1 | ! |
---|
2 | ! $Header$ |
---|
3 | ! |
---|
4 | SUBROUTINE vlspltqs_p ( q,pente_max,masse,w,pbaru,pbarv,pdt, |
---|
5 | , p,pk,teta ) |
---|
6 | c |
---|
7 | c Auteurs: P.Le Van, F.Hourdin, F.Forget, F.Codron |
---|
8 | c |
---|
9 | c ******************************************************************** |
---|
10 | c Shema d'advection " pseudo amont " . |
---|
11 | c + test sur humidite specifique: Q advecte< Qsat aval |
---|
12 | c (F. Codron, 10/99) |
---|
13 | c ******************************************************************** |
---|
14 | c q,pbaru,pbarv,w sont des arguments d'entree pour le s-pg .... |
---|
15 | c |
---|
16 | c pente_max facteur de limitation des pentes: 2 en general |
---|
17 | c 0 pour un schema amont |
---|
18 | c pbaru,pbarv,w flux de masse en u ,v ,w |
---|
19 | c pdt pas de temps |
---|
20 | c |
---|
21 | c teta temperature potentielle, p pression aux interfaces, |
---|
22 | c pk exner au milieu des couches necessaire pour calculer Qsat |
---|
23 | c -------------------------------------------------------------------- |
---|
24 | USE parallel_lmdz |
---|
25 | USE mod_hallo |
---|
26 | USE VAMPIR |
---|
27 | use cpdet_mod, only: tpot2t_glo_p |
---|
28 | IMPLICIT NONE |
---|
29 | |
---|
30 | c |
---|
31 | #include "dimensions.h" |
---|
32 | #include "paramet.h" |
---|
33 | |
---|
34 | c |
---|
35 | c Arguments: |
---|
36 | c ---------- |
---|
37 | REAL masse(ip1jmp1,llm),pente_max |
---|
38 | REAL pbaru( ip1jmp1,llm ),pbarv( ip1jm,llm) |
---|
39 | REAL q(ip1jmp1,llm) |
---|
40 | REAL w(ip1jmp1,llm),pdt |
---|
41 | REAL p(ip1jmp1,llmp1),teta(ip1jmp1,llm),pk(ip1jmp1,llm) |
---|
42 | c |
---|
43 | c Local |
---|
44 | c --------- |
---|
45 | c |
---|
46 | INTEGER i,ij,l,j,ii |
---|
47 | c |
---|
48 | REAL qsat(ip1jmp1,llm) |
---|
49 | REAL zm(ip1jmp1,llm) |
---|
50 | REAL mu(ip1jmp1,llm) |
---|
51 | REAL mv(ip1jm,llm) |
---|
52 | REAL mw(ip1jmp1,llm+1) |
---|
53 | REAL zq(ip1jmp1,llm) |
---|
54 | REAL temps1,temps2,temps3 |
---|
55 | REAL zzpbar, zzw |
---|
56 | LOGICAL testcpu |
---|
57 | SAVE testcpu |
---|
58 | SAVE temps1,temps2,temps3 |
---|
59 | |
---|
60 | REAL qmin,qmax |
---|
61 | DATA qmin,qmax/0.,1.e33/ |
---|
62 | DATA testcpu/.false./ |
---|
63 | DATA temps1,temps2,temps3/0.,0.,0./ |
---|
64 | |
---|
65 | c--pour rapport de melange saturant-- |
---|
66 | |
---|
67 | REAL rtt,retv,r2es,r3les,r3ies,r4les,r4ies,play |
---|
68 | REAL ptarg,pdelarg,foeew,zdelta |
---|
69 | ! REAL tempe(ip1jmp1) |
---|
70 | ! ADAPTATION GCM POUR CP(T) |
---|
71 | REAL tempe(ip1jmp1,llm) |
---|
72 | |
---|
73 | INTEGER ijb,ije |
---|
74 | type(request) :: MyRequest1 |
---|
75 | type(request) :: MyRequest2 |
---|
76 | |
---|
77 | c fonction psat(T) |
---|
78 | |
---|
79 | FOEEW ( PTARG,PDELARG ) = EXP ( |
---|
80 | * (R3LES*(1.-PDELARG)+R3IES*PDELARG) * (PTARG-RTT) |
---|
81 | * / (PTARG-(R4LES*(1.-PDELARG)+R4IES*PDELARG)) ) |
---|
82 | |
---|
83 | r2es = 380.11733 |
---|
84 | r3les = 17.269 |
---|
85 | r3ies = 21.875 |
---|
86 | r4les = 35.86 |
---|
87 | r4ies = 7.66 |
---|
88 | retv = 0.6077667 |
---|
89 | rtt = 273.16 |
---|
90 | |
---|
91 | c-- Calcul de Qsat en chaque point |
---|
92 | c-- approximation: au milieu des couches play(l)=(p(l)+p(l+1))/2 |
---|
93 | c pour eviter une exponentielle. |
---|
94 | |
---|
95 | ! ADAPTATION GCM POUR CP(T) |
---|
96 | ! probablement a revoir... |
---|
97 | ! call tpot2t_p(ip1jmp1,llm,teta,tempe,pk) |
---|
98 | call tpot2t_glo_p(teta,tempe,pk) |
---|
99 | |
---|
100 | call SetTag(MyRequest1,100) |
---|
101 | call SetTag(MyRequest2,101) |
---|
102 | |
---|
103 | ijb=ij_begin-iip1 |
---|
104 | ije=ij_end+iip1 |
---|
105 | if (pole_nord) ijb=ij_begin |
---|
106 | if (pole_sud) ije=ij_end |
---|
107 | |
---|
108 | |
---|
109 | DO l = 1, llm |
---|
110 | ! DO ij = ijb, ije |
---|
111 | ! tempe(ij) = teta(ij,l) * pk(ij,l) /cpp |
---|
112 | ! ENDDO |
---|
113 | DO ij = ijb, ije |
---|
114 | zdelta = MAX( 0., SIGN(1., rtt - tempe(ij,l)) ) |
---|
115 | play = 0.5*(p(ij,l)+p(ij,l+1)) |
---|
116 | qsat(ij,l) = MIN(0.5, r2es* FOEEW(tempe(ij,l),zdelta) / play ) |
---|
117 | qsat(ij,l) = qsat(ij,l) / ( 1. - retv * qsat(ij,l) ) |
---|
118 | ENDDO |
---|
119 | ENDDO |
---|
120 | |
---|
121 | c PRINT*,'Debut vlsplt version debug sans vlyqs' |
---|
122 | |
---|
123 | zzpbar = 0.5 * pdt |
---|
124 | zzw = pdt |
---|
125 | |
---|
126 | ijb=ij_begin |
---|
127 | ije=ij_end |
---|
128 | if (pole_nord) ijb=ijb+iip1 |
---|
129 | if (pole_sud) ije=ije-iip1 |
---|
130 | |
---|
131 | |
---|
132 | DO l=1,llm |
---|
133 | DO ij = ijb,ije |
---|
134 | mu(ij,l)=pbaru(ij,l) * zzpbar |
---|
135 | ENDDO |
---|
136 | ENDDO |
---|
137 | |
---|
138 | ijb=ij_begin-iip1 |
---|
139 | ije=ij_end |
---|
140 | if (pole_nord) ijb=ij_begin |
---|
141 | if (pole_sud) ije=ij_end-iip1 |
---|
142 | |
---|
143 | DO l=1,llm |
---|
144 | DO ij=ijb,ije |
---|
145 | mv(ij,l)=pbarv(ij,l) * zzpbar |
---|
146 | ENDDO |
---|
147 | ENDDO |
---|
148 | |
---|
149 | ijb=ij_begin |
---|
150 | ije=ij_end |
---|
151 | |
---|
152 | DO l=1,llm |
---|
153 | DO ij=ijb,ije |
---|
154 | mw(ij,l)=w(ij,l) * zzw |
---|
155 | ENDDO |
---|
156 | ENDDO |
---|
157 | |
---|
158 | DO ij=ijb,ije |
---|
159 | mw(ij,llm+1)=0. |
---|
160 | ENDDO |
---|
161 | |
---|
162 | c CALL SCOPY(ijp1llm,q,1,zq,1) |
---|
163 | c CALL SCOPY(ijp1llm,masse,1,zm,1) |
---|
164 | |
---|
165 | ijb=ij_begin |
---|
166 | ije=ij_end |
---|
167 | zq(ijb:ije,1:llm)=q(ijb:ije,1:llm) |
---|
168 | zm(ijb:ije,1:llm)=masse(ijb:ije,1:llm) |
---|
169 | |
---|
170 | |
---|
171 | call vlxqs_p(zq,pente_max,zm,mu,qsat,ij_begin,ij_begin+2*iip1-1) |
---|
172 | call vlxqs_p(zq,pente_max,zm,mu,qsat,ij_end-2*iip1+1,ij_end) |
---|
173 | |
---|
174 | call VTb(VTHallo) |
---|
175 | call Register_Hallo(zq,ip1jmp1,llm,2,2,2,2,MyRequest1) |
---|
176 | call Register_Hallo(zm,ip1jmp1,llm,1,1,1,1,MyRequest1) |
---|
177 | call SendRequest(MyRequest1) |
---|
178 | call VTe(VTHallo) |
---|
179 | |
---|
180 | call vlxqs_p(zq,pente_max,zm,mu,qsat, |
---|
181 | . ij_begin+2*iip1,ij_end-2*iip1) |
---|
182 | |
---|
183 | call VTb(VTHallo) |
---|
184 | call WaitRecvRequest(MyRequest1) |
---|
185 | call VTe(VTHallo) |
---|
186 | |
---|
187 | call vlyqs_p(zq,pente_max,zm,mv,qsat) |
---|
188 | |
---|
189 | call vlz_p(zq,pente_max,zm,mw,ij_begin,ij_begin+2*iip1-1) |
---|
190 | call vlz_p(zq,pente_max,zm,mw,ij_end-2*iip1+1,ij_end) |
---|
191 | |
---|
192 | call VTb(VTHallo) |
---|
193 | call Register_Hallo(zq,ip1jmp1,llm,2,2,2,2,MyRequest2) |
---|
194 | call Register_Hallo(zm,ip1jmp1,llm,1,1,1,1,MyRequest2) |
---|
195 | call SendRequest(MyRequest2) |
---|
196 | call VTe(VTHallo) |
---|
197 | |
---|
198 | call vlz_p(zq,pente_max,zm,mw,ij_begin+2*iip1,ij_end-2*iip1) |
---|
199 | |
---|
200 | call VTb(VTHallo) |
---|
201 | call WaitRecvRequest(MyRequest2) |
---|
202 | call VTe(VTHallo) |
---|
203 | |
---|
204 | call vlyqs_p(zq,pente_max,zm,mv,qsat) |
---|
205 | |
---|
206 | |
---|
207 | call vlxqs_p(zq,pente_max,zm,mu,qsat,ij_begin,ij_end) |
---|
208 | |
---|
209 | |
---|
210 | ijb=ij_begin |
---|
211 | ije=ij_end |
---|
212 | |
---|
213 | DO l=1,llm |
---|
214 | DO ij=ijb,ije |
---|
215 | q(ij,l)=zq(ij,l) |
---|
216 | ENDDO |
---|
217 | ENDDO |
---|
218 | |
---|
219 | DO l=1,llm |
---|
220 | DO ij=ijb,ije-iip1+1,iip1 |
---|
221 | q(ij+iim,l)=q(ij,l) |
---|
222 | ENDDO |
---|
223 | ENDDO |
---|
224 | |
---|
225 | call WaitSendRequest(MyRequest1) |
---|
226 | call WaitSendRequest(MyRequest2) |
---|
227 | |
---|
228 | RETURN |
---|
229 | END |
---|
230 | SUBROUTINE vlxqs_p(q,pente_max,masse,u_m,qsat,ijb_x,ije_x) |
---|
231 | c |
---|
232 | c Auteurs: P.Le Van, F.Hourdin, F.Forget |
---|
233 | c |
---|
234 | c ******************************************************************** |
---|
235 | c Shema d'advection " pseudo amont " . |
---|
236 | c ******************************************************************** |
---|
237 | c |
---|
238 | c -------------------------------------------------------------------- |
---|
239 | USE parallel_lmdz |
---|
240 | IMPLICIT NONE |
---|
241 | c |
---|
242 | #include "dimensions.h" |
---|
243 | #include "paramet.h" |
---|
244 | c |
---|
245 | c |
---|
246 | c Arguments: |
---|
247 | c ---------- |
---|
248 | REAL masse(ip1jmp1,llm),pente_max |
---|
249 | REAL u_m( ip1jmp1,llm ) |
---|
250 | REAL q(ip1jmp1,llm) |
---|
251 | REAL qsat(ip1jmp1,llm) |
---|
252 | c |
---|
253 | c Local |
---|
254 | c --------- |
---|
255 | c |
---|
256 | INTEGER ij,l,j,i,iju,ijq,indu(ip1jmp1),niju |
---|
257 | INTEGER n0,iadvplus(ip1jmp1,llm),nl(llm) |
---|
258 | c |
---|
259 | REAL new_m,zu_m,zdum(ip1jmp1,llm) |
---|
260 | REAL dxq(ip1jmp1,llm),dxqu(ip1jmp1) |
---|
261 | REAL zz(ip1jmp1) |
---|
262 | REAL adxqu(ip1jmp1),dxqmax(ip1jmp1,llm) |
---|
263 | REAL u_mq(ip1jmp1,llm) |
---|
264 | |
---|
265 | REAL SSUM |
---|
266 | |
---|
267 | |
---|
268 | INTEGER ijb,ije,ijb_x,ije_x |
---|
269 | |
---|
270 | |
---|
271 | c calcul de la pente a droite et a gauche de la maille |
---|
272 | |
---|
273 | c ijb=ij_begin |
---|
274 | c ije=ij_end |
---|
275 | |
---|
276 | ijb=ijb_x |
---|
277 | ije=ije_x |
---|
278 | |
---|
279 | if (pole_nord.and.ijb==1) ijb=ijb+iip1 |
---|
280 | if (pole_sud.and.ije==ip1jmp1) ije=ije-iip1 |
---|
281 | |
---|
282 | IF (pente_max.gt.-1.e-5) THEN |
---|
283 | c IF (pente_max.gt.10) THEN |
---|
284 | |
---|
285 | c calcul des pentes avec limitation, Van Leer scheme I: |
---|
286 | c ----------------------------------------------------- |
---|
287 | |
---|
288 | c calcul de la pente aux points u |
---|
289 | |
---|
290 | c$OMP DO SCHEDULE(STATIC,OMP_CHUNK) |
---|
291 | DO l = 1, llm |
---|
292 | DO ij=ijb,ije-1 |
---|
293 | dxqu(ij)=q(ij+1,l)-q(ij,l) |
---|
294 | c IF(u_m(ij,l).lt.0.) stop'limx n admet pas les U<0' |
---|
295 | c sigu(ij)=u_m(ij,l)/masse(ij,l) |
---|
296 | ENDDO |
---|
297 | DO ij=ijb+iip1-1,ije,iip1 |
---|
298 | dxqu(ij)=dxqu(ij-iim) |
---|
299 | c sigu(ij)=sigu(ij-iim) |
---|
300 | ENDDO |
---|
301 | |
---|
302 | DO ij=ijb,ije |
---|
303 | adxqu(ij)=abs(dxqu(ij)) |
---|
304 | ENDDO |
---|
305 | |
---|
306 | c calcul de la pente maximum dans la maille en valeur absolue |
---|
307 | |
---|
308 | DO ij=ijb+1,ije |
---|
309 | dxqmax(ij,l)=pente_max* |
---|
310 | , min(adxqu(ij-1),adxqu(ij)) |
---|
311 | c limitation subtile |
---|
312 | c , min(adxqu(ij-1)/sigu(ij-1),adxqu(ij)/(1.-sigu(ij))) |
---|
313 | |
---|
314 | |
---|
315 | ENDDO |
---|
316 | |
---|
317 | DO ij=ijb+iip1-1,ije,iip1 |
---|
318 | dxqmax(ij-iim,l)=dxqmax(ij,l) |
---|
319 | ENDDO |
---|
320 | |
---|
321 | DO ij=ijb+1,ije |
---|
322 | #ifdef CRAY |
---|
323 | dxq(ij,l)= |
---|
324 | , cvmgp(dxqu(ij-1)+dxqu(ij),0.,dxqu(ij-1)*dxqu(ij)) |
---|
325 | #else |
---|
326 | IF(dxqu(ij-1)*dxqu(ij).gt.0) THEN |
---|
327 | dxq(ij,l)=dxqu(ij-1)+dxqu(ij) |
---|
328 | ELSE |
---|
329 | c extremum local |
---|
330 | dxq(ij,l)=0. |
---|
331 | ENDIF |
---|
332 | #endif |
---|
333 | dxq(ij,l)=0.5*dxq(ij,l) |
---|
334 | dxq(ij,l)= |
---|
335 | , sign(min(abs(dxq(ij,l)),dxqmax(ij,l)),dxq(ij,l)) |
---|
336 | ENDDO |
---|
337 | |
---|
338 | ENDDO ! l=1,llm |
---|
339 | c$OMP END DO NOWAIT |
---|
340 | |
---|
341 | ELSE ! (pente_max.lt.-1.e-5) |
---|
342 | |
---|
343 | c Pentes produits: |
---|
344 | c ---------------- |
---|
345 | c$OMP DO SCHEDULE(STATIC,OMP_CHUNK) |
---|
346 | DO l = 1, llm |
---|
347 | DO ij=ijb,ije-1 |
---|
348 | dxqu(ij)=q(ij+1,l)-q(ij,l) |
---|
349 | ENDDO |
---|
350 | DO ij=ijb+iip1-1,ije,iip1 |
---|
351 | dxqu(ij)=dxqu(ij-iim) |
---|
352 | ENDDO |
---|
353 | |
---|
354 | DO ij=ijb+1,ije |
---|
355 | zz(ij)=dxqu(ij-1)*dxqu(ij) |
---|
356 | zz(ij)=zz(ij)+zz(ij) |
---|
357 | IF(zz(ij).gt.0) THEN |
---|
358 | dxq(ij,l)=zz(ij)/(dxqu(ij-1)+dxqu(ij)) |
---|
359 | ELSE |
---|
360 | c extremum local |
---|
361 | dxq(ij,l)=0. |
---|
362 | ENDIF |
---|
363 | ENDDO |
---|
364 | |
---|
365 | ENDDO |
---|
366 | c$OMP END DO NOWAIT |
---|
367 | ENDIF ! (pente_max.lt.-1.e-5) |
---|
368 | |
---|
369 | c bouclage de la pente en iip1: |
---|
370 | c ----------------------------- |
---|
371 | c$OMP DO SCHEDULE(STATIC,OMP_CHUNK) |
---|
372 | DO l=1,llm |
---|
373 | DO ij=ijb+iip1-1,ije,iip1 |
---|
374 | dxq(ij-iim,l)=dxq(ij,l) |
---|
375 | ENDDO |
---|
376 | |
---|
377 | DO ij=ijb,ije |
---|
378 | iadvplus(ij,l)=0 |
---|
379 | ENDDO |
---|
380 | |
---|
381 | ENDDO |
---|
382 | c$OMP END DO NOWAIT |
---|
383 | |
---|
384 | if (pole_nord) THEN |
---|
385 | c$OMP DO SCHEDULE(STATIC,OMP_CHUNK) |
---|
386 | DO l=1,llm |
---|
387 | iadvplus(1:iip1,l)=0 |
---|
388 | ENDDO |
---|
389 | c$OMP END DO NOWAIT |
---|
390 | endif |
---|
391 | |
---|
392 | if (pole_sud) THEN |
---|
393 | c$OMP DO SCHEDULE(STATIC,OMP_CHUNK) |
---|
394 | DO l=1,llm |
---|
395 | iadvplus(ip1jm+1:ip1jmp1,l)=0 |
---|
396 | ENDDO |
---|
397 | c$OMP END DO NOWAIT |
---|
398 | endif |
---|
399 | |
---|
400 | c calcul des flux a gauche et a droite |
---|
401 | |
---|
402 | #ifdef CRAY |
---|
403 | c--pas encore modification sur Qsat |
---|
404 | c$OMP DO SCHEDULE(STATIC,OMP_CHUNK) |
---|
405 | DO l=1,llm |
---|
406 | DO ij=ijb,ije-1 |
---|
407 | zdum(ij,l)=cvmgp(1.-u_m(ij,l)/masse(ij,l), |
---|
408 | , 1.+u_m(ij,l)/masse(ij+1,l), |
---|
409 | , u_m(ij,l)) |
---|
410 | zdum(ij,l)=0.5*zdum(ij,l) |
---|
411 | u_mq(ij,l)=cvmgp( |
---|
412 | , q(ij,l)+zdum(ij,l)*dxq(ij,l), |
---|
413 | , q(ij+1,l)-zdum(ij,l)*dxq(ij+1,l), |
---|
414 | , u_m(ij,l)) |
---|
415 | u_mq(ij,l)=u_m(ij,l)*u_mq(ij,l) |
---|
416 | ENDDO |
---|
417 | ENDDO |
---|
418 | c$OMP END DO NOWAIT |
---|
419 | |
---|
420 | #else |
---|
421 | c on cumule le flux correspondant a toutes les mailles dont la masse |
---|
422 | c au travers de la paroi pENDant le pas de temps. |
---|
423 | c le rapport de melange de l'air advecte est min(q_vanleer, Qsat_downwind) |
---|
424 | c$OMP DO SCHEDULE(STATIC,OMP_CHUNK) |
---|
425 | DO l=1,llm |
---|
426 | DO ij=ijb,ije-1 |
---|
427 | IF (u_m(ij,l).gt.0.) THEN |
---|
428 | zdum(ij,l)=1.-u_m(ij,l)/masse(ij,l) |
---|
429 | u_mq(ij,l)=u_m(ij,l)* |
---|
430 | $ min(q(ij,l)+0.5*zdum(ij,l)*dxq(ij,l),qsat(ij+1,l)) |
---|
431 | ELSE |
---|
432 | zdum(ij,l)=1.+u_m(ij,l)/masse(ij+1,l) |
---|
433 | u_mq(ij,l)=u_m(ij,l)* |
---|
434 | $ min(q(ij+1,l)-0.5*zdum(ij,l)*dxq(ij+1,l),qsat(ij,l)) |
---|
435 | ENDIF |
---|
436 | ENDDO |
---|
437 | ENDDO |
---|
438 | c$OMP END DO NOWAIT |
---|
439 | #endif |
---|
440 | |
---|
441 | |
---|
442 | c detection des points ou on advecte plus que la masse de la |
---|
443 | c maille |
---|
444 | c$OMP DO SCHEDULE(STATIC,OMP_CHUNK) |
---|
445 | DO l=1,llm |
---|
446 | DO ij=ijb,ije-1 |
---|
447 | IF(zdum(ij,l).lt.0) THEN |
---|
448 | iadvplus(ij,l)=1 |
---|
449 | u_mq(ij,l)=0. |
---|
450 | ENDIF |
---|
451 | ENDDO |
---|
452 | ENDDO |
---|
453 | c$OMP END DO NOWAIT |
---|
454 | |
---|
455 | c$OMP DO SCHEDULE(STATIC,OMP_CHUNK) |
---|
456 | DO l=1,llm |
---|
457 | DO ij=ijb+iip1-1,ije,iip1 |
---|
458 | iadvplus(ij,l)=iadvplus(ij-iim,l) |
---|
459 | ENDDO |
---|
460 | ENDDO |
---|
461 | c$OMP END DO NOWAIT |
---|
462 | |
---|
463 | |
---|
464 | |
---|
465 | c traitement special pour le cas ou on advecte en longitude plus que le |
---|
466 | c contenu de la maille. |
---|
467 | c cette partie est mal vectorisee. |
---|
468 | |
---|
469 | c pas d'influence de la pression saturante (pour l'instant) |
---|
470 | |
---|
471 | c calcul du nombre de maille sur lequel on advecte plus que la maille. |
---|
472 | |
---|
473 | n0=0 |
---|
474 | c$OMP DO SCHEDULE(STATIC,OMP_CHUNK) |
---|
475 | DO l=1,llm |
---|
476 | nl(l)=0 |
---|
477 | DO ij=ijb,ije |
---|
478 | nl(l)=nl(l)+iadvplus(ij,l) |
---|
479 | ENDDO |
---|
480 | n0=n0+nl(l) |
---|
481 | ENDDO |
---|
482 | c$OMP END DO NOWAIT |
---|
483 | |
---|
484 | cym ATTENTION ICI en OpenMP reduction pas forcement nécessaire |
---|
485 | cym IF(n0.gt.1) THEN |
---|
486 | cym IF(n0.gt.0) THEN |
---|
487 | ccc PRINT*,'Nombre de points pour lesquels on advect plus que le' |
---|
488 | ccc & ,'contenu de la maille : ',n0 |
---|
489 | c$OMP DO SCHEDULE(STATIC,OMP_CHUNK) |
---|
490 | DO l=1,llm |
---|
491 | IF(nl(l).gt.0) THEN |
---|
492 | iju=0 |
---|
493 | c indicage des mailles concernees par le traitement special |
---|
494 | DO ij=ijb,ije |
---|
495 | IF(iadvplus(ij,l).eq.1.and.mod(ij,iip1).ne.0) THEN |
---|
496 | iju=iju+1 |
---|
497 | indu(iju)=ij |
---|
498 | ENDIF |
---|
499 | ENDDO |
---|
500 | niju=iju |
---|
501 | c PRINT*,'niju,nl',niju,nl(l) |
---|
502 | |
---|
503 | c traitement des mailles |
---|
504 | DO iju=1,niju |
---|
505 | ij=indu(iju) |
---|
506 | j=(ij-1)/iip1+1 |
---|
507 | zu_m=u_m(ij,l) |
---|
508 | u_mq(ij,l)=0. |
---|
509 | IF(zu_m.gt.0.) THEN |
---|
510 | ijq=ij |
---|
511 | i=ijq-(j-1)*iip1 |
---|
512 | c accumulation pour les mailles completements advectees |
---|
513 | do while(zu_m.gt.masse(ijq,l)) |
---|
514 | u_mq(ij,l)=u_mq(ij,l)+q(ijq,l)*masse(ijq,l) |
---|
515 | zu_m=zu_m-masse(ijq,l) |
---|
516 | i=mod(i-2+iim,iim)+1 |
---|
517 | ijq=(j-1)*iip1+i |
---|
518 | ENDDO |
---|
519 | c ajout de la maille non completement advectee |
---|
520 | u_mq(ij,l)=u_mq(ij,l)+zu_m* |
---|
521 | & (q(ijq,l)+0.5*(1.-zu_m/masse(ijq,l))*dxq(ijq,l)) |
---|
522 | ELSE |
---|
523 | ijq=ij+1 |
---|
524 | i=ijq-(j-1)*iip1 |
---|
525 | c accumulation pour les mailles completements advectees |
---|
526 | do while(-zu_m.gt.masse(ijq,l)) |
---|
527 | u_mq(ij,l)=u_mq(ij,l)-q(ijq,l)*masse(ijq,l) |
---|
528 | zu_m=zu_m+masse(ijq,l) |
---|
529 | i=mod(i,iim)+1 |
---|
530 | ijq=(j-1)*iip1+i |
---|
531 | ENDDO |
---|
532 | c ajout de la maille non completement advectee |
---|
533 | u_mq(ij,l)=u_mq(ij,l)+zu_m*(q(ijq,l)- |
---|
534 | & 0.5*(1.+zu_m/masse(ijq,l))*dxq(ijq,l)) |
---|
535 | ENDIF |
---|
536 | ENDDO |
---|
537 | ENDIF |
---|
538 | ENDDO |
---|
539 | c$OMP END DO NOWAIT |
---|
540 | cym ENDIF ! n0.gt.0 |
---|
541 | |
---|
542 | |
---|
543 | |
---|
544 | c bouclage en latitude |
---|
545 | c$OMP DO SCHEDULE(STATIC,OMP_CHUNK) |
---|
546 | DO l=1,llm |
---|
547 | DO ij=ijb+iip1-1,ije,iip1 |
---|
548 | u_mq(ij,l)=u_mq(ij-iim,l) |
---|
549 | ENDDO |
---|
550 | ENDDO |
---|
551 | c$OMP END DO NOWAIT |
---|
552 | |
---|
553 | c calcul des tendances |
---|
554 | c$OMP DO SCHEDULE(STATIC,OMP_CHUNK) |
---|
555 | DO l=1,llm |
---|
556 | DO ij=ijb+1,ije |
---|
557 | new_m=masse(ij,l)+u_m(ij-1,l)-u_m(ij,l) |
---|
558 | q(ij,l)=(q(ij,l)*masse(ij,l)+ |
---|
559 | & u_mq(ij-1,l)-u_mq(ij,l)) |
---|
560 | & /new_m |
---|
561 | masse(ij,l)=new_m |
---|
562 | ENDDO |
---|
563 | c Modif Fred 22 03 96 correction d'un bug (les scopy ci-dessous) |
---|
564 | DO ij=ijb+iip1-1,ije,iip1 |
---|
565 | q(ij-iim,l)=q(ij,l) |
---|
566 | masse(ij-iim,l)=masse(ij,l) |
---|
567 | ENDDO |
---|
568 | ENDDO |
---|
569 | c$OMP END DO NOWAIT |
---|
570 | c CALL SCOPY((jjm-1)*llm,q(iip1+iip1,1),iip1,q(iip2,1),iip1) |
---|
571 | c CALL SCOPY((jjm-1)*llm,masse(iip1+iip1,1),iip1,masse(iip2,1),iip1) |
---|
572 | |
---|
573 | |
---|
574 | RETURN |
---|
575 | END |
---|
576 | SUBROUTINE vlyqs_p(q,pente_max,masse,masse_adv_v,qsat) |
---|
577 | c |
---|
578 | c Auteurs: P.Le Van, F.Hourdin, F.Forget |
---|
579 | c |
---|
580 | c ******************************************************************** |
---|
581 | c Shema d'advection " pseudo amont " . |
---|
582 | c ******************************************************************** |
---|
583 | c q,masse_adv_v,w sont des arguments d'entree pour le s-pg .... |
---|
584 | c qsat est un argument de sortie pour le s-pg .... |
---|
585 | c |
---|
586 | c |
---|
587 | c -------------------------------------------------------------------- |
---|
588 | USE parallel_lmdz |
---|
589 | USE comconst_mod, ONLY: pi |
---|
590 | IMPLICIT NONE |
---|
591 | c |
---|
592 | #include "dimensions.h" |
---|
593 | #include "paramet.h" |
---|
594 | #include "comgeom.h" |
---|
595 | c |
---|
596 | c |
---|
597 | c Arguments: |
---|
598 | c ---------- |
---|
599 | REAL masse(ip1jmp1,llm),pente_max |
---|
600 | REAL masse_adv_v( ip1jm,llm) |
---|
601 | REAL q(ip1jmp1,llm) |
---|
602 | REAL qsat(ip1jmp1,llm) |
---|
603 | c |
---|
604 | c Local |
---|
605 | c --------- |
---|
606 | c |
---|
607 | INTEGER i,ij,l |
---|
608 | c |
---|
609 | REAL airej2,airejjm,airescb(iim),airesch(iim) |
---|
610 | REAL dyq(ip1jmp1,llm),dyqv(ip1jm) |
---|
611 | REAL adyqv(ip1jm),dyqmax(ip1jmp1) |
---|
612 | REAL qbyv(ip1jm,llm) |
---|
613 | |
---|
614 | REAL qpns,qpsn,dyn1,dys1,dyn2,dys2,newmasse,fn,fs |
---|
615 | c REAL newq,oldmasse |
---|
616 | Logical first |
---|
617 | SAVE first |
---|
618 | c$OMP THREADPRIVATE(first) |
---|
619 | REAL convpn,convps,convmpn,convmps |
---|
620 | REAL sinlon(iip1),sinlondlon(iip1) |
---|
621 | REAL coslon(iip1),coslondlon(iip1) |
---|
622 | SAVE sinlon,coslon,sinlondlon,coslondlon |
---|
623 | SAVE airej2,airejjm |
---|
624 | c$OMP THREADPRIVATE(sinlon,coslon,sinlondlon,coslondlon) |
---|
625 | c$OMP THREADPRIVATE(airej2,airejjm) |
---|
626 | c |
---|
627 | c |
---|
628 | REAL SSUM |
---|
629 | |
---|
630 | DATA first/.true./ |
---|
631 | INTEGER ijb,ije |
---|
632 | |
---|
633 | IF(first) THEN |
---|
634 | PRINT*,'Shema Amont nouveau appele dans Vanleer ' |
---|
635 | first=.false. |
---|
636 | do i=2,iip1 |
---|
637 | coslon(i)=cos(rlonv(i)) |
---|
638 | sinlon(i)=sin(rlonv(i)) |
---|
639 | coslondlon(i)=coslon(i)*(rlonu(i)-rlonu(i-1))/pi |
---|
640 | sinlondlon(i)=sinlon(i)*(rlonu(i)-rlonu(i-1))/pi |
---|
641 | ENDDO |
---|
642 | coslon(1)=coslon(iip1) |
---|
643 | coslondlon(1)=coslondlon(iip1) |
---|
644 | sinlon(1)=sinlon(iip1) |
---|
645 | sinlondlon(1)=sinlondlon(iip1) |
---|
646 | airej2 = SSUM( iim, aire(iip2), 1 ) |
---|
647 | airejjm= SSUM( iim, aire(ip1jm -iim), 1 ) |
---|
648 | ENDIF |
---|
649 | |
---|
650 | c |
---|
651 | |
---|
652 | c$OMP DO SCHEDULE(STATIC,OMP_CHUNK) |
---|
653 | DO l = 1, llm |
---|
654 | c |
---|
655 | c -------------------------------- |
---|
656 | c CALCUL EN LATITUDE |
---|
657 | c -------------------------------- |
---|
658 | |
---|
659 | c On commence par calculer la valeur du traceur moyenne sur le premier cercle |
---|
660 | c de latitude autour du pole (qpns pour le pole nord et qpsn pour |
---|
661 | c le pole nord) qui sera utilisee pour evaluer les pentes au pole. |
---|
662 | |
---|
663 | if (pole_nord) then |
---|
664 | DO i = 1, iim |
---|
665 | airescb(i) = aire(i+ iip1) * q(i+ iip1,l) |
---|
666 | ENDDO |
---|
667 | qpns = SSUM( iim, airescb ,1 ) / airej2 |
---|
668 | endif |
---|
669 | |
---|
670 | if (pole_sud) then |
---|
671 | DO i = 1, iim |
---|
672 | airesch(i) = aire(i+ ip1jm- iip1) * q(i+ ip1jm- iip1,l) |
---|
673 | ENDDO |
---|
674 | qpsn = SSUM( iim, airesch ,1 ) / airejjm |
---|
675 | endif |
---|
676 | |
---|
677 | |
---|
678 | c calcul des pentes aux points v |
---|
679 | |
---|
680 | ijb=ij_begin-2*iip1 |
---|
681 | ije=ij_end+iip1 |
---|
682 | if (pole_nord) ijb=ij_begin |
---|
683 | if (pole_sud) ije=ij_end-iip1 |
---|
684 | |
---|
685 | DO ij=ijb,ije |
---|
686 | dyqv(ij)=q(ij,l)-q(ij+iip1,l) |
---|
687 | adyqv(ij)=abs(dyqv(ij)) |
---|
688 | ENDDO |
---|
689 | |
---|
690 | |
---|
691 | c calcul des pentes aux points scalaires |
---|
692 | |
---|
693 | ijb=ij_begin-iip1 |
---|
694 | ije=ij_end+iip1 |
---|
695 | if (pole_nord) ijb=ij_begin+iip1 |
---|
696 | if (pole_sud) ije=ij_end-iip1 |
---|
697 | |
---|
698 | DO ij=ijb,ije |
---|
699 | dyq(ij,l)=.5*(dyqv(ij-iip1)+dyqv(ij)) |
---|
700 | dyqmax(ij)=min(adyqv(ij-iip1),adyqv(ij)) |
---|
701 | dyqmax(ij)=pente_max*dyqmax(ij) |
---|
702 | ENDDO |
---|
703 | |
---|
704 | IF (pole_nord) THEN |
---|
705 | |
---|
706 | c calcul des pentes aux poles |
---|
707 | DO ij=1,iip1 |
---|
708 | dyq(ij,l)=qpns-q(ij+iip1,l) |
---|
709 | ENDDO |
---|
710 | |
---|
711 | c filtrage de la derivee |
---|
712 | dyn1=0. |
---|
713 | dyn2=0. |
---|
714 | DO ij=1,iim |
---|
715 | dyn1=dyn1+sinlondlon(ij)*dyq(ij,l) |
---|
716 | dyn2=dyn2+coslondlon(ij)*dyq(ij,l) |
---|
717 | ENDDO |
---|
718 | DO ij=1,iip1 |
---|
719 | dyq(ij,l)=dyn1*sinlon(ij)+dyn2*coslon(ij) |
---|
720 | ENDDO |
---|
721 | |
---|
722 | c calcul des pentes limites aux poles |
---|
723 | fn=1. |
---|
724 | DO ij=1,iim |
---|
725 | IF(pente_max*adyqv(ij).lt.abs(dyq(ij,l))) THEN |
---|
726 | fn=min(pente_max*adyqv(ij)/abs(dyq(ij,l)),fn) |
---|
727 | ENDIF |
---|
728 | ENDDO |
---|
729 | |
---|
730 | DO ij=1,iip1 |
---|
731 | dyq(ij,l)=fn*dyq(ij,l) |
---|
732 | ENDDO |
---|
733 | |
---|
734 | ENDIF |
---|
735 | |
---|
736 | IF (pole_sud) THEN |
---|
737 | |
---|
738 | DO ij=1,iip1 |
---|
739 | dyq(ip1jm+ij,l)=q(ip1jm+ij-iip1,l)-qpsn |
---|
740 | ENDDO |
---|
741 | |
---|
742 | dys1=0. |
---|
743 | dys2=0. |
---|
744 | |
---|
745 | DO ij=1,iim |
---|
746 | dys1=dys1+sinlondlon(ij)*dyq(ip1jm+ij,l) |
---|
747 | dys2=dys2+coslondlon(ij)*dyq(ip1jm+ij,l) |
---|
748 | ENDDO |
---|
749 | |
---|
750 | DO ij=1,iip1 |
---|
751 | dyq(ip1jm+ij,l)=dys1*sinlon(ij)+dys2*coslon(ij) |
---|
752 | ENDDO |
---|
753 | |
---|
754 | c calcul des pentes limites aux poles |
---|
755 | fs=1. |
---|
756 | DO ij=1,iim |
---|
757 | IF(pente_max*adyqv(ij+ip1jm-iip1).lt.abs(dyq(ij+ip1jm,l))) THEN |
---|
758 | fs=min(pente_max*adyqv(ij+ip1jm-iip1)/abs(dyq(ij+ip1jm,l)),fs) |
---|
759 | ENDIF |
---|
760 | ENDDO |
---|
761 | |
---|
762 | DO ij=1,iip1 |
---|
763 | dyq(ip1jm+ij,l)=fs*dyq(ip1jm+ij,l) |
---|
764 | ENDDO |
---|
765 | |
---|
766 | ENDIF |
---|
767 | |
---|
768 | |
---|
769 | CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
---|
770 | C En memoire de dIFferents tests sur la |
---|
771 | C limitation des pentes aux poles. |
---|
772 | CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
---|
773 | C PRINT*,dyq(1) |
---|
774 | C PRINT*,dyqv(iip1+1) |
---|
775 | C appn=abs(dyq(1)/dyqv(iip1+1)) |
---|
776 | C PRINT*,dyq(ip1jm+1) |
---|
777 | C PRINT*,dyqv(ip1jm-iip1+1) |
---|
778 | C apps=abs(dyq(ip1jm+1)/dyqv(ip1jm-iip1+1)) |
---|
779 | C DO ij=2,iim |
---|
780 | C appn=amax1(abs(dyq(ij)/dyqv(ij)),appn) |
---|
781 | C apps=amax1(abs(dyq(ip1jm+ij)/dyqv(ip1jm-iip1+ij)),apps) |
---|
782 | C ENDDO |
---|
783 | C appn=min(pente_max/appn,1.) |
---|
784 | C apps=min(pente_max/apps,1.) |
---|
785 | C |
---|
786 | C |
---|
787 | C cas ou on a un extremum au pole |
---|
788 | C |
---|
789 | C IF(dyqv(ismin(iim,dyqv,1))*dyqv(ismax(iim,dyqv,1)).le.0.) |
---|
790 | C & appn=0. |
---|
791 | C IF(dyqv(ismax(iim,dyqv(ip1jm-iip1+1),1)+ip1jm-iip1+1)* |
---|
792 | C & dyqv(ismin(iim,dyqv(ip1jm-iip1+1),1)+ip1jm-iip1+1).le.0.) |
---|
793 | C & apps=0. |
---|
794 | C |
---|
795 | C limitation des pentes aux poles |
---|
796 | C DO ij=1,iip1 |
---|
797 | C dyq(ij)=appn*dyq(ij) |
---|
798 | C dyq(ip1jm+ij)=apps*dyq(ip1jm+ij) |
---|
799 | C ENDDO |
---|
800 | C |
---|
801 | C test |
---|
802 | C DO ij=1,iip1 |
---|
803 | C dyq(iip1+ij)=0. |
---|
804 | C dyq(ip1jm+ij-iip1)=0. |
---|
805 | C ENDDO |
---|
806 | C DO ij=1,ip1jmp1 |
---|
807 | C dyq(ij)=dyq(ij)*cos(rlatu((ij-1)/iip1+1)) |
---|
808 | C ENDDO |
---|
809 | C |
---|
810 | C changement 10 07 96 |
---|
811 | C IF(dyqv(ismin(iim,dyqv,1))*dyqv(ismax(iim,dyqv,1)).le.0.) |
---|
812 | C & THEN |
---|
813 | C DO ij=1,iip1 |
---|
814 | C dyqmax(ij)=0. |
---|
815 | C ENDDO |
---|
816 | C ELSE |
---|
817 | C DO ij=1,iip1 |
---|
818 | C dyqmax(ij)=pente_max*abs(dyqv(ij)) |
---|
819 | C ENDDO |
---|
820 | C ENDIF |
---|
821 | C |
---|
822 | C IF(dyqv(ismax(iim,dyqv(ip1jm-iip1+1),1)+ip1jm-iip1+1)* |
---|
823 | C & dyqv(ismin(iim,dyqv(ip1jm-iip1+1),1)+ip1jm-iip1+1).le.0.) |
---|
824 | C &THEN |
---|
825 | C DO ij=ip1jm+1,ip1jmp1 |
---|
826 | C dyqmax(ij)=0. |
---|
827 | C ENDDO |
---|
828 | C ELSE |
---|
829 | C DO ij=ip1jm+1,ip1jmp1 |
---|
830 | C dyqmax(ij)=pente_max*abs(dyqv(ij-iip1)) |
---|
831 | C ENDDO |
---|
832 | C ENDIF |
---|
833 | C fin changement 10 07 96 |
---|
834 | CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
---|
835 | |
---|
836 | c calcul des pentes limitees |
---|
837 | ijb=ij_begin-iip1 |
---|
838 | ije=ij_end+iip1 |
---|
839 | if (pole_nord) ijb=ij_begin+iip1 |
---|
840 | if (pole_sud) ije=ij_end-iip1 |
---|
841 | |
---|
842 | DO ij=ijb,ije |
---|
843 | IF(dyqv(ij)*dyqv(ij-iip1).gt.0.) THEN |
---|
844 | dyq(ij,l)=sign(min(abs(dyq(ij,l)),dyqmax(ij)),dyq(ij,l)) |
---|
845 | ELSE |
---|
846 | dyq(ij,l)=0. |
---|
847 | ENDIF |
---|
848 | ENDDO |
---|
849 | |
---|
850 | ENDDO |
---|
851 | c$OMP END DO NOWAIT |
---|
852 | |
---|
853 | ijb=ij_begin-iip1 |
---|
854 | ije=ij_end |
---|
855 | if (pole_nord) ijb=ij_begin |
---|
856 | if (pole_sud) ije=ij_end-iip1 |
---|
857 | |
---|
858 | c$OMP DO SCHEDULE(STATIC,OMP_CHUNK) |
---|
859 | DO l=1,llm |
---|
860 | DO ij=ijb,ije |
---|
861 | IF( masse_adv_v(ij,l).GT.0. ) THEN |
---|
862 | qbyv(ij,l)= MIN( qsat(ij+iip1,l), q(ij+iip1,l ) + |
---|
863 | , dyq(ij+iip1,l)*0.5*(1.-masse_adv_v(ij,l)/masse(ij+iip1,l))) |
---|
864 | ELSE |
---|
865 | qbyv(ij,l)= MIN( qsat(ij,l), q(ij,l) - dyq(ij,l) * |
---|
866 | , 0.5*(1.+masse_adv_v(ij,l)/masse(ij,l)) ) |
---|
867 | ENDIF |
---|
868 | qbyv(ij,l) = masse_adv_v(ij,l)*qbyv(ij,l) |
---|
869 | ENDDO |
---|
870 | ENDDO |
---|
871 | c$OMP END DO NOWAIT |
---|
872 | |
---|
873 | ijb=ij_begin |
---|
874 | ije=ij_end |
---|
875 | if (pole_nord) ijb=ij_begin+iip1 |
---|
876 | if (pole_sud) ije=ij_end-iip1 |
---|
877 | |
---|
878 | c$OMP DO SCHEDULE(STATIC,OMP_CHUNK) |
---|
879 | DO l=1,llm |
---|
880 | DO ij=ijb,ije |
---|
881 | newmasse=masse(ij,l) |
---|
882 | & +masse_adv_v(ij,l)-masse_adv_v(ij-iip1,l) |
---|
883 | q(ij,l)=(q(ij,l)*masse(ij,l)+qbyv(ij,l)-qbyv(ij-iip1,l)) |
---|
884 | & /newmasse |
---|
885 | masse(ij,l)=newmasse |
---|
886 | ENDDO |
---|
887 | c.-. ancienne version |
---|
888 | |
---|
889 | IF (pole_nord) THEN |
---|
890 | |
---|
891 | convpn=SSUM(iim,qbyv(1,l),1)/apoln |
---|
892 | convmpn=ssum(iim,masse_adv_v(1,l),1)/apoln |
---|
893 | DO ij = 1,iip1 |
---|
894 | newmasse=masse(ij,l)+convmpn*aire(ij) |
---|
895 | q(ij,l)=(q(ij,l)*masse(ij,l)+convpn*aire(ij))/ |
---|
896 | & newmasse |
---|
897 | masse(ij,l)=newmasse |
---|
898 | ENDDO |
---|
899 | |
---|
900 | ENDIF |
---|
901 | |
---|
902 | IF (pole_sud) THEN |
---|
903 | |
---|
904 | convps = -SSUM(iim,qbyv(ip1jm-iim,l),1)/apols |
---|
905 | convmps = -SSUM(iim,masse_adv_v(ip1jm-iim,l),1)/apols |
---|
906 | DO ij = ip1jm+1,ip1jmp1 |
---|
907 | newmasse=masse(ij,l)+convmps*aire(ij) |
---|
908 | q(ij,l)=(q(ij,l)*masse(ij,l)+convps*aire(ij))/ |
---|
909 | & newmasse |
---|
910 | masse(ij,l)=newmasse |
---|
911 | ENDDO |
---|
912 | |
---|
913 | ENDIF |
---|
914 | c.-. fin ancienne version |
---|
915 | |
---|
916 | c._. nouvelle version |
---|
917 | c convpn=SSUM(iim,qbyv(1,l),1) |
---|
918 | c convmpn=ssum(iim,masse_adv_v(1,l),1) |
---|
919 | c oldmasse=ssum(iim,masse(1,l),1) |
---|
920 | c newmasse=oldmasse+convmpn |
---|
921 | c newq=(q(1,l)*oldmasse+convpn)/newmasse |
---|
922 | c newmasse=newmasse/apoln |
---|
923 | c DO ij = 1,iip1 |
---|
924 | c q(ij,l)=newq |
---|
925 | c masse(ij,l)=newmasse*aire(ij) |
---|
926 | c ENDDO |
---|
927 | c convps=-SSUM(iim,qbyv(ip1jm-iim,l),1) |
---|
928 | c convmps=-ssum(iim,masse_adv_v(ip1jm-iim,l),1) |
---|
929 | c oldmasse=ssum(iim,masse(ip1jm-iim,l),1) |
---|
930 | c newmasse=oldmasse+convmps |
---|
931 | c newq=(q(ip1jmp1,l)*oldmasse+convps)/newmasse |
---|
932 | c newmasse=newmasse/apols |
---|
933 | c DO ij = ip1jm+1,ip1jmp1 |
---|
934 | c q(ij,l)=newq |
---|
935 | c masse(ij,l)=newmasse*aire(ij) |
---|
936 | c ENDDO |
---|
937 | c._. fin nouvelle version |
---|
938 | ENDDO |
---|
939 | c$OMP END DO NOWAIT |
---|
940 | RETURN |
---|
941 | END |
---|