) ! pores completely filled with ice, special case of layertype 1 |
---|
246 | newrhoc = rhocobs + porosity*icedensity*cice |
---|
247 | k = porosity*kice + kobs ! option A, end-member case of type 1, option A |
---|
248 | !k = kw*kice/((1-porosity)*kice+porosity*kw) ! option B, harmonic average |
---|
249 | newti = sqrt(newrhoc*k) |
---|
250 | |
---|
251 | case (5) ! custom values |
---|
252 | ! values from Mellon et al. (2004) for ice-cemented soil |
---|
253 | newrhoc = 2018.*1040. |
---|
254 | k = 2.5 |
---|
255 | newti = sqrt(newrhoc*k) |
---|
256 | |
---|
257 | case default |
---|
258 | error stop 'invalid layer type' |
---|
259 | |
---|
260 | end select |
---|
261 | |
---|
262 | end subroutine soilthprop |
---|
263 | |
---|
264 | |
---|
265 | !======================================================================= |
---|
266 | |
---|
267 | real*8 function frostpoint(p) |
---|
268 | ! inverse of psv |
---|
269 | ! input is partial pressure [Pascal] |
---|
270 | ! output is temperature [Kelvin] |
---|
271 | implicit none |
---|
272 | real*8 p |
---|
273 | |
---|
274 | !-----inverse of parametrization 1 |
---|
275 | ! real*8 DHmelt,DHvap,DHsub,R,pt,Tt |
---|
276 | ! parameter (DHmelt=6008.,DHvap=45050.) |
---|
277 | ! parameter (DHsub=DHmelt+DHvap) |
---|
278 | ! parameter (R=8.314,pt=6.11e2,Tt=273.16) |
---|
279 | ! frostpoint = 1./(1./Tt-R/DHsub*log(p/pt)) |
---|
280 | |
---|
281 | !-----inverse of parametrization 2 |
---|
282 | ! inverse of eq. (2) in Murphy & Koop (2005) |
---|
283 | real*8 A,B |
---|
284 | parameter (A=-6143.7, B=28.9074) |
---|
285 | frostpoint = A / (log(p) - B) |
---|
286 | |
---|
287 | !-----approximate inverse of parametrization 3 |
---|
288 | ! eq. (8) in Murphy & Koop (2005) |
---|
289 | ! frostpoint = (1.814625*log(p) + 6190.134)/(29.120 - log(p)) |
---|
290 | |
---|
291 | end function frostpoint |
---|
292 | |
---|
293 | END MODULE dyn_ss_ice_m_mod |
---|