[1010] | 1 | ! |
---|
| 2 | ! $Id: top_bound_p.F 1793 2013-07-18 07:13:18Z emillour $ |
---|
| 3 | ! |
---|
| 4 | SUBROUTINE top_bound_p(vcov,ucov,teta,masse,dt,ducov) |
---|
[1019] | 5 | USE parallel_lmdz |
---|
[1422] | 6 | USE comvert_mod, ONLY: presnivs,preff,scaleheight |
---|
| 7 | USE comconst_mod, ONLY: iflag_top_bound,tau_top_bound, |
---|
| 8 | . mode_top_bound |
---|
[1] | 9 | IMPLICIT NONE |
---|
| 10 | c |
---|
| 11 | #include "dimensions.h" |
---|
| 12 | #include "paramet.h" |
---|
| 13 | #include "comgeom2.h" |
---|
| 14 | |
---|
| 15 | |
---|
| 16 | c .. DISSIPATION LINEAIRE A HAUT NIVEAU, RUN MESO, |
---|
| 17 | C F. LOTT DEC. 2006 |
---|
| 18 | c ( 10/12/06 ) |
---|
| 19 | |
---|
| 20 | c======================================================================= |
---|
| 21 | c |
---|
| 22 | c Auteur: F. LOTT |
---|
| 23 | c ------- |
---|
| 24 | c |
---|
| 25 | c Objet: |
---|
| 26 | c ------ |
---|
| 27 | c |
---|
| 28 | c Dissipation linéaire (ex top_bound de la physique) |
---|
| 29 | c |
---|
| 30 | c======================================================================= |
---|
| 31 | |
---|
[1010] | 32 | ! top_bound sponge layer model: |
---|
| 33 | ! Quenching is modeled as: A(t)=Am+A0*exp(-lambda*dt) |
---|
| 34 | ! where Am is the zonal average of the field (or zero), and lambda the inverse |
---|
| 35 | ! of the characteristic quenching/relaxation time scale |
---|
| 36 | ! Thus, assuming Am to be time-independent, field at time t+dt is given by: |
---|
| 37 | ! A(t+dt)=A(t)-(A(t)-Am)*(1-exp(-lambda*t)) |
---|
| 38 | ! Moreover lambda can be a function of model level (see below), and relaxation |
---|
| 39 | ! can be toward the average zonal field or just zero (see below). |
---|
| 40 | |
---|
| 41 | ! NB: top_bound sponge is only called from leapfrog if ok_strato=.true. |
---|
| 42 | |
---|
[1442] | 43 | ! sponge parameters: (loaded/set in conf_gcm.F ; stored in comconst_mod) |
---|
[1010] | 44 | ! iflag_top_bound=0 for no sponge |
---|
| 45 | ! iflag_top_bound=1 for sponge over 4 topmost layers |
---|
| 46 | ! iflag_top_bound=2 for sponge from top to ~1% of top layer pressure |
---|
| 47 | ! mode_top_bound=0: no relaxation |
---|
| 48 | ! mode_top_bound=1: u and v relax towards 0 |
---|
| 49 | ! mode_top_bound=2: u and v relax towards their zonal mean |
---|
| 50 | ! mode_top_bound=3: u,v and pot. temp. relax towards their zonal mean |
---|
| 51 | ! tau_top_bound : inverse of charactericstic relaxation time scale at |
---|
| 52 | ! the topmost layer (Hz) |
---|
| 53 | |
---|
| 54 | |
---|
[1] | 55 | #include "comdissipn.h" |
---|
[1010] | 56 | #include "iniprint.h" |
---|
[1] | 57 | |
---|
| 58 | c Arguments: |
---|
| 59 | c ---------- |
---|
| 60 | |
---|
[1010] | 61 | real,intent(inout) :: ucov(iip1,jjp1,llm) ! covariant zonal wind |
---|
| 62 | real,intent(inout) :: vcov(iip1,jjm,llm) ! covariant meridional wind |
---|
| 63 | real,intent(inout) :: teta(iip1,jjp1,llm) ! potential temperature |
---|
| 64 | real,intent(in) :: masse(iip1,jjp1,llm) ! mass of atmosphere |
---|
| 65 | real,intent(in) :: dt ! time step (s) of sponge model |
---|
| 66 | real,intent(out) :: ducov(iip1,jjp1,llm) ! increment on ucov due to sponge |
---|
[1] | 67 | |
---|
| 68 | c Local: |
---|
| 69 | c ------ |
---|
| 70 | REAL massebx(iip1,jjp1,llm),masseby(iip1,jjm,llm),zm |
---|
| 71 | REAL uzon(jjp1,llm),vzon(jjm,llm),tzon(jjp1,llm) |
---|
| 72 | |
---|
| 73 | integer i |
---|
[1010] | 74 | REAL,SAVE :: rdamp(llm) ! quenching coefficient |
---|
| 75 | real,save :: lambda(llm) ! inverse or quenching time scale (Hz) |
---|
[1] | 76 | LOGICAL,SAVE :: first=.true. |
---|
| 77 | INTEGER j,l,jjb,jje |
---|
| 78 | |
---|
| 79 | |
---|
| 80 | if (first) then |
---|
| 81 | c$OMP BARRIER |
---|
| 82 | c$OMP MASTER |
---|
| 83 | if (iflag_top_bound == 1) then |
---|
[1010] | 84 | ! sponge quenching over the topmost 4 atmospheric layers |
---|
| 85 | lambda(:)=0. |
---|
| 86 | lambda(llm)=tau_top_bound |
---|
| 87 | lambda(llm-1)=tau_top_bound/2. |
---|
| 88 | lambda(llm-2)=tau_top_bound/4. |
---|
| 89 | lambda(llm-3)=tau_top_bound/8. |
---|
[1] | 90 | else if (iflag_top_bound == 2) then |
---|
[1010] | 91 | ! sponge quenching over topmost layers down to pressures which are |
---|
| 92 | ! higher than 100 times the topmost layer pressure |
---|
| 93 | lambda(:)=tau_top_bound |
---|
[1] | 94 | s *max(presnivs(llm)/presnivs(:)-0.01,0.) |
---|
| 95 | endif |
---|
[1010] | 96 | |
---|
| 97 | ! quenching coefficient rdamp(:) |
---|
| 98 | ! rdamp(:)=dt*lambda(:) ! Explicit Euler approx. |
---|
| 99 | rdamp(:)=1.-exp(-lambda(:)*dt) |
---|
| 100 | |
---|
| 101 | write(lunout,*)'TOP_BOUND mode',mode_top_bound |
---|
| 102 | write(lunout,*)'Sponge layer coefficients' |
---|
| 103 | write(lunout,*)'p (Pa) z(km) tau(s) 1./tau (Hz)' |
---|
[108] | 104 | do l=1,llm |
---|
| 105 | if (rdamp(l).ne.0.) then |
---|
[1010] | 106 | write(lunout,'(6(1pe12.4,1x))') |
---|
| 107 | & presnivs(l),log(preff/presnivs(l))*scaleheight, |
---|
| 108 | & 1./lambda(l),lambda(l) |
---|
[108] | 109 | endif |
---|
| 110 | enddo |
---|
[1010] | 111 | first=.false. |
---|
[1] | 112 | c$OMP END MASTER |
---|
| 113 | c$OMP BARRIER |
---|
[1010] | 114 | endif ! of if (first) |
---|
[1] | 115 | |
---|
| 116 | |
---|
| 117 | CALL massbar_p(masse,massebx,masseby) |
---|
[108] | 118 | |
---|
[1010] | 119 | ! compute zonal average of vcov (or set it to zero) |
---|
[108] | 120 | if (mode_top_bound.ge.2) then |
---|
[1010] | 121 | jjb=jj_begin |
---|
| 122 | jje=jj_end |
---|
| 123 | IF (pole_sud) jje=jj_end-1 |
---|
| 124 | c$OMP DO SCHEDULE(STATIC,OMP_CHUNK) |
---|
[108] | 125 | do l=1,llm |
---|
[1] | 126 | do j=jjb,jje |
---|
| 127 | zm=0. |
---|
| 128 | vzon(j,l)=0 |
---|
| 129 | do i=1,iim |
---|
[1010] | 130 | ! NB: we can work using vcov zonal mean rather than v since the |
---|
| 131 | ! cv coefficient (which relates the two) only varies with latitudes |
---|
[1] | 132 | vzon(j,l)=vzon(j,l)+vcov(i,j,l)*masseby(i,j,l) |
---|
| 133 | zm=zm+masseby(i,j,l) |
---|
| 134 | enddo |
---|
| 135 | vzon(j,l)=vzon(j,l)/zm |
---|
| 136 | enddo |
---|
[108] | 137 | enddo |
---|
[1010] | 138 | c$OMP END DO NOWAIT |
---|
[108] | 139 | else |
---|
[1010] | 140 | c$OMP DO SCHEDULE(STATIC,OMP_CHUNK) |
---|
[108] | 141 | do l=1,llm |
---|
[1010] | 142 | vzon(:,l)=0. |
---|
[108] | 143 | enddo |
---|
[1010] | 144 | c$OMP END DO NOWAIT |
---|
| 145 | endif ! of if (mode_top_bound.ge.2) |
---|
[1] | 146 | |
---|
[1010] | 147 | ! compute zonal average of u (or set it to zero) |
---|
[108] | 148 | if (mode_top_bound.ge.2) then |
---|
[1010] | 149 | jjb=jj_begin |
---|
| 150 | jje=jj_end |
---|
| 151 | IF (pole_nord) jjb=jj_begin+1 |
---|
| 152 | IF (pole_sud) jje=jj_end-1 |
---|
| 153 | c$OMP DO SCHEDULE(STATIC,OMP_CHUNK) |
---|
[108] | 154 | do l=1,llm |
---|
[1] | 155 | do j=jjb,jje |
---|
| 156 | uzon(j,l)=0. |
---|
| 157 | zm=0. |
---|
| 158 | do i=1,iim |
---|
| 159 | uzon(j,l)=uzon(j,l)+massebx(i,j,l)*ucov(i,j,l)/cu(i,j) |
---|
| 160 | zm=zm+massebx(i,j,l) |
---|
| 161 | enddo |
---|
| 162 | uzon(j,l)=uzon(j,l)/zm |
---|
| 163 | enddo |
---|
[108] | 164 | enddo |
---|
[1010] | 165 | c$OMP END DO NOWAIT |
---|
[108] | 166 | else |
---|
[1010] | 167 | c$OMP DO SCHEDULE(STATIC,OMP_CHUNK) |
---|
[108] | 168 | do l=1,llm |
---|
[1010] | 169 | uzon(:,l)=0. |
---|
[108] | 170 | enddo |
---|
[1010] | 171 | c$OMP END DO NOWAIT |
---|
| 172 | endif ! of if (mode_top_bound.ge.2) |
---|
[1] | 173 | |
---|
[1010] | 174 | ! compute zonal average of potential temperature, if necessary |
---|
[108] | 175 | if (mode_top_bound.ge.3) then |
---|
[1010] | 176 | jjb=jj_begin |
---|
| 177 | jje=jj_end |
---|
| 178 | IF (pole_nord) jjb=jj_begin+1 |
---|
| 179 | IF (pole_sud) jje=jj_end-1 |
---|
| 180 | c$OMP DO SCHEDULE(STATIC,OMP_CHUNK) |
---|
[108] | 181 | do l=1,llm |
---|
[1] | 182 | do j=jjb,jje |
---|
| 183 | zm=0. |
---|
| 184 | tzon(j,l)=0. |
---|
| 185 | do i=1,iim |
---|
| 186 | tzon(j,l)=tzon(j,l)+teta(i,j,l)*masse(i,j,l) |
---|
| 187 | zm=zm+masse(i,j,l) |
---|
| 188 | enddo |
---|
| 189 | tzon(j,l)=tzon(j,l)/zm |
---|
| 190 | enddo |
---|
[108] | 191 | enddo |
---|
[1010] | 192 | c$OMP END DO NOWAIT |
---|
| 193 | endif ! of if (mode_top_bound.ge.3) |
---|
[1] | 194 | |
---|
[1010] | 195 | if (mode_top_bound.ge.1) then |
---|
| 196 | ! Apply sponge quenching on vcov: |
---|
| 197 | jjb=jj_begin |
---|
| 198 | jje=jj_end |
---|
| 199 | IF (pole_sud) jje=jj_end-1 |
---|
[1] | 200 | |
---|
[1010] | 201 | c$OMP DO SCHEDULE(STATIC,OMP_CHUNK) |
---|
[108] | 202 | do l=1,llm |
---|
[1] | 203 | do j=jjb,jje |
---|
| 204 | do i=1,iip1 |
---|
[1010] | 205 | vcov(i,j,l)=vcov(i,j,l) |
---|
| 206 | & -rdamp(l)*(vcov(i,j,l)-vzon(j,l)) |
---|
[1] | 207 | enddo |
---|
[108] | 208 | enddo |
---|
[1] | 209 | enddo |
---|
[1010] | 210 | c$OMP END DO NOWAIT |
---|
| 211 | |
---|
| 212 | ! Apply sponge quenching on ucov: |
---|
| 213 | jjb=jj_begin |
---|
| 214 | jje=jj_end |
---|
| 215 | IF (pole_nord) jjb=jj_begin+1 |
---|
| 216 | IF (pole_sud) jje=jj_end-1 |
---|
| 217 | |
---|
| 218 | c$OMP DO SCHEDULE(STATIC,OMP_CHUNK) |
---|
[108] | 219 | do l=1,llm |
---|
| 220 | do j=jjb,jje |
---|
| 221 | do i=1,iip1 |
---|
[1010] | 222 | ducov(i,j,l)=-rdamp(l)*(ucov(i,j,l)-cu(i,j)*uzon(j,l)) |
---|
| 223 | ucov(i,j,l)=ucov(i,j,l) |
---|
| 224 | & +ducov(i,j,l) |
---|
[108] | 225 | enddo |
---|
| 226 | enddo |
---|
[1010] | 227 | enddo |
---|
| 228 | c$OMP END DO NOWAIT |
---|
| 229 | endif ! of if (mode_top_bound.ge.1) |
---|
[1] | 230 | |
---|
[1010] | 231 | if (mode_top_bound.ge.3) then |
---|
| 232 | ! Apply sponge quenching on teta: |
---|
| 233 | jjb=jj_begin |
---|
| 234 | jje=jj_end |
---|
| 235 | IF (pole_nord) jjb=jj_begin+1 |
---|
| 236 | IF (pole_sud) jje=jj_end-1 |
---|
| 237 | |
---|
| 238 | c$OMP DO SCHEDULE(STATIC,OMP_CHUNK) |
---|
| 239 | do l=1,llm |
---|
| 240 | do j=jjb,jje |
---|
| 241 | do i=1,iip1 |
---|
| 242 | teta(i,j,l)=teta(i,j,l) |
---|
| 243 | & -rdamp(l)*(teta(i,j,l)-tzon(j,l)) |
---|
| 244 | enddo |
---|
| 245 | enddo |
---|
| 246 | enddo |
---|
| 247 | c$OMP END DO NOWAIT |
---|
| 248 | endif ! of if (mode_top_bond.ge.3) |
---|
| 249 | |
---|
[1] | 250 | END |
---|