1 | ! |
---|
2 | ! $Id: inidissip.F90 1502 2011-03-21 16:07:54Z jghattas $ |
---|
3 | ! |
---|
4 | SUBROUTINE inidissip ( lstardis,nitergdiv,nitergrot,niterh , & |
---|
5 | tetagdiv,tetagrot,tetatemp, vert_prof_dissip) |
---|
6 | !======================================================================= |
---|
7 | ! Initialization for horizontal (lateral) dissipation |
---|
8 | ! - in all cases, there is a multiplicative coefficient which increases |
---|
9 | ! the dissipation in the higher levels of the atmosphere, but there |
---|
10 | ! are different ways of seting the vertical profile of this coefficient |
---|
11 | ! (see code below). |
---|
12 | ! - the call to dissipation, every 'dissip_period' dynamical time step, |
---|
13 | ! can be imposed via 'dissip_period=...' in run.def (or via the |
---|
14 | ! 'idissip=...' flag, but this flag should become obsolete, and is |
---|
15 | ! overridden by the 'dissip_period' flag). Note that setting |
---|
16 | ! dissip_period=0 has the special meaning of requesting an "optimal" |
---|
17 | ! value for "dissip_period" (then taken as the largest possible value) |
---|
18 | ! - the three characteristic time scales (relative to the smallest |
---|
19 | ! longitudinal grid mesh size), which are privided in run.def, which |
---|
20 | ! are used for the dissipations steps are: |
---|
21 | ! tetagdiv : time scale for the gradient of the divergence of velocities |
---|
22 | ! tetagrot : time scale for the curl of the curl of velocities |
---|
23 | ! tetatemp : time scale for the laplacian of the potential temperature |
---|
24 | !======================================================================= |
---|
25 | |
---|
26 | USE control_mod, only : dissip_period,iperiod,planet_type |
---|
27 | |
---|
28 | IMPLICIT NONE |
---|
29 | include "dimensions.h" |
---|
30 | include "paramet.h" |
---|
31 | include "comdissipn.h" |
---|
32 | include "comconst.h" |
---|
33 | include "comvert.h" |
---|
34 | include "logic.h" |
---|
35 | include "iniprint.h" |
---|
36 | |
---|
37 | LOGICAL,INTENT(in) :: lstardis |
---|
38 | INTEGER,INTENT(in) :: nitergdiv,nitergrot,niterh |
---|
39 | REAL,INTENT(in) :: tetagdiv,tetagrot,tetatemp |
---|
40 | |
---|
41 | integer, INTENT(in):: vert_prof_dissip ! Vertical profile of horizontal dissipation |
---|
42 | ! For the Earth model: |
---|
43 | ! Allowed values: |
---|
44 | ! 0: rational fraction, function of pressure |
---|
45 | ! 1: tanh of altitude |
---|
46 | ! For planets: |
---|
47 | ! 0: use fac_mid (read from run.def) |
---|
48 | ! 1: use fac_mid, fac_up, startalt, delta (hard coded in inidissip.F90) |
---|
49 | ! Local variables: |
---|
50 | REAL fact,zvert(llm),zz |
---|
51 | REAL zh(ip1jmp1),zu(ip1jmp1), gx(ip1jmp1), divgra(ip1jmp1) |
---|
52 | real zv(ip1jm), gy(ip1jm), deltap(ip1jmp1,llm) |
---|
53 | REAL ullm,vllm,umin,vmin,zhmin,zhmax |
---|
54 | REAL zllm |
---|
55 | |
---|
56 | INTEGER l,ij,idum,ii |
---|
57 | REAL tetamin |
---|
58 | REAL pseudoz |
---|
59 | REAL Pup |
---|
60 | character (len=80) :: abort_message |
---|
61 | |
---|
62 | REAL ran1 |
---|
63 | logical,save :: firstcall=.true. |
---|
64 | real,save :: fac_mid,fac_up,startalt,delta,middle |
---|
65 | |
---|
66 | if (firstcall) then |
---|
67 | firstcall=.false. |
---|
68 | if ((planet_type.ne."earth").and.(vert_prof_dissip.eq.1)) then |
---|
69 | ! initialize values for dissipation variation along the vertical (Mars) |
---|
70 | fac_mid=3 ! coefficient for lower/middle atmosphere |
---|
71 | fac_up=30 ! coefficient for upper atmosphere |
---|
72 | startalt=70. ! altitude (in km) for the transition from middle to upper atm. |
---|
73 | delta=30.! Size (in km) of the transition region between middle/upper atm. |
---|
74 | |
---|
75 | middle=startalt+delta/2 |
---|
76 | write(lunout,*)"inidissip: multiplicative factors in altitude:", & |
---|
77 | " fac_mid=",fac_mid," fac_up=",fac_up |
---|
78 | write(lunout,*)" transition mid/up : startalt (km) =",startalt, & |
---|
79 | " delta (km) =",delta |
---|
80 | endif |
---|
81 | endif !of if firstcall |
---|
82 | |
---|
83 | !----------------------------------------------------------------------- |
---|
84 | ! |
---|
85 | ! calcul des valeurs propres des operateurs par methode iterrative: |
---|
86 | ! ----------------------------------------------------------------- |
---|
87 | |
---|
88 | crot = -1. |
---|
89 | cdivu = -1. |
---|
90 | cdivh = -1. |
---|
91 | |
---|
92 | ! calcul de la valeur propre de divgrad: |
---|
93 | ! -------------------------------------- |
---|
94 | idum = 0 |
---|
95 | DO l = 1, llm |
---|
96 | DO ij = 1, ip1jmp1 |
---|
97 | deltap(ij,l) = 1. |
---|
98 | ENDDO |
---|
99 | ENDDO |
---|
100 | |
---|
101 | idum = -1 |
---|
102 | zh(1) = RAN1(idum)-.5 |
---|
103 | idum = 0 |
---|
104 | DO ij = 2, ip1jmp1 |
---|
105 | zh(ij) = RAN1(idum) -.5 |
---|
106 | ENDDO |
---|
107 | |
---|
108 | CALL filtreg (zh,jjp1,1,2,1,.TRUE.,1) |
---|
109 | |
---|
110 | CALL minmax(iip1*jjp1,zh,zhmin,zhmax ) |
---|
111 | |
---|
112 | IF ( zhmin .GE. zhmax ) THEN |
---|
113 | write(lunout,*)' Inidissip zh min max ',zhmin,zhmax |
---|
114 | abort_message='probleme generateur alleatoire dans inidissip' |
---|
115 | call abort_gcm('inidissip',abort_message,1) |
---|
116 | ENDIF |
---|
117 | |
---|
118 | zllm = ABS( zhmax ) |
---|
119 | DO l = 1,50 |
---|
120 | IF(lstardis) THEN |
---|
121 | CALL divgrad2(1,zh,deltap,niterh,divgra) |
---|
122 | ELSE |
---|
123 | CALL divgrad (1,zh,niterh,divgra) |
---|
124 | ENDIF |
---|
125 | |
---|
126 | zllm = ABS(maxval(divgra)) |
---|
127 | zh = divgra / zllm |
---|
128 | ENDDO |
---|
129 | |
---|
130 | IF(lstardis) THEN |
---|
131 | cdivh = 1./ zllm |
---|
132 | ELSE |
---|
133 | cdivh = zllm ** ( -1./niterh ) |
---|
134 | ENDIF |
---|
135 | |
---|
136 | ! calcul des valeurs propres de gradiv (ii =1) et nxgrarot(ii=2) |
---|
137 | ! ----------------------------------------------------------------- |
---|
138 | write(lunout,*)'inidissip: calcul des valeurs propres' |
---|
139 | |
---|
140 | DO ii = 1, 2 |
---|
141 | ! |
---|
142 | DO ij = 1, ip1jmp1 |
---|
143 | zu(ij) = RAN1(idum) -.5 |
---|
144 | ENDDO |
---|
145 | CALL filtreg (zu,jjp1,1,2,1,.TRUE.,1) |
---|
146 | DO ij = 1, ip1jm |
---|
147 | zv(ij) = RAN1(idum) -.5 |
---|
148 | ENDDO |
---|
149 | CALL filtreg (zv,jjm,1,2,1,.FALSE.,1) |
---|
150 | |
---|
151 | CALL minmax(iip1*jjp1,zu,umin,ullm ) |
---|
152 | CALL minmax(iip1*jjm, zv,vmin,vllm ) |
---|
153 | |
---|
154 | ullm = ABS ( ullm ) |
---|
155 | vllm = ABS ( vllm ) |
---|
156 | |
---|
157 | DO l = 1, 50 |
---|
158 | IF(ii.EQ.1) THEN |
---|
159 | !cccc CALL covcont( 1,zu,zv,zu,zv ) |
---|
160 | IF(lstardis) THEN |
---|
161 | CALL gradiv2( 1,zu,zv,nitergdiv,gx,gy ) |
---|
162 | ELSE |
---|
163 | CALL gradiv ( 1,zu,zv,nitergdiv,gx,gy ) |
---|
164 | ENDIF |
---|
165 | ELSE |
---|
166 | IF(lstardis) THEN |
---|
167 | CALL nxgraro2( 1,zu,zv,nitergrot,gx,gy ) |
---|
168 | ELSE |
---|
169 | CALL nxgrarot( 1,zu,zv,nitergrot,gx,gy ) |
---|
170 | ENDIF |
---|
171 | ENDIF |
---|
172 | |
---|
173 | zllm = max(abs(maxval(gx)), abs(maxval(gy))) |
---|
174 | zu = gx / zllm |
---|
175 | zv = gy / zllm |
---|
176 | end DO |
---|
177 | |
---|
178 | IF ( ii.EQ.1 ) THEN |
---|
179 | IF(lstardis) THEN |
---|
180 | cdivu = 1./zllm |
---|
181 | ELSE |
---|
182 | cdivu = zllm **( -1./nitergdiv ) |
---|
183 | ENDIF |
---|
184 | ELSE |
---|
185 | IF(lstardis) THEN |
---|
186 | crot = 1./ zllm |
---|
187 | ELSE |
---|
188 | crot = zllm **( -1./nitergrot ) |
---|
189 | ENDIF |
---|
190 | ENDIF |
---|
191 | |
---|
192 | end DO |
---|
193 | |
---|
194 | ! petit test pour les operateurs non star: |
---|
195 | ! ---------------------------------------- |
---|
196 | |
---|
197 | ! IF(.NOT.lstardis) THEN |
---|
198 | fact = rad*24./REAL(jjm) |
---|
199 | fact = fact*fact |
---|
200 | write(lunout,*)'inidissip: coef u ', fact/cdivu, 1./cdivu |
---|
201 | write(lunout,*)'inidissip: coef r ', fact/crot , 1./crot |
---|
202 | write(lunout,*)'inidissip: coef h ', fact/cdivh, 1./cdivh |
---|
203 | ! ENDIF |
---|
204 | |
---|
205 | !----------------------------------------------------------------------- |
---|
206 | ! variation verticale du coefficient de dissipation: |
---|
207 | ! -------------------------------------------------- |
---|
208 | |
---|
209 | if (planet_type.eq."earth") then |
---|
210 | |
---|
211 | if (vert_prof_dissip == 1) then |
---|
212 | do l=1,llm |
---|
213 | pseudoz=8.*log(preff/presnivs(l)) |
---|
214 | zvert(l)=1+ & |
---|
215 | (tanh((pseudoz-dissip_zref)/dissip_deltaz)+1.)/2. & |
---|
216 | *(dissip_factz-1.) |
---|
217 | enddo |
---|
218 | else |
---|
219 | DO l=1,llm |
---|
220 | zvert(l)=1. |
---|
221 | ENDDO |
---|
222 | fact=2. |
---|
223 | DO l = 1, llm |
---|
224 | zz = 1. - preff/presnivs(l) |
---|
225 | zvert(l)= fact -( fact-1.)/( 1.+zz*zz ) |
---|
226 | ENDDO |
---|
227 | endif ! of if (vert_prof_dissip == 1) |
---|
228 | |
---|
229 | else ! other planets |
---|
230 | |
---|
231 | if (vert_prof_dissip == 0) then |
---|
232 | ! First step: going from 1 to dissip_fac_mid (in gcm.def) |
---|
233 | !============ |
---|
234 | DO l=1,llm |
---|
235 | zz = 1. - preff/presnivs(l) |
---|
236 | zvert(l)= dissip_fac_mid -( dissip_fac_mid-1.)/( 1.+zz*zz ) |
---|
237 | ENDDO |
---|
238 | |
---|
239 | write(lunout,*) 'Dissipation : ' |
---|
240 | write(lunout,*) 'Multiplication de la dissipation en altitude :' |
---|
241 | write(lunout,*) ' dissip_fac_mid =', dissip_fac_mid |
---|
242 | |
---|
243 | ! Second step if ok_strato: from dissip_fac_mid to dissip_fac_up (in gcm.def) |
---|
244 | !========================== |
---|
245 | ! Utilisation de la fonction tangente hyperbolique pour augmenter |
---|
246 | ! arbitrairement la dissipation et donc la stabilite du modele a |
---|
247 | ! partir d'une certaine altitude. |
---|
248 | |
---|
249 | ! Le facteur multiplicatif de basse atmosphere etant deja pris |
---|
250 | ! en compte, il faut diviser le facteur multiplicatif de haute |
---|
251 | ! atmosphere par celui-ci. |
---|
252 | |
---|
253 | if (ok_strato) then |
---|
254 | |
---|
255 | Pup = dissip_pupstart*exp(-0.5*dissip_deltaz/dissip_hdelta) |
---|
256 | do l=1,llm |
---|
257 | zvert(l)= zvert(l)*(1.0+( (dissip_fac_up/dissip_fac_mid-1) & |
---|
258 | *(1-(0.5*(1+tanh(-6./dissip_deltaz* & |
---|
259 | (-dissip_hdelta*log(presnivs(l)/Pup)) )))) )) |
---|
260 | enddo |
---|
261 | |
---|
262 | write(*,*) ' dissip_fac_up =', dissip_fac_up |
---|
263 | write(*,*) 'Transition mid /up: Pupstart,delta =', & |
---|
264 | dissip_pupstart,'Pa', dissip_deltaz , '(km)' |
---|
265 | |
---|
266 | endif ! of if (ok_strato) |
---|
267 | elseif (vert_prof_dissip==1) then |
---|
268 | DO l=1,llm |
---|
269 | zz = 1. - preff/presnivs(l) |
---|
270 | ! zvert(l)= dissip_fac_mid -( dissip_fac_mid-1.)/( 1.+zz*zz ) |
---|
271 | zvert(l)= fac_mid -( fac_mid-1.)/( 1.+zz*zz ) |
---|
272 | |
---|
273 | zvert(l)= zvert(l)*(1.0+((fac_up/fac_mid-1)* & |
---|
274 | (1-(0.5*(1+tanh(-6./ & |
---|
275 | delta*(scaleheight*(-log(presnivs(l)/preff))-middle))))) & |
---|
276 | )) |
---|
277 | ENDDO |
---|
278 | write(lunout,*) "inidissip: vert_prof_disip=1, scaleheight=",scaleheight |
---|
279 | write(lunout,*) " fac_mid=",fac_mid,", fac_up=",fac_up |
---|
280 | |
---|
281 | else |
---|
282 | write(lunout,*) 'wrong value for vert_prof_dissip:',vert_prof_dissip |
---|
283 | abort_message='wrong value for vert_prof_dissip' |
---|
284 | call abort_gcm('inidissip',abort_message,1) |
---|
285 | endif ! of (vert_prof_dissip == 0) |
---|
286 | endif ! of if (planet_type.eq."earth") |
---|
287 | |
---|
288 | |
---|
289 | write(lunout,*)'inidissip: Time constants for lateral dissipation' |
---|
290 | |
---|
291 | tetamin = 1.e+6 |
---|
292 | |
---|
293 | DO l=1,llm |
---|
294 | tetaudiv(l) = zvert(l)/tetagdiv |
---|
295 | tetaurot(l) = zvert(l)/tetagrot |
---|
296 | tetah(l) = zvert(l)/tetatemp |
---|
297 | |
---|
298 | IF( tetamin.GT. (1./tetaudiv(l)) ) tetamin = 1./ tetaudiv(l) |
---|
299 | IF( tetamin.GT. (1./tetaurot(l)) ) tetamin = 1./ tetaurot(l) |
---|
300 | IF( tetamin.GT. (1./ tetah(l)) ) tetamin = 1./ tetah(l) |
---|
301 | ENDDO |
---|
302 | |
---|
303 | ! If dissip_period=0 calculate value for dissipation period, else keep value read from gcm.def |
---|
304 | IF (dissip_period == 0) THEN |
---|
305 | dissip_period = INT( tetamin/( 2.*dtvr*iperiod) ) * iperiod |
---|
306 | write(lunout,*)'inidissip: tetamin dtvr iperiod dissip_period(intermed) ',tetamin,dtvr,iperiod,dissip_period |
---|
307 | dissip_period = MAX(iperiod,dissip_period) |
---|
308 | END IF |
---|
309 | |
---|
310 | dtdiss = dissip_period * dtvr |
---|
311 | write(lunout,*)'inidissip: dissip_period=',dissip_period,' dtdiss=',dtdiss,' dtvr=',dtvr |
---|
312 | |
---|
313 | write(lunout,*)'pseudoZ(km) zvert dt(tetagdiv) dt(tetagrot) dt(divgrad)' |
---|
314 | DO l = 1,llm |
---|
315 | write(lunout,'(f6.1,x,4(1pe14.7,x))') & |
---|
316 | pseudoalt(l),zvert(l),dtdiss*tetaudiv(l),dtdiss*tetaurot(l),dtdiss*tetah(l) |
---|
317 | ! test if disipation is not too strong (for Explicit Euler time marching) |
---|
318 | if (dtdiss*tetaudiv(l).gt.1.9) then |
---|
319 | write(lunout,*)"STOP : lateral dissipation is too intense and will" |
---|
320 | write(lunout,*)" generate instabilities in the model !" |
---|
321 | write(lunout,*)" You must increase tetagdiv (or increase dissip_period" |
---|
322 | write(lunout,*)" or increase day_stap)" |
---|
323 | endif |
---|
324 | if (dtdiss*tetaurot(l).gt.1.9) then |
---|
325 | write(lunout,*)"STOP : lateral dissipation is too intense and will" |
---|
326 | write(lunout,*)" generate instabilities in the model !" |
---|
327 | write(lunout,*)" You must increase tetaurot (or increase dissip_period" |
---|
328 | write(lunout,*)" or increase day_stap)" |
---|
329 | endif |
---|
330 | if (dtdiss*tetah(l).gt.1.9) then |
---|
331 | write(lunout,*)"STOP : lateral dissipation is too intense and will" |
---|
332 | write(lunout,*)" generate instabilities in the model !" |
---|
333 | write(lunout,*)" You must increase tetah (or increase dissip_period" |
---|
334 | write(lunout,*)" or increase day_stap)" |
---|
335 | endif |
---|
336 | ENDDO ! of DO l=1,llm |
---|
337 | |
---|
338 | END SUBROUTINE inidissip |
---|