[1] | 1 | SUBROUTINE gradiv_p(klevel, xcov, ycov, ld, gdx_out, gdy_out ) |
---|
| 2 | c |
---|
| 3 | c Auteur : P. Le Van |
---|
| 4 | c |
---|
| 5 | c *************************************************************** |
---|
| 6 | c |
---|
| 7 | c ld |
---|
| 8 | c calcul de (grad (div) ) du vect. v .... |
---|
| 9 | c |
---|
| 10 | c xcov et ycov etant les composant.covariantes de v |
---|
| 11 | c **************************************************************** |
---|
| 12 | c xcov , ycov et ld sont des arguments d'entree pour le s-prog |
---|
| 13 | c gdx et gdy sont des arguments de sortie pour le s-prog |
---|
| 14 | c |
---|
| 15 | c |
---|
[1019] | 16 | USE parallel_lmdz |
---|
[1] | 17 | USE times |
---|
| 18 | IMPLICIT NONE |
---|
| 19 | c |
---|
| 20 | #include "dimensions.h" |
---|
| 21 | #include "paramet.h" |
---|
| 22 | #include "comdissipn.h" |
---|
| 23 | #include "logic.h" |
---|
| 24 | |
---|
| 25 | INTEGER klevel |
---|
| 26 | c |
---|
| 27 | REAL xcov( ip1jmp1,klevel ), ycov( ip1jm,klevel ) |
---|
| 28 | REAL,SAVE :: gdx( ip1jmp1,llm ), gdy( ip1jm,llm ) |
---|
| 29 | |
---|
| 30 | REAL gdx_out( ip1jmp1,klevel ), gdy_out( ip1jm,klevel ) |
---|
| 31 | |
---|
| 32 | REAL,SAVE :: div(ip1jmp1,llm) |
---|
| 33 | |
---|
| 34 | INTEGER l,ij,iter,ld |
---|
| 35 | c |
---|
| 36 | INTEGER ijb,ije,jjb,jje |
---|
| 37 | c |
---|
| 38 | c |
---|
| 39 | c CALL SCOPY( ip1jmp1*klevel,xcov,1,gdx,1 ) |
---|
| 40 | c CALL SCOPY( ip1jm*klevel, ycov,1,gdy,1 ) |
---|
| 41 | |
---|
| 42 | ijb=ij_begin |
---|
| 43 | ije=ij_end |
---|
| 44 | |
---|
| 45 | c$OMP DO SCHEDULE(STATIC,OMP_CHUNK) |
---|
| 46 | DO l = 1,klevel |
---|
| 47 | gdx(ijb:ije,l)=xcov(ijb:ije,l) |
---|
| 48 | ENDDO |
---|
| 49 | c$OMP END DO NOWAIT |
---|
| 50 | |
---|
| 51 | ijb=ij_begin |
---|
| 52 | ije=ij_end |
---|
| 53 | if(pole_sud) ije=ij_end-iip1 |
---|
| 54 | |
---|
| 55 | c$OMP DO SCHEDULE(STATIC,OMP_CHUNK) |
---|
| 56 | DO l = 1,klevel |
---|
| 57 | gdy(ijb:ije,l)=ycov(ijb:ije,l) |
---|
| 58 | ENDDO |
---|
| 59 | c$OMP END DO NOWAIT |
---|
| 60 | |
---|
| 61 | c |
---|
| 62 | DO 10 iter = 1,ld |
---|
| 63 | |
---|
| 64 | c$OMP BARRIER |
---|
| 65 | c$OMP MASTER |
---|
| 66 | call suspend_timer(timer_dissip) |
---|
| 67 | call exchange_Hallo(gdy,ip1jm,llm,1,0) |
---|
| 68 | call resume_timer(timer_dissip) |
---|
| 69 | c$OMP END MASTER |
---|
| 70 | c$OMP BARRIER |
---|
| 71 | |
---|
| 72 | CALL diverg_p( klevel, gdx , gdy, div ) |
---|
| 73 | |
---|
| 74 | jjb=jj_begin |
---|
| 75 | jje=jj_end |
---|
| 76 | CALL filtreg_p( div,jjb,jje, jjp1, klevel, 2,1, .true.,2 ) |
---|
| 77 | |
---|
| 78 | c call exchange_Hallo(div,ip1jmp1,llm,0,1) |
---|
| 79 | |
---|
| 80 | c$OMP BARRIER |
---|
| 81 | c$OMP MASTER |
---|
| 82 | call suspend_timer(timer_dissip) |
---|
| 83 | call exchange_Hallo(div,ip1jmp1,llm,1,1) |
---|
| 84 | call resume_timer(timer_dissip) |
---|
| 85 | c$OMP END MASTER |
---|
| 86 | c$OMP BARRIER |
---|
| 87 | |
---|
| 88 | CALL grad_p( klevel, div, gdx, gdy ) |
---|
| 89 | c |
---|
| 90 | |
---|
| 91 | c$OMP DO SCHEDULE(STATIC,OMP_CHUNK) |
---|
| 92 | DO 5 l = 1, klevel |
---|
| 93 | |
---|
| 94 | if(pole_sud) ije=ij_end |
---|
| 95 | DO 3 ij = ijb, ije |
---|
| 96 | gdx_out( ij,l ) = - gdx( ij,l ) * cdivu |
---|
| 97 | 3 CONTINUE |
---|
| 98 | |
---|
| 99 | if(pole_sud) ije=ij_end-iip1 |
---|
| 100 | DO 4 ij = ijb, ije |
---|
| 101 | gdy_out( ij,l ) = - gdy( ij,l ) * cdivu |
---|
| 102 | 4 CONTINUE |
---|
| 103 | |
---|
| 104 | 5 CONTINUE |
---|
| 105 | c$OMP END DO NOWAIT |
---|
| 106 | c |
---|
| 107 | 10 CONTINUE |
---|
| 108 | RETURN |
---|
| 109 | END |
---|