1 | ! |
---|
2 | ! $Header$ |
---|
3 | ! |
---|
4 | SUBROUTINE advx(limit,dtx,pbaru,sm,s0, |
---|
5 | $ sx,sy,sz,lati,latf) |
---|
6 | IMPLICIT NONE |
---|
7 | |
---|
8 | CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
---|
9 | C C |
---|
10 | C first-order moments (FOM) advection of tracer in X direction C |
---|
11 | C C |
---|
12 | C Source : Pascal Simon (Meteo,CNRM) C |
---|
13 | C Adaptation : A.Armengaud (LGGE) juin 94 C |
---|
14 | C C |
---|
15 | C limit,dtx,pbaru,pbarv,sm,s0,sx,sy,sz C |
---|
16 | C sont des arguments d'entree pour le s-pg... C |
---|
17 | C C |
---|
18 | C sm,s0,sx,sy,sz C |
---|
19 | C sont les arguments de sortie pour le s-pg C |
---|
20 | C C |
---|
21 | CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
---|
22 | C |
---|
23 | C parametres principaux du modele |
---|
24 | C |
---|
25 | #include "dimensions.h" |
---|
26 | #include "paramet.h" |
---|
27 | |
---|
28 | C Arguments : |
---|
29 | C ----------- |
---|
30 | C dtx : frequence fictive d'appel du transport |
---|
31 | C pbaru, pbarv : flux de masse en x et y en Pa.m2.s-1 |
---|
32 | |
---|
33 | INTEGER ntra |
---|
34 | PARAMETER (ntra = 1) |
---|
35 | |
---|
36 | C ATTENTION partout ou on trouve ntra, insertion de boucle |
---|
37 | C possible dans l'avenir. |
---|
38 | |
---|
39 | REAL dtx |
---|
40 | REAL pbaru ( iip1,jjp1,llm ) |
---|
41 | |
---|
42 | C moments: SM total mass in each grid box |
---|
43 | C S0 mass of tracer in each grid box |
---|
44 | C Si 1rst order moment in i direction |
---|
45 | C |
---|
46 | REAL SM(iip1,jjp1,llm),S0(iip1,jjp1,llm,ntra) |
---|
47 | REAL sx(iip1,jjp1,llm,ntra) |
---|
48 | $ ,sy(iip1,jjp1,llm,ntra) |
---|
49 | REAL sz(iip1,jjp1,llm,ntra) |
---|
50 | |
---|
51 | C Local : |
---|
52 | C ------- |
---|
53 | |
---|
54 | C mass fluxes across the boundaries (UGRI,VGRI,WGRI) |
---|
55 | C mass fluxes in kg |
---|
56 | C declaration : |
---|
57 | |
---|
58 | REAL UGRI(iip1,jjp1,llm) |
---|
59 | |
---|
60 | C Rem : VGRI et WGRI ne sont pas utilises dans |
---|
61 | C cette subroutine ( advection en x uniquement ) |
---|
62 | C |
---|
63 | C Ti are the moments for the current latitude and level |
---|
64 | C |
---|
65 | REAL TM(iim) |
---|
66 | REAL T0(iim,ntra),TX(iim,ntra) |
---|
67 | REAL TY(iim,ntra),TZ(iim,ntra) |
---|
68 | REAL TEMPTM ! just a temporary variable |
---|
69 | C |
---|
70 | C the moments F are similarly defined and used as temporary |
---|
71 | C storage for portions of the grid boxes in transit |
---|
72 | C |
---|
73 | REAL FM(iim) |
---|
74 | REAL F0(iim,ntra),FX(iim,ntra) |
---|
75 | REAL FY(iim,ntra),FZ(iim,ntra) |
---|
76 | C |
---|
77 | C work arrays |
---|
78 | C |
---|
79 | REAL ALF(iim),ALF1(iim),ALFQ(iim),ALF1Q(iim) |
---|
80 | C |
---|
81 | REAL SMNEW(iim),UEXT(iim) |
---|
82 | C |
---|
83 | REAL sqi,sqf |
---|
84 | |
---|
85 | LOGICAL LIMIT |
---|
86 | INTEGER NUM(jjp1),LONK,NUMK |
---|
87 | INTEGER lon,lati,latf,niv |
---|
88 | INTEGER i,i2,i3,j,jv,l,k,itrac |
---|
89 | |
---|
90 | lon = iim |
---|
91 | niv = llm |
---|
92 | |
---|
93 | C *** Test de passage d'arguments ****** |
---|
94 | |
---|
95 | |
---|
96 | C ------------------------------------- |
---|
97 | DO 300 j = 1,jjp1 |
---|
98 | NUM(j) = 1 |
---|
99 | 300 CONTINUE |
---|
100 | sqi = 0. |
---|
101 | sqf = 0. |
---|
102 | |
---|
103 | DO l = 1,llm |
---|
104 | DO j = 1,jjp1 |
---|
105 | DO i = 1,iim |
---|
106 | cIM 240305 sqi = sqi + S0(i,j,l,9) |
---|
107 | sqi = sqi + S0(i,j,l,ntra) |
---|
108 | ENDDO |
---|
109 | ENDDO |
---|
110 | ENDDO |
---|
111 | PRINT*,'-------- DIAG DANS ADVX - ENTREE ---------' |
---|
112 | PRINT*,'sqi=',sqi |
---|
113 | |
---|
114 | |
---|
115 | C Interface : adaptation nouveau modele |
---|
116 | C ------------------------------------- |
---|
117 | C |
---|
118 | C --------------------------------------------------------- |
---|
119 | C Conversion des flux de masses en kg/s |
---|
120 | C pbaru est en N/s d'ou : |
---|
121 | C ugri est en kg/s |
---|
122 | |
---|
123 | DO 500 l = 1,llm |
---|
124 | DO 500 j = 1,jjm+1 |
---|
125 | DO 500 i = 1,iip1 |
---|
126 | C ugri (i,j,llm+1-l) = pbaru (i,j,l) * ( dsig(l) / g ) |
---|
127 | ugri (i,j,llm+1-l) = pbaru (i,j,l) |
---|
128 | 500 CONTINUE |
---|
129 | |
---|
130 | |
---|
131 | C --------------------------------------------------------- |
---|
132 | C --------------------------------------------------------- |
---|
133 | C --------------------------------------------------------- |
---|
134 | |
---|
135 | C start here |
---|
136 | C |
---|
137 | C boucle principale sur les niveaux et les latitudes |
---|
138 | C |
---|
139 | DO 1 L=1,NIV |
---|
140 | DO 1 K=lati,latf |
---|
141 | C |
---|
142 | C initialisation |
---|
143 | C |
---|
144 | C program assumes periodic boundaries in X |
---|
145 | C |
---|
146 | DO 10 I=2,LON |
---|
147 | SMNEW(I)=SM(I,K,L)+(UGRI(I-1,K,L)-UGRI(I,K,L))*DTX |
---|
148 | 10 CONTINUE |
---|
149 | SMNEW(1)=SM(1,K,L)+(UGRI(LON,K,L)-UGRI(1,K,L))*DTX |
---|
150 | C |
---|
151 | C modifications for extended polar zones |
---|
152 | C |
---|
153 | NUMK=NUM(K) |
---|
154 | LONK=LON/NUMK |
---|
155 | C |
---|
156 | IF(NUMK.GT.1) THEN |
---|
157 | C |
---|
158 | DO 111 I=1,LON |
---|
159 | TM(I)=0. |
---|
160 | 111 CONTINUE |
---|
161 | DO 112 JV=1,NTRA |
---|
162 | DO 1120 I=1,LON |
---|
163 | T0(I,JV)=0. |
---|
164 | TX(I,JV)=0. |
---|
165 | TY(I,JV)=0. |
---|
166 | TZ(I,JV)=0. |
---|
167 | 1120 CONTINUE |
---|
168 | 112 CONTINUE |
---|
169 | C |
---|
170 | DO 11 I2=1,NUMK |
---|
171 | C |
---|
172 | DO 113 I=1,LONK |
---|
173 | I3=(I-1)*NUMK+I2 |
---|
174 | TM(I)=TM(I)+SM(I3,K,L) |
---|
175 | ALF(I)=SM(I3,K,L)/TM(I) |
---|
176 | ALF1(I)=1.-ALF(I) |
---|
177 | 113 CONTINUE |
---|
178 | C |
---|
179 | DO JV=1,NTRA |
---|
180 | DO I=1,LONK |
---|
181 | I3=(I-1)*NUMK+I2 |
---|
182 | TEMPTM=-ALF(I)*T0(I,JV)+ALF1(I) |
---|
183 | $ *S0(I3,K,L,JV) |
---|
184 | T0(I,JV)=T0(I,JV)+S0(I3,K,L,JV) |
---|
185 | TX(I,JV)=ALF(I) *sx(I3,K,L,JV)+ |
---|
186 | $ ALF1(I)*TX(I,JV) +3.*TEMPTM |
---|
187 | TY(I,JV)=TY(I,JV)+sy(I3,K,L,JV) |
---|
188 | TZ(I,JV)=TZ(I,JV)+sz(I3,K,L,JV) |
---|
189 | ENDDO |
---|
190 | ENDDO |
---|
191 | C |
---|
192 | 11 CONTINUE |
---|
193 | C |
---|
194 | ELSE |
---|
195 | C |
---|
196 | DO 115 I=1,LON |
---|
197 | TM(I)=SM(I,K,L) |
---|
198 | 115 CONTINUE |
---|
199 | DO 116 JV=1,NTRA |
---|
200 | DO 1160 I=1,LON |
---|
201 | T0(I,JV)=S0(I,K,L,JV) |
---|
202 | TX(I,JV)=sx(I,K,L,JV) |
---|
203 | TY(I,JV)=sy(I,K,L,JV) |
---|
204 | TZ(I,JV)=sz(I,K,L,JV) |
---|
205 | 1160 CONTINUE |
---|
206 | 116 CONTINUE |
---|
207 | C |
---|
208 | ENDIF |
---|
209 | C |
---|
210 | DO 117 I=1,LONK |
---|
211 | UEXT(I)=UGRI(I*NUMK,K,L) |
---|
212 | 117 CONTINUE |
---|
213 | C |
---|
214 | C place limits on appropriate moments before transport |
---|
215 | C (if flux-limiting is to be applied) |
---|
216 | C |
---|
217 | IF(.NOT.LIMIT) GO TO 13 |
---|
218 | C |
---|
219 | DO 12 JV=1,NTRA |
---|
220 | DO 120 I=1,LONK |
---|
221 | TX(I,JV)=SIGN(AMIN1(AMAX1(T0(I,JV),0.),ABS(TX(I,JV))),TX(I,JV)) |
---|
222 | 120 CONTINUE |
---|
223 | 12 CONTINUE |
---|
224 | C |
---|
225 | 13 CONTINUE |
---|
226 | C |
---|
227 | C calculate flux and moments between adjacent boxes |
---|
228 | C 1- create temporary moments/masses for partial boxes in transit |
---|
229 | C 2- reajusts moments remaining in the box |
---|
230 | C |
---|
231 | C flux from IP to I if U(I).lt.0 |
---|
232 | C |
---|
233 | DO 140 I=1,LONK-1 |
---|
234 | IF(UEXT(I).LT.0.) THEN |
---|
235 | FM(I)=-UEXT(I)*DTX |
---|
236 | ALF(I)=FM(I)/TM(I+1) |
---|
237 | TM(I+1)=TM(I+1)-FM(I) |
---|
238 | ENDIF |
---|
239 | 140 CONTINUE |
---|
240 | C |
---|
241 | I=LONK |
---|
242 | IF(UEXT(I).LT.0.) THEN |
---|
243 | FM(I)=-UEXT(I)*DTX |
---|
244 | ALF(I)=FM(I)/TM(1) |
---|
245 | TM(1)=TM(1)-FM(I) |
---|
246 | ENDIF |
---|
247 | C |
---|
248 | C flux from I to IP if U(I).gt.0 |
---|
249 | C |
---|
250 | DO 141 I=1,LONK |
---|
251 | IF(UEXT(I).GE.0.) THEN |
---|
252 | FM(I)=UEXT(I)*DTX |
---|
253 | ALF(I)=FM(I)/TM(I) |
---|
254 | TM(I)=TM(I)-FM(I) |
---|
255 | ENDIF |
---|
256 | 141 CONTINUE |
---|
257 | C |
---|
258 | DO 142 I=1,LONK |
---|
259 | ALFQ(I)=ALF(I)*ALF(I) |
---|
260 | ALF1(I)=1.-ALF(I) |
---|
261 | ALF1Q(I)=ALF1(I)*ALF1(I) |
---|
262 | 142 CONTINUE |
---|
263 | C |
---|
264 | DO 150 JV=1,NTRA |
---|
265 | DO 1500 I=1,LONK-1 |
---|
266 | C |
---|
267 | IF(UEXT(I).LT.0.) THEN |
---|
268 | C |
---|
269 | F0(I,JV)=ALF (I)* ( T0(I+1,JV)-ALF1(I)*TX(I+1,JV) ) |
---|
270 | FX(I,JV)=ALFQ(I)*TX(I+1,JV) |
---|
271 | FY(I,JV)=ALF (I)*TY(I+1,JV) |
---|
272 | FZ(I,JV)=ALF (I)*TZ(I+1,JV) |
---|
273 | C |
---|
274 | T0(I+1,JV)=T0(I+1,JV)-F0(I,JV) |
---|
275 | TX(I+1,JV)=ALF1Q(I)*TX(I+1,JV) |
---|
276 | TY(I+1,JV)=TY(I+1,JV)-FY(I,JV) |
---|
277 | TZ(I+1,JV)=TZ(I+1,JV)-FZ(I,JV) |
---|
278 | C |
---|
279 | ENDIF |
---|
280 | C |
---|
281 | 1500 CONTINUE |
---|
282 | 150 CONTINUE |
---|
283 | C |
---|
284 | I=LONK |
---|
285 | IF(UEXT(I).LT.0.) THEN |
---|
286 | C |
---|
287 | DO 151 JV=1,NTRA |
---|
288 | C |
---|
289 | F0 (I,JV)=ALF (I)* ( T0(1,JV)-ALF1(I)*TX(1,JV) ) |
---|
290 | FX (I,JV)=ALFQ(I)*TX(1,JV) |
---|
291 | FY (I,JV)=ALF (I)*TY(1,JV) |
---|
292 | FZ (I,JV)=ALF (I)*TZ(1,JV) |
---|
293 | C |
---|
294 | T0(1,JV)=T0(1,JV)-F0(I,JV) |
---|
295 | TX(1,JV)=ALF1Q(I)*TX(1,JV) |
---|
296 | TY(1,JV)=TY(1,JV)-FY(I,JV) |
---|
297 | TZ(1,JV)=TZ(1,JV)-FZ(I,JV) |
---|
298 | C |
---|
299 | 151 CONTINUE |
---|
300 | C |
---|
301 | ENDIF |
---|
302 | C |
---|
303 | DO 152 JV=1,NTRA |
---|
304 | DO 1520 I=1,LONK |
---|
305 | C |
---|
306 | IF(UEXT(I).GE.0.) THEN |
---|
307 | C |
---|
308 | F0(I,JV)=ALF (I)* ( T0(I,JV)+ALF1(I)*TX(I,JV) ) |
---|
309 | FX(I,JV)=ALFQ(I)*TX(I,JV) |
---|
310 | FY(I,JV)=ALF (I)*TY(I,JV) |
---|
311 | FZ(I,JV)=ALF (I)*TZ(I,JV) |
---|
312 | C |
---|
313 | T0(I,JV)=T0(I,JV)-F0(I,JV) |
---|
314 | TX(I,JV)=ALF1Q(I)*TX(I,JV) |
---|
315 | TY(I,JV)=TY(I,JV)-FY(I,JV) |
---|
316 | TZ(I,JV)=TZ(I,JV)-FZ(I,JV) |
---|
317 | C |
---|
318 | ENDIF |
---|
319 | C |
---|
320 | 1520 CONTINUE |
---|
321 | 152 CONTINUE |
---|
322 | C |
---|
323 | C puts the temporary moments Fi into appropriate neighboring boxes |
---|
324 | C |
---|
325 | DO 160 I=1,LONK |
---|
326 | IF(UEXT(I).LT.0.) THEN |
---|
327 | TM(I)=TM(I)+FM(I) |
---|
328 | ALF(I)=FM(I)/TM(I) |
---|
329 | ENDIF |
---|
330 | 160 CONTINUE |
---|
331 | C |
---|
332 | DO 161 I=1,LONK-1 |
---|
333 | IF(UEXT(I).GE.0.) THEN |
---|
334 | TM(I+1)=TM(I+1)+FM(I) |
---|
335 | ALF(I)=FM(I)/TM(I+1) |
---|
336 | ENDIF |
---|
337 | 161 CONTINUE |
---|
338 | C |
---|
339 | I=LONK |
---|
340 | IF(UEXT(I).GE.0.) THEN |
---|
341 | TM(1)=TM(1)+FM(I) |
---|
342 | ALF(I)=FM(I)/TM(1) |
---|
343 | ENDIF |
---|
344 | C |
---|
345 | DO 162 I=1,LONK |
---|
346 | ALF1(I)=1.-ALF(I) |
---|
347 | 162 CONTINUE |
---|
348 | C |
---|
349 | DO 170 JV=1,NTRA |
---|
350 | DO 1700 I=1,LONK |
---|
351 | C |
---|
352 | IF(UEXT(I).LT.0.) THEN |
---|
353 | C |
---|
354 | TEMPTM=-ALF(I)*T0(I,JV)+ALF1(I)*F0(I,JV) |
---|
355 | T0(I,JV)=T0(I,JV)+F0(I,JV) |
---|
356 | TX(I,JV)=ALF(I)*FX(I,JV)+ALF1(I)*TX(I,JV)+3.*TEMPTM |
---|
357 | TY(I,JV)=TY(I,JV)+FY(I,JV) |
---|
358 | TZ(I,JV)=TZ(I,JV)+FZ(I,JV) |
---|
359 | C |
---|
360 | ENDIF |
---|
361 | C |
---|
362 | 1700 CONTINUE |
---|
363 | 170 CONTINUE |
---|
364 | C |
---|
365 | DO 171 JV=1,NTRA |
---|
366 | DO 1710 I=1,LONK-1 |
---|
367 | C |
---|
368 | IF(UEXT(I).GE.0.) THEN |
---|
369 | C |
---|
370 | TEMPTM=ALF(I)*T0(I+1,JV)-ALF1(I)*F0(I,JV) |
---|
371 | T0(I+1,JV)=T0(I+1,JV)+F0(I,JV) |
---|
372 | TX(I+1,JV)=ALF(I)*FX(I,JV)+ALF1(I)*TX(I+1,JV)+3.*TEMPTM |
---|
373 | TY(I+1,JV)=TY(I+1,JV)+FY(I,JV) |
---|
374 | TZ(I+1,JV)=TZ(I+1,JV)+FZ(I,JV) |
---|
375 | C |
---|
376 | ENDIF |
---|
377 | C |
---|
378 | 1710 CONTINUE |
---|
379 | 171 CONTINUE |
---|
380 | C |
---|
381 | I=LONK |
---|
382 | IF(UEXT(I).GE.0.) THEN |
---|
383 | DO 172 JV=1,NTRA |
---|
384 | TEMPTM=ALF(I)*T0(1,JV)-ALF1(I)*F0(I,JV) |
---|
385 | T0(1,JV)=T0(1,JV)+F0(I,JV) |
---|
386 | TX(1,JV)=ALF(I)*FX(I,JV)+ALF1(I)*TX(1,JV)+3.*TEMPTM |
---|
387 | TY(1,JV)=TY(1,JV)+FY(I,JV) |
---|
388 | TZ(1,JV)=TZ(1,JV)+FZ(I,JV) |
---|
389 | 172 CONTINUE |
---|
390 | ENDIF |
---|
391 | C |
---|
392 | C retour aux mailles d'origine (passage des Tij aux Sij) |
---|
393 | C |
---|
394 | IF(NUMK.GT.1) THEN |
---|
395 | C |
---|
396 | DO 180 I2=1,NUMK |
---|
397 | C |
---|
398 | DO 180 I=1,LONK |
---|
399 | C |
---|
400 | I3=I2+(I-1)*NUMK |
---|
401 | SM(I3,K,L)=SMNEW(I3) |
---|
402 | ALF(I)=SMNEW(I3)/TM(I) |
---|
403 | TM(I)=TM(I)-SMNEW(I3) |
---|
404 | C |
---|
405 | ALFQ(I)=ALF(I)*ALF(I) |
---|
406 | ALF1(I)=1.-ALF(I) |
---|
407 | ALF1Q(I)=ALF1(I)*ALF1(I) |
---|
408 | C |
---|
409 | 180 CONTINUE |
---|
410 | C |
---|
411 | DO JV=1,NTRA |
---|
412 | DO I=1,LONK |
---|
413 | C |
---|
414 | I3=I2+(I-1)*NUMK |
---|
415 | S0(I3,K,L,JV)=ALF (I) |
---|
416 | $ * (T0(I,JV)-ALF1(I)*TX(I,JV)) |
---|
417 | sx(I3,K,L,JV)=ALFQ(I)*TX(I,JV) |
---|
418 | sy(I3,K,L,JV)=ALF (I)*TY(I,JV) |
---|
419 | sz(I3,K,L,JV)=ALF (I)*TZ(I,JV) |
---|
420 | C |
---|
421 | C reajusts moments remaining in the box |
---|
422 | C |
---|
423 | T0(I,JV)=T0(I,JV)-S0(I3,K,L,JV) |
---|
424 | TX(I,JV)=ALF1Q(I)*TX(I,JV) |
---|
425 | TY(I,JV)=TY(I,JV)-sy(I3,K,L,JV) |
---|
426 | TZ(I,JV)=TZ(I,JV)-sz(I3,K,L,JV) |
---|
427 | ENDDO |
---|
428 | ENDDO |
---|
429 | C |
---|
430 | C |
---|
431 | ELSE |
---|
432 | C |
---|
433 | DO 190 I=1,LON |
---|
434 | SM(I,K,L)=TM(I) |
---|
435 | 190 CONTINUE |
---|
436 | DO 191 JV=1,NTRA |
---|
437 | DO 1910 I=1,LON |
---|
438 | S0(I,K,L,JV)=T0(I,JV) |
---|
439 | sx(I,K,L,JV)=TX(I,JV) |
---|
440 | sy(I,K,L,JV)=TY(I,JV) |
---|
441 | sz(I,K,L,JV)=TZ(I,JV) |
---|
442 | 1910 CONTINUE |
---|
443 | 191 CONTINUE |
---|
444 | C |
---|
445 | ENDIF |
---|
446 | C |
---|
447 | 1 CONTINUE |
---|
448 | C |
---|
449 | C ----------- AA Test en fin de ADVX ------ Controle des S* |
---|
450 | c OK |
---|
451 | c DO 9998 l = 1, llm |
---|
452 | c DO 9998 j = 1, jjp1 |
---|
453 | c DO 9998 i = 1, iip1 |
---|
454 | c IF (S0(i,j,l,ntra).lt.0..and.LIMIT) THEN |
---|
455 | c PRINT*, '-------------------' |
---|
456 | c PRINT*, 'En fin de ADVX' |
---|
457 | c PRINT*,'SM(',i,j,l,')=',SM(i,j,l) |
---|
458 | c PRINT*,'S0(',i,j,l,')=',S0(i,j,l,ntra) |
---|
459 | c print*, 'sx(',i,j,l,')=',sx(i,j,l,ntra) |
---|
460 | c print*, 'sy(',i,j,l,')=',sy(i,j,l,ntra) |
---|
461 | c print*, 'sz(',i,j,l,')=',sz(i,j,l,ntra) |
---|
462 | c WRITE (*,*) 'On arrete !! - pbl en fin de ADVX1' |
---|
463 | cc STOP |
---|
464 | c ENDIF |
---|
465 | c 9998 CONTINUE |
---|
466 | c |
---|
467 | C ---------- bouclage cyclique |
---|
468 | DO itrac=1,ntra |
---|
469 | DO l = 1,llm |
---|
470 | DO j = lati,latf |
---|
471 | SM(iip1,j,l) = SM(1,j,l) |
---|
472 | S0(iip1,j,l,itrac) = S0(1,j,l,itrac) |
---|
473 | sx(iip1,j,l,itrac) = sx(1,j,l,itrac) |
---|
474 | sy(iip1,j,l,itrac) = sy(1,j,l,itrac) |
---|
475 | sz(iip1,j,l,itrac) = sz(1,j,l,itrac) |
---|
476 | END DO |
---|
477 | END DO |
---|
478 | ENDDO |
---|
479 | |
---|
480 | c ----------- qqtite totale de traceur dans tte l'atmosphere |
---|
481 | DO l = 1, llm |
---|
482 | DO j = 1, jjp1 |
---|
483 | DO i = 1, iim |
---|
484 | cIM 240405 sqf = sqf + S0(i,j,l,9) |
---|
485 | sqf = sqf + S0(i,j,l,ntra) |
---|
486 | END DO |
---|
487 | END DO |
---|
488 | END DO |
---|
489 | c |
---|
490 | PRINT*,'------ DIAG DANS ADVX - SORTIE -----' |
---|
491 | PRINT*,'sqf=',sqf |
---|
492 | c------------- |
---|
493 | |
---|
494 | RETURN |
---|
495 | END |
---|
496 | C_________________________________________________________________ |
---|
497 | C_________________________________________________________________ |
---|