[1] | 1 | ! |
---|
| 2 | ! $Header$ |
---|
| 3 | ! |
---|
| 4 | SUBROUTINE advz(limit,dtz,w,sm,s0,sx,sy,sz) |
---|
| 5 | IMPLICIT NONE |
---|
| 6 | |
---|
| 7 | CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
---|
| 8 | C C |
---|
| 9 | C first-order moments (FOM) advection of tracer in Z direction C |
---|
| 10 | C C |
---|
| 11 | C Source : Pascal Simon (Meteo,CNRM) C |
---|
| 12 | C Adaptation : A.Armengaud (LGGE) juin 94 C |
---|
| 13 | C C |
---|
| 14 | C C |
---|
| 15 | C sont des arguments d'entree pour le s-pg... C |
---|
| 16 | C C |
---|
| 17 | C dq est l'argument de sortie pour le s-pg C |
---|
| 18 | C C |
---|
| 19 | CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
---|
| 20 | C |
---|
| 21 | C parametres principaux du modele |
---|
| 22 | C |
---|
| 23 | #include "dimensions.h" |
---|
| 24 | #include "paramet.h" |
---|
| 25 | |
---|
| 26 | C #include "traceur.h" |
---|
| 27 | |
---|
| 28 | C Arguments : |
---|
| 29 | C ----------- |
---|
| 30 | C dtz : frequence fictive d'appel du transport |
---|
| 31 | C w : flux de masse en z en Pa.m2.s-1 |
---|
| 32 | |
---|
| 33 | INTEGER ntra |
---|
| 34 | PARAMETER (ntra = 1) |
---|
| 35 | |
---|
| 36 | REAL dtz |
---|
| 37 | REAL w ( iip1,jjp1,llm ) |
---|
| 38 | |
---|
| 39 | C moments: SM total mass in each grid box |
---|
| 40 | C S0 mass of tracer in each grid box |
---|
| 41 | C Si 1rst order moment in i direction |
---|
| 42 | C |
---|
| 43 | REAL SM(iip1,jjp1,llm) |
---|
| 44 | + ,S0(iip1,jjp1,llm,ntra) |
---|
| 45 | REAL sx(iip1,jjp1,llm,ntra) |
---|
| 46 | + ,sy(iip1,jjp1,llm,ntra) |
---|
| 47 | + ,sz(iip1,jjp1,llm,ntra) |
---|
| 48 | |
---|
| 49 | |
---|
| 50 | C Local : |
---|
| 51 | C ------- |
---|
| 52 | |
---|
| 53 | C mass fluxes across the boundaries (UGRI,VGRI,WGRI) |
---|
| 54 | C mass fluxes in kg |
---|
| 55 | C declaration : |
---|
| 56 | |
---|
| 57 | REAL WGRI(iip1,jjp1,0:llm) |
---|
| 58 | |
---|
| 59 | C |
---|
| 60 | C the moments F are used as temporary storage for |
---|
| 61 | C portions of grid boxes in transit at the current latitude |
---|
| 62 | C |
---|
| 63 | REAL FM(iim,llm) |
---|
| 64 | REAL F0(iim,llm,ntra),FX(iim,llm,ntra) |
---|
| 65 | REAL FY(iim,llm,ntra),FZ(iim,llm,ntra) |
---|
| 66 | C |
---|
| 67 | C work arrays |
---|
| 68 | C |
---|
| 69 | REAL ALF(iim),ALF1(iim),ALFQ(iim),ALF1Q(iim) |
---|
| 70 | REAL TEMPTM ! Just temporal variable |
---|
| 71 | REAL sqi,sqf |
---|
| 72 | C |
---|
| 73 | LOGICAL LIMIT |
---|
| 74 | INTEGER lon,lat,niv |
---|
| 75 | INTEGER i,j,jv,k,l,lp |
---|
| 76 | |
---|
| 77 | lon = iim |
---|
| 78 | lat = jjp1 |
---|
| 79 | niv = llm |
---|
| 80 | |
---|
| 81 | C *** Test de passage d'arguments ****** |
---|
| 82 | |
---|
| 83 | c DO 399 l = 1, llm |
---|
| 84 | c DO 399 j = 1, jjp1 |
---|
| 85 | c DO 399 i = 1, iip1 |
---|
| 86 | c IF (S0(i,j,l,ntra) .lt. 0. ) THEN |
---|
| 87 | c PRINT*,'S0(',i,j,l,')=',S0(i,j,l,ntra) |
---|
| 88 | c print*, 'sx(',i,j,l,')=',sx(i,j,l,ntra) |
---|
| 89 | c print*, 'sy(',i,j,l,')=',sy(i,j,l,ntra) |
---|
| 90 | c print*, 'sz(',i,j,l,')=',sz(i,j,l,ntra) |
---|
| 91 | c PRINT*, 'AIE !! debut ADVZ - pbl arg. passage dans ADVZ' |
---|
| 92 | c STOP |
---|
| 93 | c ENDIF |
---|
| 94 | 399 CONTINUE |
---|
| 95 | |
---|
| 96 | C----------------------------------------------------------------- |
---|
| 97 | C *** Test : diag de la qqtite totale de traceur |
---|
| 98 | C dans l'atmosphere avant l'advection en z |
---|
| 99 | sqi = 0. |
---|
| 100 | sqf = 0. |
---|
| 101 | |
---|
| 102 | DO l = 1,llm |
---|
| 103 | DO j = 1,jjp1 |
---|
| 104 | DO i = 1,iim |
---|
| 105 | cIM 240305 sqi = sqi + S0(i,j,l,9) |
---|
| 106 | sqi = sqi + S0(i,j,l,ntra) |
---|
| 107 | ENDDO |
---|
| 108 | ENDDO |
---|
| 109 | ENDDO |
---|
| 110 | PRINT*,'-------- DIAG DANS ADVZ - ENTREE ---------' |
---|
| 111 | PRINT*,'sqi=',sqi |
---|
| 112 | |
---|
| 113 | C----------------------------------------------------------------- |
---|
| 114 | C Interface : adaptation nouveau modele |
---|
| 115 | C ------------------------------------- |
---|
| 116 | C |
---|
| 117 | C Conversion du flux de masse en kg.s-1 |
---|
| 118 | |
---|
| 119 | DO 500 l = 1,llm |
---|
| 120 | DO 500 j = 1,jjp1 |
---|
| 121 | DO 500 i = 1,iip1 |
---|
| 122 | c wgri (i,j,llm+1-l) = w (i,j,l) / g |
---|
| 123 | wgri (i,j,llm+1-l) = w (i,j,l) |
---|
| 124 | c wgri (i,j,0) = 0. ! a detruire ult. |
---|
| 125 | c wgri (i,j,l) = 0.1 ! w (i,j,l) |
---|
| 126 | c wgri (i,j,llm) = 0. ! a detruire ult. |
---|
| 127 | 500 CONTINUE |
---|
| 128 | DO j = 1,jjp1 |
---|
| 129 | DO i = 1,iip1 |
---|
| 130 | wgri(i,j,0)=0. |
---|
| 131 | enddo |
---|
| 132 | enddo |
---|
| 133 | |
---|
| 134 | C----------------------------------------------------------------- |
---|
| 135 | |
---|
| 136 | C start here |
---|
| 137 | C boucle sur les latitudes |
---|
| 138 | C |
---|
| 139 | DO 1 K=1,LAT |
---|
| 140 | C |
---|
| 141 | C place limits on appropriate moments before transport |
---|
| 142 | C (if flux-limiting is to be applied) |
---|
| 143 | C |
---|
| 144 | IF(.NOT.LIMIT) GO TO 101 |
---|
| 145 | C |
---|
| 146 | DO 10 JV=1,NTRA |
---|
| 147 | DO 10 L=1,NIV |
---|
| 148 | DO 100 I=1,LON |
---|
| 149 | sz(I,K,L,JV)=SIGN(AMIN1(AMAX1(S0(I,K,L,JV),0.), |
---|
| 150 | + ABS(sz(I,K,L,JV))),sz(I,K,L,JV)) |
---|
| 151 | 100 CONTINUE |
---|
| 152 | 10 CONTINUE |
---|
| 153 | C |
---|
| 154 | 101 CONTINUE |
---|
| 155 | C |
---|
| 156 | C boucle sur les niveaux intercouches de 1 a NIV-1 |
---|
| 157 | C (flux nul au sommet L=0 et a la base L=NIV) |
---|
| 158 | C |
---|
| 159 | C calculate flux and moments between adjacent boxes |
---|
| 160 | C (flux from LP to L if WGRI(L).lt.0, from L to LP if WGRI(L).gt.0) |
---|
| 161 | C 1- create temporary moments/masses for partial boxes in transit |
---|
| 162 | C 2- reajusts moments remaining in the box |
---|
| 163 | C |
---|
| 164 | DO 11 L=1,NIV-1 |
---|
| 165 | LP=L+1 |
---|
| 166 | C |
---|
| 167 | DO 110 I=1,LON |
---|
| 168 | C |
---|
| 169 | IF(WGRI(I,K,L).LT.0.) THEN |
---|
| 170 | FM(I,L)=-WGRI(I,K,L)*DTZ |
---|
| 171 | ALF(I)=FM(I,L)/SM(I,K,LP) |
---|
| 172 | SM(I,K,LP)=SM(I,K,LP)-FM(I,L) |
---|
| 173 | ELSE |
---|
| 174 | FM(I,L)=WGRI(I,K,L)*DTZ |
---|
| 175 | ALF(I)=FM(I,L)/SM(I,K,L) |
---|
| 176 | SM(I,K,L)=SM(I,K,L)-FM(I,L) |
---|
| 177 | ENDIF |
---|
| 178 | C |
---|
| 179 | ALFQ (I)=ALF(I)*ALF(I) |
---|
| 180 | ALF1 (I)=1.-ALF(I) |
---|
| 181 | ALF1Q(I)=ALF1(I)*ALF1(I) |
---|
| 182 | C |
---|
| 183 | 110 CONTINUE |
---|
| 184 | C |
---|
| 185 | DO 111 JV=1,NTRA |
---|
| 186 | DO 1110 I=1,LON |
---|
| 187 | C |
---|
| 188 | IF(WGRI(I,K,L).LT.0.) THEN |
---|
| 189 | C |
---|
| 190 | F0(I,L,JV)=ALF (I)*( S0(I,K,LP,JV)-ALF1(I)*sz(I,K,LP,JV) ) |
---|
| 191 | FZ(I,L,JV)=ALFQ(I)*sz(I,K,LP,JV) |
---|
| 192 | FX(I,L,JV)=ALF (I)*sx(I,K,LP,JV) |
---|
| 193 | FY(I,L,JV)=ALF (I)*sy(I,K,LP,JV) |
---|
| 194 | C |
---|
| 195 | S0(I,K,LP,JV)=S0(I,K,LP,JV)-F0(I,L,JV) |
---|
| 196 | sz(I,K,LP,JV)=ALF1Q(I)*sz(I,K,LP,JV) |
---|
| 197 | sx(I,K,LP,JV)=sx(I,K,LP,JV)-FX(I,L,JV) |
---|
| 198 | sy(I,K,LP,JV)=sy(I,K,LP,JV)-FY(I,L,JV) |
---|
| 199 | C |
---|
| 200 | ELSE |
---|
| 201 | C |
---|
| 202 | F0(I,L,JV)=ALF (I)*(S0(I,K,L,JV)+ALF1(I)*sz(I,K,L,JV) ) |
---|
| 203 | FZ(I,L,JV)=ALFQ(I)*sz(I,K,L,JV) |
---|
| 204 | FX(I,L,JV)=ALF (I)*sx(I,K,L,JV) |
---|
| 205 | FY(I,L,JV)=ALF (I)*sy(I,K,L,JV) |
---|
| 206 | C |
---|
| 207 | S0(I,K,L,JV)=S0(I,K,L,JV)-F0(I,L,JV) |
---|
| 208 | sz(I,K,L,JV)=ALF1Q(I)*sz(I,K,L,JV) |
---|
| 209 | sx(I,K,L,JV)=sx(I,K,L,JV)-FX(I,L,JV) |
---|
| 210 | sy(I,K,L,JV)=sy(I,K,L,JV)-FY(I,L,JV) |
---|
| 211 | C |
---|
| 212 | ENDIF |
---|
| 213 | C |
---|
| 214 | 1110 CONTINUE |
---|
| 215 | 111 CONTINUE |
---|
| 216 | C |
---|
| 217 | 11 CONTINUE |
---|
| 218 | C |
---|
| 219 | C puts the temporary moments Fi into appropriate neighboring boxes |
---|
| 220 | C |
---|
| 221 | DO 12 L=1,NIV-1 |
---|
| 222 | LP=L+1 |
---|
| 223 | C |
---|
| 224 | DO 120 I=1,LON |
---|
| 225 | C |
---|
| 226 | IF(WGRI(I,K,L).LT.0.) THEN |
---|
| 227 | SM(I,K,L)=SM(I,K,L)+FM(I,L) |
---|
| 228 | ALF(I)=FM(I,L)/SM(I,K,L) |
---|
| 229 | ELSE |
---|
| 230 | SM(I,K,LP)=SM(I,K,LP)+FM(I,L) |
---|
| 231 | ALF(I)=FM(I,L)/SM(I,K,LP) |
---|
| 232 | ENDIF |
---|
| 233 | C |
---|
| 234 | ALF1(I)=1.-ALF(I) |
---|
| 235 | ALFQ(I)=ALF(I)*ALF(I) |
---|
| 236 | ALF1Q(I)=ALF1(I)*ALF1(I) |
---|
| 237 | C |
---|
| 238 | 120 CONTINUE |
---|
| 239 | C |
---|
| 240 | DO 121 JV=1,NTRA |
---|
| 241 | DO 1210 I=1,LON |
---|
| 242 | C |
---|
| 243 | IF(WGRI(I,K,L).LT.0.) THEN |
---|
| 244 | C |
---|
| 245 | TEMPTM=-ALF(I)*S0(I,K,L,JV)+ALF1(I)*F0(I,L,JV) |
---|
| 246 | S0(I,K,L,JV)=S0(I,K,L,JV)+F0(I,L,JV) |
---|
| 247 | sz(I,K,L,JV)=ALF(I)*FZ(I,L,JV)+ALF1(I)*sz(I,K,L,JV)+3.*TEMPTM |
---|
| 248 | sx(I,K,L,JV)=sx(I,K,L,JV)+FX(I,L,JV) |
---|
| 249 | sy(I,K,L,JV)=sy(I,K,L,JV)+FY(I,L,JV) |
---|
| 250 | C |
---|
| 251 | ELSE |
---|
| 252 | C |
---|
| 253 | TEMPTM=ALF(I)*S0(I,K,LP,JV)-ALF1(I)*F0(I,L,JV) |
---|
| 254 | S0(I,K,LP,JV)=S0(I,K,LP,JV)+F0(I,L,JV) |
---|
| 255 | sz(I,K,LP,JV)=ALF(I)*FZ(I,L,JV)+ALF1(I)*sz(I,K,LP,JV) |
---|
| 256 | + +3.*TEMPTM |
---|
| 257 | sx(I,K,LP,JV)=sx(I,K,LP,JV)+FX(I,L,JV) |
---|
| 258 | sy(I,K,LP,JV)=sy(I,K,LP,JV)+FY(I,L,JV) |
---|
| 259 | C |
---|
| 260 | ENDIF |
---|
| 261 | C |
---|
| 262 | 1210 CONTINUE |
---|
| 263 | 121 CONTINUE |
---|
| 264 | C |
---|
| 265 | 12 CONTINUE |
---|
| 266 | C |
---|
| 267 | C fin de la boucle principale sur les latitudes |
---|
| 268 | C |
---|
| 269 | 1 CONTINUE |
---|
| 270 | C |
---|
| 271 | C------------------------------------------------------------- |
---|
| 272 | C |
---|
| 273 | C ----------- AA Test en fin de ADVX ------ Controle des S* |
---|
| 274 | |
---|
| 275 | c DO 9999 l = 1, llm |
---|
| 276 | c DO 9999 j = 1, jjp1 |
---|
| 277 | c DO 9999 i = 1, iip1 |
---|
| 278 | c IF (S0(i,j,l,ntra).lt.0..and.LIMIT) THEN |
---|
| 279 | c PRINT*, '-------------------' |
---|
| 280 | c PRINT*, 'En fin de ADVZ' |
---|
| 281 | c PRINT*,'S0(',i,j,l,')=',S0(i,j,l,ntra) |
---|
| 282 | c print*, 'sx(',i,j,l,')=',sx(i,j,l,ntra) |
---|
| 283 | c print*, 'sy(',i,j,l,')=',sy(i,j,l,ntra) |
---|
| 284 | c print*, 'sz(',i,j,l,')=',sz(i,j,l,ntra) |
---|
| 285 | c WRITE (*,*) 'On arrete !! - pbl en fin de ADVZ1' |
---|
| 286 | c STOP |
---|
| 287 | c ENDIF |
---|
| 288 | 9999 CONTINUE |
---|
| 289 | |
---|
| 290 | C *** ------------------- bouclage cyclique en X ------------ |
---|
| 291 | |
---|
| 292 | c DO l = 1,llm |
---|
| 293 | c DO j = 1,jjp1 |
---|
| 294 | c SM(iip1,j,l) = SM(1,j,l) |
---|
| 295 | c S0(iip1,j,l,ntra) = S0(1,j,l,ntra) |
---|
| 296 | C sx(iip1,j,l,ntra) = sx(1,j,l,ntra) |
---|
| 297 | c sy(iip1,j,l,ntra) = sy(1,j,l,ntra) |
---|
| 298 | c sz(iip1,j,l,ntra) = sz(1,j,l,ntra) |
---|
| 299 | c ENDDO |
---|
| 300 | c ENDDO |
---|
| 301 | |
---|
| 302 | C------------------------------------------------------------- |
---|
| 303 | C *** Test : diag de la qqtite totale de traceur |
---|
| 304 | C dans l'atmosphere avant l'advection en z |
---|
| 305 | DO l = 1,llm |
---|
| 306 | DO j = 1,jjp1 |
---|
| 307 | DO i = 1,iim |
---|
| 308 | cIM 240305 sqf = sqf + S0(i,j,l,9) |
---|
| 309 | sqf = sqf + S0(i,j,l,ntra) |
---|
| 310 | ENDDO |
---|
| 311 | ENDDO |
---|
| 312 | ENDDO |
---|
| 313 | PRINT*,'-------- DIAG DANS ADVZ - SORTIE ---------' |
---|
| 314 | PRINT*,'sqf=', sqf |
---|
| 315 | |
---|
| 316 | C------------------------------------------------------------- |
---|
| 317 | RETURN |
---|
| 318 | END |
---|
| 319 | C_______________________________________________________________ |
---|
| 320 | C_______________________________________________________________ |
---|