source: trunk/LMDZ.COMMON/libf/dyn3d/top_bound.F @ 3026

Last change on this file since 3026 was 1442, checked in by slebonnois, 10 years ago

SL: update of the Venus GCM, + corrections on routines used for newstart/start2archive for Titan and Venus, + some modifications on tools

File size: 6.1 KB
RevLine 
[1010]1!
2! $Id: top_bound.F 1793 2013-07-18 07:13:18Z emillour $
3!
4      SUBROUTINE top_bound(vcov,ucov,teta,masse,dt,ducov)
[1422]5
6      USE comvert_mod, ONLY: presnivs,scaleheight,preff
7      USE comconst_mod, ONLY: iflag_top_bound,tau_top_bound,
8     .                  mode_top_bound
9
[1]10      IMPLICIT NONE
11c
12#include "dimensions.h"
13#include "paramet.h"
14#include "comgeom2.h"
15
16
17c ..  DISSIPATION LINEAIRE A HAUT NIVEAU, RUN MESO,
18C     F. LOTT DEC. 2006
19c                                 (  10/12/06  )
20
21c=======================================================================
22c
23c   Auteur:  F. LOTT 
24c   -------
25c
26c   Objet:
27c   ------
28c
29c   Dissipation linéaire (ex top_bound de la physique)
30c
31c=======================================================================
32
[1010]33! top_bound sponge layer model:
34! Quenching is modeled as: A(t)=Am+A0*exp(-lambda*t)
35! where Am is the zonal average of the field (or zero), and lambda the inverse
36! of the characteristic quenching/relaxation time scale
37! Thus, assuming Am to be time-independent, field at time t+dt is given by:
38! A(t+dt)=A(t)-(A(t)-Am)*(1-exp(-lambda*dt))
39! Moreover lambda can be a function of model level (see below), and relaxation
40! can be toward the average zonal field or just zero (see below).
41
42! NB: top_bound sponge is only called from leapfrog if ok_strato=.true.
43
[1442]44! sponge parameters: (loaded/set in conf_gcm.F ; stored in comconst_mod)
[1010]45!    iflag_top_bound=0 for no sponge
46!    iflag_top_bound=1 for sponge over 4 topmost layers
47!    iflag_top_bound=2 for sponge from top to ~1% of top layer pressure
48!    mode_top_bound=0: no relaxation
49!    mode_top_bound=1: u and v relax towards 0
50!    mode_top_bound=2: u and v relax towards their zonal mean
51!    mode_top_bound=3: u,v and pot. temp. relax towards their zonal mean
52!    tau_top_bound : inverse of charactericstic relaxation time scale at
53!                       the topmost layer (Hz)
54
55
[1]56#include "comdissipn.h"
[1010]57#include "iniprint.h"
[1]58
59c   Arguments:
60c   ----------
61
[1010]62      real,intent(inout) :: ucov(iip1,jjp1,llm) ! covariant zonal wind
63      real,intent(inout) :: vcov(iip1,jjm,llm) ! covariant meridional wind
64      real,intent(inout) :: teta(iip1,jjp1,llm) ! potential temperature
65      real,intent(in) :: masse(iip1,jjp1,llm) ! mass of atmosphere
66      real,intent(in) :: dt ! time step (s) of sponge model
67      real,intent(out) :: ducov(iip1,jjp1,llm) ! increment on ucov due to sponge
[1]68
69c   Local:
70c   ------
71
72      REAL massebx(iip1,jjp1,llm),masseby(iip1,jjm,llm),zm
73      REAL uzon(jjp1,llm),vzon(jjm,llm),tzon(jjp1,llm)
74     
75      integer i
[1010]76      REAL,SAVE :: rdamp(llm) ! quenching coefficient
77      real,save :: lambda(llm) ! inverse or quenching time scale (Hz)
[1]78
79      LOGICAL,SAVE :: first=.true.
80
81      INTEGER j,l
82     
83      if (first) then
84         if (iflag_top_bound.eq.1) then
[1010]85! sponge quenching over the topmost 4 atmospheric layers
86             lambda(:)=0.
87             lambda(llm)=tau_top_bound
88             lambda(llm-1)=tau_top_bound/2.
89             lambda(llm-2)=tau_top_bound/4.
90             lambda(llm-3)=tau_top_bound/8.
[1]91         else if (iflag_top_bound.eq.2) then
[1010]92! sponge quenching over topmost layers down to pressures which are
93! higher than 100 times the topmost layer pressure
94             lambda(:)=tau_top_bound
[1]95     s       *max(presnivs(llm)/presnivs(:)-0.01,0.)
96         endif
[1010]97
98! quenching coefficient rdamp(:)
99!         rdamp(:)=dt*lambda(:) ! Explicit Euler approx.
100         rdamp(:)=1.-exp(-lambda(:)*dt)
101
102         write(lunout,*)'TOP_BOUND mode',mode_top_bound
103         write(lunout,*)'Sponge layer coefficients'
104         write(lunout,*)'p (Pa)  z(km)  tau(s)   1./tau (Hz)'
[108]105         do l=1,llm
106           if (rdamp(l).ne.0.) then
[1010]107             write(lunout,'(6(1pe12.4,1x))')
108     &        presnivs(l),log(preff/presnivs(l))*scaleheight,
109     &           1./lambda(l),lambda(l)
[108]110           endif
111         enddo
[1010]112         first=.false.
113      endif ! of if (first)
[1]114
115      CALL massbar(masse,massebx,masseby)
116
[1010]117      ! compute zonal average of vcov and u
[108]118      if (mode_top_bound.ge.2) then
119       do l=1,llm
[1]120        do j=1,jjm
121          vzon(j,l)=0.
122          zm=0.
123          do i=1,iim
[1010]124! NB: we can work using vcov zonal mean rather than v since the
125! cv coefficient (which relates the two) only varies with latitudes
[1]126            vzon(j,l)=vzon(j,l)+vcov(i,j,l)*masseby(i,j,l)
127            zm=zm+masseby(i,j,l)
128          enddo
129          vzon(j,l)=vzon(j,l)/zm
130        enddo
[108]131       enddo
[1]132
[108]133       do l=1,llm
[1010]134        do j=2,jjm ! excluding poles
[1]135          uzon(j,l)=0.
136          zm=0.
137          do i=1,iim
138            uzon(j,l)=uzon(j,l)+massebx(i,j,l)*ucov(i,j,l)/cu(i,j)
139            zm=zm+massebx(i,j,l)
140          enddo
141          uzon(j,l)=uzon(j,l)/zm
142        enddo
[108]143       enddo
[1010]144      else ! ucov and vcov will relax towards 0
145        vzon(:,:)=0.
146        uzon(:,:)=0.
147      endif ! of if (mode_top_bound.ge.2)
[1]148
[1010]149      ! compute zonal average of potential temperature, if necessary
[108]150      if (mode_top_bound.ge.3) then
151       do l=1,llm
[1010]152        do j=2,jjm ! excluding poles
[1]153          zm=0.
154          tzon(j,l)=0.
155          do i=1,iim
156            tzon(j,l)=tzon(j,l)+teta(i,j,l)*masse(i,j,l)
157            zm=zm+masse(i,j,l)
158          enddo
159          tzon(j,l)=tzon(j,l)/zm
160        enddo
[108]161       enddo
[1010]162      endif ! of if (mode_top_bound.ge.3)
[1]163
[108]164      if (mode_top_bound.ge.1) then
[1010]165       ! Apply sponge quenching on vcov:
[108]166       do l=1,llm
[1]167        do i=1,iip1
[108]168          do j=1,jjm
[1010]169            vcov(i,j,l)=vcov(i,j,l)
170     &                  -rdamp(l)*(vcov(i,j,l)-vzon(j,l))
[108]171          enddo
172        enddo
173       enddo
174
[1010]175       ! Apply sponge quenching on ucov:
[108]176       do l=1,llm
177        do i=1,iip1
[1010]178          do j=2,jjm ! excluding poles
179            ducov(i,j,l)=-rdamp(l)*(ucov(i,j,l)-cu(i,j)*uzon(j,l))
180            ucov(i,j,l)=ucov(i,j,l)
181     &                  +ducov(i,j,l)
[1]182          enddo
183        enddo
[108]184       enddo
[1010]185      endif ! of if (mode_top_bound.ge.1)
[108]186
187      if (mode_top_bound.ge.3) then
[1010]188       ! Apply sponge quenching on teta:
[108]189       do l=1,llm
190        do i=1,iip1
[1010]191          do j=2,jjm ! excluding poles
192            teta(i,j,l)=teta(i,j,l)
193     &                  -rdamp(l)*(teta(i,j,l)-tzon(j,l))
[108]194          enddo
195        enddo
196       enddo
[1010]197      endif ! of if (mode_top_bound.ge.3)
198   
[1]199      END
Note: See TracBrowser for help on using the repository browser.