[1] | 1 | ! |
---|
| 2 | ! $Header$ |
---|
| 3 | ! |
---|
| 4 | SUBROUTINE ADVYP(LIMIT,DTY,PBARV,SM,S0,SSX,SY,SZ |
---|
| 5 | . ,SSXX,SSXY,SSXZ,SYY,SYZ,SZZ,ntra ) |
---|
| 6 | IMPLICIT NONE |
---|
| 7 | CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
---|
| 8 | C C |
---|
| 9 | C second-order moments (SOM) advection of tracer in Y direction C |
---|
| 10 | C C |
---|
| 11 | CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
---|
| 12 | C C |
---|
| 13 | C Source : Pascal Simon ( Meteo, CNRM ) C |
---|
| 14 | C Adaptation : A.A. (LGGE) C |
---|
| 15 | C Derniere Modif : 19/10/95 LAST |
---|
| 16 | C C |
---|
| 17 | C sont les arguments d'entree pour le s-pg C |
---|
| 18 | C C |
---|
| 19 | C argument de sortie du s-pg C |
---|
| 20 | C C |
---|
| 21 | CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
---|
| 22 | CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
---|
| 23 | C |
---|
| 24 | C Rem : Probleme aux poles il faut reecrire ce cas specifique |
---|
| 25 | C Attention au sens de l'indexation |
---|
| 26 | C |
---|
| 27 | C parametres principaux du modele |
---|
| 28 | C |
---|
| 29 | C |
---|
| 30 | #include "dimensions.h" |
---|
| 31 | #include "paramet.h" |
---|
| 32 | #include "comgeom.h" |
---|
| 33 | |
---|
| 34 | C Arguments : |
---|
| 35 | C ---------- |
---|
| 36 | C dty : frequence fictive d'appel du transport |
---|
| 37 | C parbu,pbarv : flux de masse en x et y en Pa.m2.s-1 |
---|
| 38 | |
---|
| 39 | INTEGER lon,lat,niv |
---|
| 40 | INTEGER i,j,jv,k,kp,l |
---|
| 41 | INTEGER ntra |
---|
| 42 | C PARAMETER (ntra = 1) |
---|
| 43 | |
---|
| 44 | REAL dty |
---|
| 45 | REAL pbarv ( iip1,jjm, llm ) |
---|
| 46 | |
---|
| 47 | C moments: SM total mass in each grid box |
---|
| 48 | C S0 mass of tracer in each grid box |
---|
| 49 | C Si 1rst order moment in i direction |
---|
| 50 | C |
---|
| 51 | REAL SM(iip1,jjp1,llm) |
---|
| 52 | + ,S0(iip1,jjp1,llm,ntra) |
---|
| 53 | REAL SSX(iip1,jjp1,llm,ntra) |
---|
| 54 | + ,SY(iip1,jjp1,llm,ntra) |
---|
| 55 | + ,SZ(iip1,jjp1,llm,ntra) |
---|
| 56 | + ,SSXX(iip1,jjp1,llm,ntra) |
---|
| 57 | + ,SSXY(iip1,jjp1,llm,ntra) |
---|
| 58 | + ,SSXZ(iip1,jjp1,llm,ntra) |
---|
| 59 | + ,SYY(iip1,jjp1,llm,ntra) |
---|
| 60 | + ,SYZ(iip1,jjp1,llm,ntra) |
---|
| 61 | + ,SZZ(iip1,jjp1,llm,ntra) |
---|
| 62 | C |
---|
| 63 | C Local : |
---|
| 64 | C ------- |
---|
| 65 | |
---|
| 66 | C mass fluxes across the boundaries (UGRI,VGRI,WGRI) |
---|
| 67 | C mass fluxes in kg |
---|
| 68 | C declaration : |
---|
| 69 | |
---|
| 70 | REAL VGRI(iip1,0:jjp1,llm) |
---|
| 71 | |
---|
| 72 | C Rem : UGRI et WGRI ne sont pas utilises dans |
---|
| 73 | C cette subroutine ( advection en y uniquement ) |
---|
| 74 | C Rem 2 :le dimensionnement de VGRI depend de celui de pbarv |
---|
| 75 | C |
---|
| 76 | C the moments F are similarly defined and used as temporary |
---|
| 77 | C storage for portions of the grid boxes in transit |
---|
| 78 | C |
---|
| 79 | C the moments Fij are used as temporary storage for |
---|
| 80 | C portions of the grid boxes in transit at the current level |
---|
| 81 | C |
---|
| 82 | C work arrays |
---|
| 83 | C |
---|
| 84 | C |
---|
| 85 | REAL F0(iim,0:jjp1,ntra),FM(iim,0:jjp1) |
---|
| 86 | REAL FX(iim,jjm,ntra),FY(iim,jjm,ntra) |
---|
| 87 | REAL FZ(iim,jjm,ntra) |
---|
| 88 | REAL FXX(iim,jjm,ntra),FXY(iim,jjm,ntra) |
---|
| 89 | REAL FXZ(iim,jjm,ntra),FYY(iim,jjm,ntra) |
---|
| 90 | REAL FYZ(iim,jjm,ntra),FZZ(iim,jjm,ntra) |
---|
| 91 | REAL S00(ntra) |
---|
| 92 | REAL SM0 ! Just temporal variable |
---|
| 93 | C |
---|
| 94 | C work arrays |
---|
| 95 | C |
---|
| 96 | REAL ALF(iim,0:jjp1),ALF1(iim,0:jjp1) |
---|
| 97 | REAL ALFQ(iim,0:jjp1),ALF1Q(iim,0:jjp1) |
---|
| 98 | REAL ALF2(iim,0:jjp1),ALF3(iim,0:jjp1) |
---|
| 99 | REAL ALF4(iim,0:jjp1) |
---|
| 100 | REAL TEMPTM ! Just temporal variable |
---|
| 101 | REAL SLPMAX,S1MAX,S1NEW,S2NEW |
---|
| 102 | c |
---|
| 103 | C Special pour poles |
---|
| 104 | c |
---|
| 105 | REAL sbms,sfms,sfzs,sbmn,sfmn,sfzn |
---|
| 106 | REAL sns0(ntra),snsz(ntra),snsm |
---|
| 107 | REAL qy1(iim,llm,ntra),qylat(iim,llm,ntra) |
---|
| 108 | REAL cx1(llm,ntra), cxLAT(llm,ntra) |
---|
| 109 | REAL cy1(llm,ntra), cyLAT(llm,ntra) |
---|
| 110 | REAL z1(iim), zcos(iim), zsin(iim) |
---|
| 111 | REAL SSUM |
---|
| 112 | EXTERNAL SSUM |
---|
| 113 | C |
---|
| 114 | REAL sqi,sqf |
---|
| 115 | LOGICAL LIMIT |
---|
| 116 | |
---|
| 117 | lon = iim ! rem : Il est possible qu'un pbl. arrive ici |
---|
| 118 | lat = jjp1 ! a cause des dim. differentes entre les |
---|
| 119 | niv = llm ! tab. S et VGRI |
---|
| 120 | |
---|
| 121 | c----------------------------------------------------------------- |
---|
| 122 | C initialisations |
---|
| 123 | |
---|
| 124 | sbms = 0. |
---|
| 125 | sfms = 0. |
---|
| 126 | sfzs = 0. |
---|
| 127 | sbmn = 0. |
---|
| 128 | sfmn = 0. |
---|
| 129 | sfzn = 0. |
---|
| 130 | |
---|
| 131 | c----------------------------------------------------------------- |
---|
| 132 | C *** Test : diag de la qtite totale de traceur dans |
---|
| 133 | C l'atmosphere avant l'advection en Y |
---|
| 134 | c |
---|
| 135 | sqi = 0. |
---|
| 136 | sqf = 0. |
---|
| 137 | |
---|
| 138 | DO l = 1,llm |
---|
| 139 | DO j = 1,jjp1 |
---|
| 140 | DO i = 1,iim |
---|
| 141 | sqi = sqi + S0(i,j,l,ntra) |
---|
| 142 | END DO |
---|
| 143 | END DO |
---|
| 144 | END DO |
---|
| 145 | PRINT*,'---------- DIAG DANS ADVY - ENTREE --------' |
---|
| 146 | PRINT*,'sqi=',sqi |
---|
| 147 | |
---|
| 148 | c----------------------------------------------------------------- |
---|
| 149 | C Interface : adaptation nouveau modele |
---|
| 150 | C ------------------------------------- |
---|
| 151 | C |
---|
| 152 | C Conversion des flux de masses en kg |
---|
| 153 | C-AA 20/10/94 le signe -1 est necessaire car indexation opposee |
---|
| 154 | |
---|
| 155 | DO 500 l = 1,llm |
---|
| 156 | DO 500 j = 1,jjm |
---|
| 157 | DO 500 i = 1,iip1 |
---|
| 158 | vgri (i,j,llm+1-l)=-1.*pbarv (i,j,l) |
---|
| 159 | 500 CONTINUE |
---|
| 160 | |
---|
| 161 | CAA Initialisation de flux fictifs aux bords sup. des boites pol. |
---|
| 162 | |
---|
| 163 | DO l = 1,llm |
---|
| 164 | DO i = 1,iip1 |
---|
| 165 | vgri(i,0,l) = 0. |
---|
| 166 | vgri(i,jjp1,l) = 0. |
---|
| 167 | ENDDO |
---|
| 168 | ENDDO |
---|
| 169 | c |
---|
| 170 | c----------------- START HERE ----------------------- |
---|
| 171 | C boucle sur les niveaux |
---|
| 172 | C |
---|
| 173 | DO 1 L=1,NIV |
---|
| 174 | C |
---|
| 175 | C place limits on appropriate moments before transport |
---|
| 176 | C (if flux-limiting is to be applied) |
---|
| 177 | C |
---|
| 178 | IF(.NOT.LIMIT) GO TO 11 |
---|
| 179 | C |
---|
| 180 | DO 10 JV=1,NTRA |
---|
| 181 | DO 10 K=1,LAT |
---|
| 182 | DO 100 I=1,LON |
---|
| 183 | IF(S0(I,K,L,JV).GT.0.) THEN |
---|
| 184 | SLPMAX=AMAX1(S0(I,K,L,JV),0.) |
---|
| 185 | S1MAX=1.5*SLPMAX |
---|
| 186 | S1NEW=AMIN1(S1MAX,AMAX1(-S1MAX,SY(I,K,L,JV))) |
---|
| 187 | S2NEW=AMIN1( 2.*SLPMAX-ABS(S1NEW)/3. , |
---|
| 188 | + AMAX1(ABS(S1NEW)-SLPMAX,SYY(I,K,L,JV)) ) |
---|
| 189 | SY (I,K,L,JV)=S1NEW |
---|
| 190 | SYY(I,K,L,JV)=S2NEW |
---|
| 191 | SSXY(I,K,L,JV)=AMIN1(SLPMAX,AMAX1(-SLPMAX,SSXY(I,K,L,JV))) |
---|
| 192 | SYZ(I,K,L,JV)=AMIN1(SLPMAX,AMAX1(-SLPMAX,SYZ(I,K,L,JV))) |
---|
| 193 | ELSE |
---|
| 194 | SY (I,K,L,JV)=0. |
---|
| 195 | SYY(I,K,L,JV)=0. |
---|
| 196 | SSXY(I,K,L,JV)=0. |
---|
| 197 | SYZ(I,K,L,JV)=0. |
---|
| 198 | ENDIF |
---|
| 199 | 100 CONTINUE |
---|
| 200 | 10 CONTINUE |
---|
| 201 | C |
---|
| 202 | 11 CONTINUE |
---|
| 203 | C |
---|
| 204 | C le flux a travers le pole Nord est traite separement |
---|
| 205 | C |
---|
| 206 | SM0=0. |
---|
| 207 | DO 20 JV=1,NTRA |
---|
| 208 | S00(JV)=0. |
---|
| 209 | 20 CONTINUE |
---|
| 210 | C |
---|
| 211 | DO 21 I=1,LON |
---|
| 212 | C |
---|
| 213 | IF(VGRI(I,0,L).LE.0.) THEN |
---|
| 214 | FM(I,0)=-VGRI(I,0,L)*DTY |
---|
| 215 | ALF(I,0)=FM(I,0)/SM(I,1,L) |
---|
| 216 | SM(I,1,L)=SM(I,1,L)-FM(I,0) |
---|
| 217 | SM0=SM0+FM(I,0) |
---|
| 218 | ENDIF |
---|
| 219 | C |
---|
| 220 | ALFQ(I,0)=ALF(I,0)*ALF(I,0) |
---|
| 221 | ALF1(I,0)=1.-ALF(I,0) |
---|
| 222 | ALF1Q(I,0)=ALF1(I,0)*ALF1(I,0) |
---|
| 223 | ALF2(I,0)=ALF1(I,0)-ALF(I,0) |
---|
| 224 | ALF3(I,0)=ALF(I,0)*ALFQ(I,0) |
---|
| 225 | ALF4(I,0)=ALF1(I,0)*ALF1Q(I,0) |
---|
| 226 | C |
---|
| 227 | 21 CONTINUE |
---|
| 228 | c print*,'ADVYP 21' |
---|
| 229 | C |
---|
| 230 | DO 22 JV=1,NTRA |
---|
| 231 | DO 220 I=1,LON |
---|
| 232 | C |
---|
| 233 | IF(VGRI(I,0,L).LE.0.) THEN |
---|
| 234 | C |
---|
| 235 | F0(I,0,JV)=ALF(I,0)* ( S0(I,1,L,JV)-ALF1(I,0)* |
---|
| 236 | + ( SY(I,1,L,JV)-ALF2(I,0)*SYY(I,1,L,JV) ) ) |
---|
| 237 | C |
---|
| 238 | S00(JV)=S00(JV)+F0(I,0,JV) |
---|
| 239 | S0 (I,1,L,JV)=S0(I,1,L,JV)-F0(I,0,JV) |
---|
| 240 | SY (I,1,L,JV)=ALF1Q(I,0)* |
---|
| 241 | + (SY(I,1,L,JV)+3.*ALF(I,0)*SYY(I,1,L,JV)) |
---|
| 242 | SYY(I,1,L,JV)=ALF4 (I,0)*SYY(I,1,L,JV) |
---|
| 243 | SSX (I,1,L,JV)=ALF1 (I,0)* |
---|
| 244 | + (SSX(I,1,L,JV)+ALF(I,0)*SSXY(I,1,L,JV) ) |
---|
| 245 | SZ (I,1,L,JV)=ALF1 (I,0)* |
---|
| 246 | + (SZ(I,1,L,JV)+ALF(I,0)*SSXZ(I,1,L,JV) ) |
---|
| 247 | SSXX(I,1,L,JV)=ALF1 (I,0)*SSXX(I,1,L,JV) |
---|
| 248 | SSXZ(I,1,L,JV)=ALF1 (I,0)*SSXZ(I,1,L,JV) |
---|
| 249 | SZZ(I,1,L,JV)=ALF1 (I,0)*SZZ(I,1,L,JV) |
---|
| 250 | SSXY(I,1,L,JV)=ALF1Q(I,0)*SSXY(I,1,L,JV) |
---|
| 251 | SYZ(I,1,L,JV)=ALF1Q(I,0)*SYZ(I,1,L,JV) |
---|
| 252 | C |
---|
| 253 | ENDIF |
---|
| 254 | C |
---|
| 255 | 220 CONTINUE |
---|
| 256 | 22 CONTINUE |
---|
| 257 | C |
---|
| 258 | DO 23 I=1,LON |
---|
| 259 | IF(VGRI(I,0,L).GT.0.) THEN |
---|
| 260 | FM(I,0)=VGRI(I,0,L)*DTY |
---|
| 261 | ALF(I,0)=FM(I,0)/SM0 |
---|
| 262 | ENDIF |
---|
| 263 | 23 CONTINUE |
---|
| 264 | C |
---|
| 265 | DO 24 JV=1,NTRA |
---|
| 266 | DO 240 I=1,LON |
---|
| 267 | IF(VGRI(I,0,L).GT.0.) THEN |
---|
| 268 | F0(I,0,JV)=ALF(I,0)*S00(JV) |
---|
| 269 | ENDIF |
---|
| 270 | 240 CONTINUE |
---|
| 271 | 24 CONTINUE |
---|
| 272 | C |
---|
| 273 | C puts the temporary moments Fi into appropriate neighboring boxes |
---|
| 274 | C |
---|
| 275 | c print*,'av ADVYP 25' |
---|
| 276 | DO 25 I=1,LON |
---|
| 277 | C |
---|
| 278 | IF(VGRI(I,0,L).GT.0.) THEN |
---|
| 279 | SM(I,1,L)=SM(I,1,L)+FM(I,0) |
---|
| 280 | ALF(I,0)=FM(I,0)/SM(I,1,L) |
---|
| 281 | ENDIF |
---|
| 282 | C |
---|
| 283 | ALFQ(I,0)=ALF(I,0)*ALF(I,0) |
---|
| 284 | ALF1(I,0)=1.-ALF(I,0) |
---|
| 285 | ALF1Q(I,0)=ALF1(I,0)*ALF1(I,0) |
---|
| 286 | ALF2(I,0)=ALF1(I,0)-ALF(I,0) |
---|
| 287 | ALF3(I,0)=ALF1(I,0)*ALF(I,0) |
---|
| 288 | C |
---|
| 289 | 25 CONTINUE |
---|
| 290 | c print*,'av ADVYP 25' |
---|
| 291 | C |
---|
| 292 | DO 26 JV=1,NTRA |
---|
| 293 | DO 260 I=1,LON |
---|
| 294 | C |
---|
| 295 | IF(VGRI(I,0,L).GT.0.) THEN |
---|
| 296 | C |
---|
| 297 | TEMPTM=ALF(I,0)*S0(I,1,L,JV)-ALF1(I,0)*F0(I,0,JV) |
---|
| 298 | S0 (I,1,L,JV)=S0(I,1,L,JV)+F0(I,0,JV) |
---|
| 299 | SYY(I,1,L,JV)=ALF1Q(I,0)*SYY(I,1,L,JV) |
---|
| 300 | + +5.*( ALF3 (I,0)*SY (I,1,L,JV)-ALF2(I,0)*TEMPTM ) |
---|
| 301 | SY (I,1,L,JV)=ALF1 (I,0)*SY (I,1,L,JV)+3.*TEMPTM |
---|
| 302 | SSXY(I,1,L,JV)=ALF1 (I,0)*SSXY(I,1,L,JV)+3.*ALF(I,0)*SSX(I,1,L,JV) |
---|
| 303 | SYZ(I,1,L,JV)=ALF1 (I,0)*SYZ(I,1,L,JV)+3.*ALF(I,0)*SZ(I,1,L,JV) |
---|
| 304 | C |
---|
| 305 | ENDIF |
---|
| 306 | C |
---|
| 307 | 260 CONTINUE |
---|
| 308 | 26 CONTINUE |
---|
| 309 | C |
---|
| 310 | C calculate flux and moments between adjacent boxes |
---|
| 311 | C 1- create temporary moments/masses for partial boxes in transit |
---|
| 312 | C 2- reajusts moments remaining in the box |
---|
| 313 | C |
---|
| 314 | C flux from KP to K if V(K).lt.0 and from K to KP if V(K).gt.0 |
---|
| 315 | C |
---|
| 316 | c print*,'av ADVYP 30' |
---|
| 317 | DO 30 K=1,LAT-1 |
---|
| 318 | KP=K+1 |
---|
| 319 | DO 300 I=1,LON |
---|
| 320 | C |
---|
| 321 | IF(VGRI(I,K,L).LT.0.) THEN |
---|
| 322 | FM(I,K)=-VGRI(I,K,L)*DTY |
---|
| 323 | ALF(I,K)=FM(I,K)/SM(I,KP,L) |
---|
| 324 | SM(I,KP,L)=SM(I,KP,L)-FM(I,K) |
---|
| 325 | ELSE |
---|
| 326 | FM(I,K)=VGRI(I,K,L)*DTY |
---|
| 327 | ALF(I,K)=FM(I,K)/SM(I,K,L) |
---|
| 328 | SM(I,K,L)=SM(I,K,L)-FM(I,K) |
---|
| 329 | ENDIF |
---|
| 330 | C |
---|
| 331 | ALFQ(I,K)=ALF(I,K)*ALF(I,K) |
---|
| 332 | ALF1(I,K)=1.-ALF(I,K) |
---|
| 333 | ALF1Q(I,K)=ALF1(I,K)*ALF1(I,K) |
---|
| 334 | ALF2(I,K)=ALF1(I,K)-ALF(I,K) |
---|
| 335 | ALF3(I,K)=ALF(I,K)*ALFQ(I,K) |
---|
| 336 | ALF4(I,K)=ALF1(I,K)*ALF1Q(I,K) |
---|
| 337 | C |
---|
| 338 | 300 CONTINUE |
---|
| 339 | 30 CONTINUE |
---|
| 340 | c print*,'ap ADVYP 30' |
---|
| 341 | C |
---|
| 342 | DO 31 JV=1,NTRA |
---|
| 343 | DO 31 K=1,LAT-1 |
---|
| 344 | KP=K+1 |
---|
| 345 | DO 310 I=1,LON |
---|
| 346 | C |
---|
| 347 | IF(VGRI(I,K,L).LT.0.) THEN |
---|
| 348 | C |
---|
| 349 | F0 (I,K,JV)=ALF (I,K)* ( S0(I,KP,L,JV)-ALF1(I,K)* |
---|
| 350 | + ( SY(I,KP,L,JV)-ALF2(I,K)*SYY(I,KP,L,JV) ) ) |
---|
| 351 | FY (I,K,JV)=ALFQ(I,K)* |
---|
| 352 | + (SY(I,KP,L,JV)-3.*ALF1(I,K)*SYY(I,KP,L,JV)) |
---|
| 353 | FYY(I,K,JV)=ALF3(I,K)*SYY(I,KP,L,JV) |
---|
| 354 | FX (I,K,JV)=ALF (I,K)* |
---|
| 355 | + (SSX(I,KP,L,JV)-ALF1(I,K)*SSXY(I,KP,L,JV)) |
---|
| 356 | FZ (I,K,JV)=ALF (I,K)* |
---|
| 357 | + (SZ(I,KP,L,JV)-ALF1(I,K)*SYZ(I,KP,L,JV)) |
---|
| 358 | FXY(I,K,JV)=ALFQ(I,K)*SSXY(I,KP,L,JV) |
---|
| 359 | FYZ(I,K,JV)=ALFQ(I,K)*SYZ(I,KP,L,JV) |
---|
| 360 | FXX(I,K,JV)=ALF (I,K)*SSXX(I,KP,L,JV) |
---|
| 361 | FXZ(I,K,JV)=ALF (I,K)*SSXZ(I,KP,L,JV) |
---|
| 362 | FZZ(I,K,JV)=ALF (I,K)*SZZ(I,KP,L,JV) |
---|
| 363 | C |
---|
| 364 | S0 (I,KP,L,JV)=S0(I,KP,L,JV)-F0(I,K,JV) |
---|
| 365 | SY (I,KP,L,JV)=ALF1Q(I,K)* |
---|
| 366 | + (SY(I,KP,L,JV)+3.*ALF(I,K)*SYY(I,KP,L,JV)) |
---|
| 367 | SYY(I,KP,L,JV)=ALF4(I,K)*SYY(I,KP,L,JV) |
---|
| 368 | SSX (I,KP,L,JV)=SSX (I,KP,L,JV)-FX (I,K,JV) |
---|
| 369 | SZ (I,KP,L,JV)=SZ (I,KP,L,JV)-FZ (I,K,JV) |
---|
| 370 | SSXX(I,KP,L,JV)=SSXX(I,KP,L,JV)-FXX(I,K,JV) |
---|
| 371 | SSXZ(I,KP,L,JV)=SSXZ(I,KP,L,JV)-FXZ(I,K,JV) |
---|
| 372 | SZZ(I,KP,L,JV)=SZZ(I,KP,L,JV)-FZZ(I,K,JV) |
---|
| 373 | SSXY(I,KP,L,JV)=ALF1Q(I,K)*SSXY(I,KP,L,JV) |
---|
| 374 | SYZ(I,KP,L,JV)=ALF1Q(I,K)*SYZ(I,KP,L,JV) |
---|
| 375 | C |
---|
| 376 | ELSE |
---|
| 377 | C |
---|
| 378 | F0 (I,K,JV)=ALF (I,K)* ( S0(I,K,L,JV)+ALF1(I,K)* |
---|
| 379 | + ( SY(I,K,L,JV)+ALF2(I,K)*SYY(I,K,L,JV) ) ) |
---|
| 380 | FY (I,K,JV)=ALFQ(I,K)* |
---|
| 381 | + (SY(I,K,L,JV)+3.*ALF1(I,K)*SYY(I,K,L,JV)) |
---|
| 382 | FYY(I,K,JV)=ALF3(I,K)*SYY(I,K,L,JV) |
---|
| 383 | FX (I,K,JV)=ALF (I,K)*(SSX(I,K,L,JV)+ALF1(I,K)*SSXY(I,K,L,JV)) |
---|
| 384 | FZ (I,K,JV)=ALF (I,K)*(SZ(I,K,L,JV)+ALF1(I,K)*SYZ(I,K,L,JV)) |
---|
| 385 | FXY(I,K,JV)=ALFQ(I,K)*SSXY(I,K,L,JV) |
---|
| 386 | FYZ(I,K,JV)=ALFQ(I,K)*SYZ(I,K,L,JV) |
---|
| 387 | FXX(I,K,JV)=ALF (I,K)*SSXX(I,K,L,JV) |
---|
| 388 | FXZ(I,K,JV)=ALF (I,K)*SSXZ(I,K,L,JV) |
---|
| 389 | FZZ(I,K,JV)=ALF (I,K)*SZZ(I,K,L,JV) |
---|
| 390 | C |
---|
| 391 | S0 (I,K,L,JV)=S0 (I,K,L,JV)-F0 (I,K,JV) |
---|
| 392 | SY (I,K,L,JV)=ALF1Q(I,K)* |
---|
| 393 | + (SY(I,K,L,JV)-3.*ALF(I,K)*SYY(I,K,L,JV)) |
---|
| 394 | SYY(I,K,L,JV)=ALF4(I,K)*SYY(I,K,L,JV) |
---|
| 395 | SSX (I,K,L,JV)=SSX (I,K,L,JV)-FX (I,K,JV) |
---|
| 396 | SZ (I,K,L,JV)=SZ (I,K,L,JV)-FZ (I,K,JV) |
---|
| 397 | SSXX(I,K,L,JV)=SSXX(I,K,L,JV)-FXX(I,K,JV) |
---|
| 398 | SSXZ(I,K,L,JV)=SSXZ(I,K,L,JV)-FXZ(I,K,JV) |
---|
| 399 | SZZ(I,K,L,JV)=SZZ(I,K,L,JV)-FZZ(I,K,JV) |
---|
| 400 | SSXY(I,K,L,JV)=ALF1Q(I,K)*SSXY(I,K,L,JV) |
---|
| 401 | SYZ(I,K,L,JV)=ALF1Q(I,K)*SYZ(I,K,L,JV) |
---|
| 402 | C |
---|
| 403 | ENDIF |
---|
| 404 | C |
---|
| 405 | 310 CONTINUE |
---|
| 406 | 31 CONTINUE |
---|
| 407 | c print*,'ap ADVYP 31' |
---|
| 408 | C |
---|
| 409 | C puts the temporary moments Fi into appropriate neighboring boxes |
---|
| 410 | C |
---|
| 411 | DO 32 K=1,LAT-1 |
---|
| 412 | KP=K+1 |
---|
| 413 | DO 320 I=1,LON |
---|
| 414 | C |
---|
| 415 | IF(VGRI(I,K,L).LT.0.) THEN |
---|
| 416 | SM(I,K,L)=SM(I,K,L)+FM(I,K) |
---|
| 417 | ALF(I,K)=FM(I,K)/SM(I,K,L) |
---|
| 418 | ELSE |
---|
| 419 | SM(I,KP,L)=SM(I,KP,L)+FM(I,K) |
---|
| 420 | ALF(I,K)=FM(I,K)/SM(I,KP,L) |
---|
| 421 | ENDIF |
---|
| 422 | C |
---|
| 423 | ALFQ(I,K)=ALF(I,K)*ALF(I,K) |
---|
| 424 | ALF1(I,K)=1.-ALF(I,K) |
---|
| 425 | ALF1Q(I,K)=ALF1(I,K)*ALF1(I,K) |
---|
| 426 | ALF2(I,K)=ALF1(I,K)-ALF(I,K) |
---|
| 427 | ALF3(I,K)=ALF1(I,K)*ALF(I,K) |
---|
| 428 | C |
---|
| 429 | 320 CONTINUE |
---|
| 430 | 32 CONTINUE |
---|
| 431 | c print*,'ap ADVYP 32' |
---|
| 432 | C |
---|
| 433 | DO 33 JV=1,NTRA |
---|
| 434 | DO 33 K=1,LAT-1 |
---|
| 435 | KP=K+1 |
---|
| 436 | DO 330 I=1,LON |
---|
| 437 | C |
---|
| 438 | IF(VGRI(I,K,L).LT.0.) THEN |
---|
| 439 | C |
---|
| 440 | TEMPTM=-ALF(I,K)*S0(I,K,L,JV)+ALF1(I,K)*F0(I,K,JV) |
---|
| 441 | S0 (I,K,L,JV)=S0(I,K,L,JV)+F0(I,K,JV) |
---|
| 442 | SYY(I,K,L,JV)=ALFQ(I,K)*FYY(I,K,JV)+ALF1Q(I,K)*SYY(I,K,L,JV) |
---|
| 443 | + +5.*( ALF3(I,K)*(FY(I,K,JV)-SY(I,K,L,JV))+ALF2(I,K)*TEMPTM ) |
---|
| 444 | SY (I,K,L,JV)=ALF(I,K)*FY(I,K,JV)+ALF1(I,K)*SY(I,K,L,JV) |
---|
| 445 | + +3.*TEMPTM |
---|
| 446 | SSXY(I,K,L,JV)=ALF (I,K)*FXY(I,K,JV)+ALF1(I,K)*SSXY(I,K,L,JV) |
---|
| 447 | + +3.*(ALF1(I,K)*FX (I,K,JV)-ALF (I,K)*SSX (I,K,L,JV)) |
---|
| 448 | SYZ(I,K,L,JV)=ALF (I,K)*FYZ(I,K,JV)+ALF1(I,K)*SYZ(I,K,L,JV) |
---|
| 449 | + +3.*(ALF1(I,K)*FZ (I,K,JV)-ALF (I,K)*SZ (I,K,L,JV)) |
---|
| 450 | SSX (I,K,L,JV)=SSX (I,K,L,JV)+FX (I,K,JV) |
---|
| 451 | SZ (I,K,L,JV)=SZ (I,K,L,JV)+FZ (I,K,JV) |
---|
| 452 | SSXX(I,K,L,JV)=SSXX(I,K,L,JV)+FXX(I,K,JV) |
---|
| 453 | SSXZ(I,K,L,JV)=SSXZ(I,K,L,JV)+FXZ(I,K,JV) |
---|
| 454 | SZZ(I,K,L,JV)=SZZ(I,K,L,JV)+FZZ(I,K,JV) |
---|
| 455 | C |
---|
| 456 | ELSE |
---|
| 457 | C |
---|
| 458 | TEMPTM=ALF(I,K)*S0(I,KP,L,JV)-ALF1(I,K)*F0(I,K,JV) |
---|
| 459 | S0 (I,KP,L,JV)=S0(I,KP,L,JV)+F0(I,K,JV) |
---|
| 460 | SYY(I,KP,L,JV)=ALFQ(I,K)*FYY(I,K,JV)+ALF1Q(I,K)*SYY(I,KP,L,JV) |
---|
| 461 | + +5.*( ALF3(I,K)*(SY(I,KP,L,JV)-FY(I,K,JV))-ALF2(I,K)*TEMPTM ) |
---|
| 462 | SY (I,KP,L,JV)=ALF(I,K)*FY(I,K,JV)+ALF1(I,K)*SY(I,KP,L,JV) |
---|
| 463 | + +3.*TEMPTM |
---|
| 464 | SSXY(I,KP,L,JV)=ALF(I,K)*FXY(I,K,JV)+ALF1(I,K)*SSXY(I,KP,L,JV) |
---|
| 465 | + +3.*(ALF(I,K)*SSX(I,KP,L,JV)-ALF1(I,K)*FX(I,K,JV)) |
---|
| 466 | SYZ(I,KP,L,JV)=ALF(I,K)*FYZ(I,K,JV)+ALF1(I,K)*SYZ(I,KP,L,JV) |
---|
| 467 | + +3.*(ALF(I,K)*SZ(I,KP,L,JV)-ALF1(I,K)*FZ(I,K,JV)) |
---|
| 468 | SSX (I,KP,L,JV)=SSX (I,KP,L,JV)+FX (I,K,JV) |
---|
| 469 | SZ (I,KP,L,JV)=SZ (I,KP,L,JV)+FZ (I,K,JV) |
---|
| 470 | SSXX(I,KP,L,JV)=SSXX(I,KP,L,JV)+FXX(I,K,JV) |
---|
| 471 | SSXZ(I,KP,L,JV)=SSXZ(I,KP,L,JV)+FXZ(I,K,JV) |
---|
| 472 | SZZ(I,KP,L,JV)=SZZ(I,KP,L,JV)+FZZ(I,K,JV) |
---|
| 473 | C |
---|
| 474 | ENDIF |
---|
| 475 | C |
---|
| 476 | 330 CONTINUE |
---|
| 477 | 33 CONTINUE |
---|
| 478 | c print*,'ap ADVYP 33' |
---|
| 479 | C |
---|
| 480 | C traitement special pour le pole Sud (idem pole Nord) |
---|
| 481 | C |
---|
| 482 | K=LAT |
---|
| 483 | C |
---|
| 484 | SM0=0. |
---|
| 485 | DO 40 JV=1,NTRA |
---|
| 486 | S00(JV)=0. |
---|
| 487 | 40 CONTINUE |
---|
| 488 | C |
---|
| 489 | DO 41 I=1,LON |
---|
| 490 | C |
---|
| 491 | IF(VGRI(I,K,L).GE.0.) THEN |
---|
| 492 | FM(I,K)=VGRI(I,K,L)*DTY |
---|
| 493 | ALF(I,K)=FM(I,K)/SM(I,K,L) |
---|
| 494 | SM(I,K,L)=SM(I,K,L)-FM(I,K) |
---|
| 495 | SM0=SM0+FM(I,K) |
---|
| 496 | ENDIF |
---|
| 497 | C |
---|
| 498 | ALFQ(I,K)=ALF(I,K)*ALF(I,K) |
---|
| 499 | ALF1(I,K)=1.-ALF(I,K) |
---|
| 500 | ALF1Q(I,K)=ALF1(I,K)*ALF1(I,K) |
---|
| 501 | ALF2(I,K)=ALF1(I,K)-ALF(I,K) |
---|
| 502 | ALF3(I,K)=ALF(I,K)*ALFQ(I,K) |
---|
| 503 | ALF4(I,K)=ALF1(I,K)*ALF1Q(I,K) |
---|
| 504 | C |
---|
| 505 | 41 CONTINUE |
---|
| 506 | c print*,'ap ADVYP 41' |
---|
| 507 | C |
---|
| 508 | DO 42 JV=1,NTRA |
---|
| 509 | DO 420 I=1,LON |
---|
| 510 | C |
---|
| 511 | IF(VGRI(I,K,L).GE.0.) THEN |
---|
| 512 | F0 (I,K,JV)=ALF(I,K)* ( S0(I,K,L,JV)+ALF1(I,K)* |
---|
| 513 | + ( SY(I,K,L,JV)+ALF2(I,K)*SYY(I,K,L,JV) ) ) |
---|
| 514 | S00(JV)=S00(JV)+F0(I,K,JV) |
---|
| 515 | C |
---|
| 516 | S0 (I,K,L,JV)=S0 (I,K,L,JV)-F0 (I,K,JV) |
---|
| 517 | SY (I,K,L,JV)=ALF1Q(I,K)* |
---|
| 518 | + (SY(I,K,L,JV)-3.*ALF(I,K)*SYY(I,K,L,JV)) |
---|
| 519 | SYY(I,K,L,JV)=ALF4 (I,K)*SYY(I,K,L,JV) |
---|
| 520 | SSX (I,K,L,JV)=ALF1(I,K)*(SSX(I,K,L,JV)-ALF(I,K)*SSXY(I,K,L,JV)) |
---|
| 521 | SZ (I,K,L,JV)=ALF1(I,K)*(SZ(I,K,L,JV)-ALF(I,K)*SYZ(I,K,L,JV)) |
---|
| 522 | SSXX(I,K,L,JV)=ALF1 (I,K)*SSXX(I,K,L,JV) |
---|
| 523 | SSXZ(I,K,L,JV)=ALF1 (I,K)*SSXZ(I,K,L,JV) |
---|
| 524 | SZZ(I,K,L,JV)=ALF1 (I,K)*SZZ(I,K,L,JV) |
---|
| 525 | SSXY(I,K,L,JV)=ALF1Q(I,K)*SSXY(I,K,L,JV) |
---|
| 526 | SYZ(I,K,L,JV)=ALF1Q(I,K)*SYZ(I,K,L,JV) |
---|
| 527 | ENDIF |
---|
| 528 | C |
---|
| 529 | 420 CONTINUE |
---|
| 530 | 42 CONTINUE |
---|
| 531 | c print*,'ap ADVYP 42' |
---|
| 532 | C |
---|
| 533 | DO 43 I=1,LON |
---|
| 534 | IF(VGRI(I,K,L).LT.0.) THEN |
---|
| 535 | FM(I,K)=-VGRI(I,K,L)*DTY |
---|
| 536 | ALF(I,K)=FM(I,K)/SM0 |
---|
| 537 | ENDIF |
---|
| 538 | 43 CONTINUE |
---|
| 539 | c print*,'ap ADVYP 43' |
---|
| 540 | C |
---|
| 541 | DO 44 JV=1,NTRA |
---|
| 542 | DO 440 I=1,LON |
---|
| 543 | IF(VGRI(I,K,L).LT.0.) THEN |
---|
| 544 | F0(I,K,JV)=ALF(I,K)*S00(JV) |
---|
| 545 | ENDIF |
---|
| 546 | 440 CONTINUE |
---|
| 547 | 44 CONTINUE |
---|
| 548 | C |
---|
| 549 | C puts the temporary moments Fi into appropriate neighboring boxes |
---|
| 550 | C |
---|
| 551 | DO 45 I=1,LON |
---|
| 552 | C |
---|
| 553 | IF(VGRI(I,K,L).LT.0.) THEN |
---|
| 554 | SM(I,K,L)=SM(I,K,L)+FM(I,K) |
---|
| 555 | ALF(I,K)=FM(I,K)/SM(I,K,L) |
---|
| 556 | ENDIF |
---|
| 557 | C |
---|
| 558 | ALFQ(I,K)=ALF(I,K)*ALF(I,K) |
---|
| 559 | ALF1(I,K)=1.-ALF(I,K) |
---|
| 560 | ALF1Q(I,K)=ALF1(I,K)*ALF1(I,K) |
---|
| 561 | ALF2(I,K)=ALF1(I,K)-ALF(I,K) |
---|
| 562 | ALF3(I,K)=ALF1(I,K)*ALF(I,K) |
---|
| 563 | C |
---|
| 564 | 45 CONTINUE |
---|
| 565 | c print*,'ap ADVYP 45' |
---|
| 566 | C |
---|
| 567 | DO 46 JV=1,NTRA |
---|
| 568 | DO 460 I=1,LON |
---|
| 569 | C |
---|
| 570 | IF(VGRI(I,K,L).LT.0.) THEN |
---|
| 571 | C |
---|
| 572 | TEMPTM=-ALF(I,K)*S0(I,K,L,JV)+ALF1(I,K)*F0(I,K,JV) |
---|
| 573 | S0 (I,K,L,JV)=S0(I,K,L,JV)+F0(I,K,JV) |
---|
| 574 | SYY(I,K,L,JV)=ALF1Q(I,K)*SYY(I,K,L,JV) |
---|
| 575 | + +5.*(-ALF3 (I,K)*SY (I,K,L,JV)+ALF2(I,K)*TEMPTM ) |
---|
| 576 | SY (I,K,L,JV)=ALF1(I,K)*SY (I,K,L,JV)+3.*TEMPTM |
---|
| 577 | SSXY(I,K,L,JV)=ALF1(I,K)*SSXY(I,K,L,JV)-3.*ALF(I,K)*SSX(I,K,L,JV) |
---|
| 578 | SYZ(I,K,L,JV)=ALF1(I,K)*SYZ(I,K,L,JV)-3.*ALF(I,K)*SZ(I,K,L,JV) |
---|
| 579 | C |
---|
| 580 | ENDIF |
---|
| 581 | C |
---|
| 582 | 460 CONTINUE |
---|
| 583 | 46 CONTINUE |
---|
| 584 | c print*,'ap ADVYP 46' |
---|
| 585 | C |
---|
| 586 | 1 CONTINUE |
---|
| 587 | |
---|
| 588 | c-------------------------------------------------- |
---|
| 589 | C bouclage cyclique horizontal . |
---|
| 590 | |
---|
| 591 | DO l = 1,llm |
---|
| 592 | DO jv = 1,ntra |
---|
| 593 | DO j = 1,jjp1 |
---|
| 594 | SM(iip1,j,l) = SM(1,j,l) |
---|
| 595 | S0(iip1,j,l,jv) = S0(1,j,l,jv) |
---|
| 596 | SSX(iip1,j,l,jv) = SSX(1,j,l,jv) |
---|
| 597 | SY(iip1,j,l,jv) = SY(1,j,l,jv) |
---|
| 598 | SZ(iip1,j,l,jv) = SZ(1,j,l,jv) |
---|
| 599 | END DO |
---|
| 600 | END DO |
---|
| 601 | END DO |
---|
| 602 | |
---|
| 603 | c ------------------------------------------------------------------- |
---|
| 604 | C *** Test negativite: |
---|
| 605 | |
---|
| 606 | c DO jv = 1,ntra |
---|
| 607 | c DO l = 1,llm |
---|
| 608 | c DO j = 1,jjp1 |
---|
| 609 | c DO i = 1,iip1 |
---|
| 610 | c IF (s0( i,j,l,jv ).lt.0.) THEN |
---|
| 611 | c PRINT*, '------ S0 < 0 en FIN ADVYP ---' |
---|
| 612 | c PRINT*, 'S0(',i,j,l,jv,')=', S0(i,j,l,jv) |
---|
| 613 | cc STOP |
---|
| 614 | c ENDIF |
---|
| 615 | c ENDDO |
---|
| 616 | c ENDDO |
---|
| 617 | c ENDDO |
---|
| 618 | c ENDDO |
---|
| 619 | |
---|
| 620 | |
---|
| 621 | c ------------------------------------------------------------------- |
---|
| 622 | C *** Test : diag de la qtite totale de traceur dans |
---|
| 623 | C l'atmosphere avant l'advection en Y |
---|
| 624 | |
---|
| 625 | DO l = 1,llm |
---|
| 626 | DO j = 1,jjp1 |
---|
| 627 | DO i = 1,iim |
---|
| 628 | sqf = sqf + S0(i,j,l,ntra) |
---|
| 629 | END DO |
---|
| 630 | END DO |
---|
| 631 | END DO |
---|
| 632 | PRINT*,'---------- DIAG DANS ADVY - SORTIE --------' |
---|
| 633 | PRINT*,'sqf=',sqf |
---|
| 634 | c print*,'ap ADVYP fin' |
---|
| 635 | |
---|
| 636 | c----------------------------------------------------------------- |
---|
| 637 | C |
---|
| 638 | RETURN |
---|
| 639 | END |
---|
| 640 | |
---|
| 641 | |
---|
| 642 | |
---|
| 643 | |
---|
| 644 | |
---|
| 645 | |
---|
| 646 | |
---|
| 647 | |
---|
| 648 | |
---|
| 649 | |
---|
| 650 | |
---|
| 651 | |
---|