source: trunk/LMDZ.COMMON/libf/evolution/NS_derivs.F90 @ 3495

Last change on this file since 3495 was 3493, checked in by jbclement, 3 weeks ago

PEM:

  • Renaming of Norbert Schorghofer's subroutines with the prefix 'NS_';
  • Making the extension of all NS's subroutines as '.F90';
  • Deletion of the wrapper subroutine;
  • Making the initialization, variables management and arguments of the main subroutine for the dynamic computation of ice table to be more suitable.

JBC

File size: 2.9 KB
Line 
1
2subroutine deriv1(z,nz,y,y0,yNp1,yp)
3  ! first derivative of a function y(z) on irregular grid
4  ! upper b.c.: y(0)=y0
5  ! lower b.c.: yp =0
6  implicit none
7  integer, intent(IN) :: nz
8  real(8), intent(IN) :: z(nz),y(nz),y0,yNp1
9  real(8), intent(OUT) :: yp(nz)
10  integer j
11  real(8) hm,hp,c1,c2,c3
12
13  hp = z(2)-z(1)
14  !hm = z(1)
15  c1 = z(1)/(hp*z(2))
16  c2 = 1/z(1) - 1/(z(2)-z(1))
17  c3 = -hp/(z(1)*z(2))
18  yp(1) = c1*y(2) + c2*y(1) + c3*y0
19  do j=2,nz-1
20     hp = z(j+1)-z(j)
21     hm = z(j)-z(j-1)
22     c1 = +hm/(hp*(z(j+1)-z(j-1)))
23     c2 = 1/hm - 1/hp
24     c3 = -hp/(hm*(z(j+1)-z(j-1)))
25     yp(j) = c1*y(j+1) + c2*y(j) + c3*y(j-1)
26  enddo
27  yp(nz) = (yNp1 - y(nz-1))/(2.*(z(nz)-z(nz-1)))
28end subroutine deriv1
29
30
31
32subroutine deriv2_full(z,nz,a,b,a0,b0,bNp1,yp2)
33  ! second derivative (a*b_z)_z on irregular grid
34  ! upper b.c.: a(0)=a0, b(0)=b0
35  ! 2nd order, without cross-terms
36  implicit none
37  integer, intent(IN) :: nz
38  real(8), intent(IN) :: z(nz),a(nz),b(nz),a0,b0,bNp1
39  real(8), intent(OUT) :: yp2(nz)
40  integer j
41  real(8) hm,hp,c1,c2,c3
42 
43  c1 = 1./(z(1)*z(2))
44  c2 = 1./((z(2)-z(1))*z(1))
45  c3 = 1./((z(2)-z(1))*z(2))
46  yp2(1) = -c2*a(1)*b(1) &   
47       &  -c1*a0*b(1) + c1*(a(1)+a0)*b0 &
48       &  -c3*a(2)*b(1) + c3*(a(1)+a(2))*b(2)
49  do j=2,nz-1
50     hp = z(j+1)-z(j)
51     hm = z(j)-z(j-1)
52     c1 = 1./(hm*(z(j+1)-z(j-1)))
53     c2 = 1./(hp*hm)
54     c3 = 1./(hp*(z(j+1)-z(j-1)))
55     yp2(j) = -c2*a(j)*b(j) &   
56          &  -c1*a(j-1)*b(j) + c1*(a(j)+a(j-1))*b(j-1) &
57          &  -c3*a(j+1)*b(j) + c3*(a(j)+a(j+1))*b(j+1)
58  enddo
59
60  ! lower bc: b_z = 0
61  !yp(nz)= 2.*a(nz)*(b(nz-1)-b(nz))/(z(nz)-z(nz-1))**2
62  !more general lower bc
63  yp2(nz) = a(nz)*(bNp1 - 2*b(nz) + b(nz-1))/(z(nz)-z(nz-1))**2
64end subroutine deriv2_full
65
66
67
68subroutine deriv2_simple(z,nz,y,y0,yNp1,yp2)
69  ! second derivative y_zz on irregular grid
70  ! boundary conditions: y(0)=y0, y(nz+1)=yNp1
71  implicit none
72  integer, intent(IN) :: nz
73  real(8), intent(IN) :: z(nz),y(nz),y0,yNp1
74  real(8), intent(OUT) :: yp2(nz)
75  integer j
76  real(8) hm,hp,c1,c2,c3
77
78  c1 = +2./((z(2)-z(1))*z(2))
79  c2 = -2./((z(2)-z(1))*z(1))
80  c3 = +2./(z(1)*z(2))
81  yp2(1) = c1*y(2) + c2*y(1) + c3*y0
82
83  do j=2,nz-1
84     hp = z(j+1)-z(j)
85     hm = z(j)-z(j-1)
86     c1 = +2./(hp*(z(j+1)-z(j-1)))
87     c2 = -2./(hp*hm)
88     c3 = +2./(hm*(z(j+1)-z(j-1)))
89     yp2(j) = c1*y(j+1) + c2*y(j) + c3*y(j-1)
90  enddo
91
92  yp2(nz) = (yNp1 - 2*y(nz) + y(nz-1))/(z(nz)-z(nz-1))**2
93end subroutine deriv2_simple
94
95
96
97real(8) function deriv1_onesided(j,z,nz,y)
98  ! first derivative of function y(z) at z(j)
99  ! one-sided derivative on irregular grid
100  implicit none
101  integer, intent(IN) :: nz,j
102  real(8), intent(IN) :: z(nz),y(nz)
103  real(8) h1,h2,c1,c2,c3
104  if (j<1 .or. j>nz-2) then
105     deriv1_onesided = -9999.
106  else
107     h1 = z(j+1)-z(j)
108     h2 = z(j+2)-z(j+1)
109     c1 = -(2*h1+h2)/(h1*(h1+h2))
110     c2 =  (h1+h2)/(h1*h2)
111     c3 = -h1/(h2*(h1+h2))
112     deriv1_onesided = c1*y(j) + c2*y(j+1) + c3*y(j+2)
113  endif
114end function deriv1_onesided
115
Note: See TracBrowser for help on using the repository browser.