[1] | 1 | ! |
---|
| 2 | ! $Id $ |
---|
| 3 | ! |
---|
| 4 | SUBROUTINE sw_case_williamson91_6(vcov,ucov,teta,masse,ps) |
---|
| 5 | |
---|
| 6 | c======================================================================= |
---|
| 7 | c |
---|
| 8 | c Author: Thomas Dubos original: 26/01/2010 |
---|
| 9 | c ------- |
---|
| 10 | c |
---|
| 11 | c Subject: |
---|
| 12 | c ------ |
---|
| 13 | c Realise le cas-test 6 de Williamson et al. (1991) : onde de Rossby-Haurwitz |
---|
| 14 | c |
---|
| 15 | c Method: |
---|
| 16 | c -------- |
---|
| 17 | c |
---|
| 18 | c Interface: |
---|
| 19 | c ---------- |
---|
| 20 | c |
---|
| 21 | c Input: |
---|
| 22 | c ------ |
---|
| 23 | c |
---|
| 24 | c Output: |
---|
| 25 | c ------- |
---|
| 26 | c |
---|
| 27 | c======================================================================= |
---|
[1422] | 28 | USE comvert_mod, ONLY: ap,bp,preff |
---|
| 29 | USE comconst_mod, ONLY: cpp,omeg,rad |
---|
| 30 | |
---|
[1] | 31 | IMPLICIT NONE |
---|
| 32 | c----------------------------------------------------------------------- |
---|
| 33 | c Declararations: |
---|
| 34 | c --------------- |
---|
| 35 | |
---|
| 36 | #include "dimensions.h" |
---|
| 37 | #include "paramet.h" |
---|
| 38 | #include "comgeom.h" |
---|
| 39 | #include "iniprint.h" |
---|
| 40 | |
---|
| 41 | c Arguments: |
---|
| 42 | c ---------- |
---|
| 43 | |
---|
| 44 | c variables dynamiques |
---|
| 45 | REAL vcov(ip1jm,llm),ucov(ip1jmp1,llm) ! vents covariants |
---|
| 46 | REAL teta(ip1jmp1,llm) ! temperature potentielle |
---|
| 47 | REAL ps(ip1jmp1) ! pression au sol |
---|
| 48 | REAL masse(ip1jmp1,llm) ! masse d'air |
---|
| 49 | REAL phis(ip1jmp1) ! geopotentiel au sol |
---|
| 50 | |
---|
| 51 | c Local: |
---|
| 52 | c ------ |
---|
| 53 | |
---|
| 54 | REAL p (ip1jmp1,llmp1 ) ! pression aux interfac.des couches |
---|
| 55 | REAL pks(ip1jmp1) ! exner au sol |
---|
| 56 | REAL pk(ip1jmp1,llm) ! exner au milieu des couches |
---|
| 57 | REAL pkf(ip1jmp1,llm) ! exner filt.au milieu des couches |
---|
| 58 | REAL alpha(ip1jmp1,llm),beta(ip1jmp1,llm) |
---|
| 59 | |
---|
| 60 | REAL :: sinth,costh,costh2, Ath,Bth,Cth, lon,dps |
---|
| 61 | INTEGER i,j,ij |
---|
| 62 | |
---|
| 63 | REAL, PARAMETER :: rho=1 ! masse volumique de l'air (arbitraire) |
---|
| 64 | REAL, PARAMETER :: K = 7.848e-6 ! K = \omega |
---|
| 65 | REAL, PARAMETER :: gh0 = 9.80616 * 8e3 |
---|
| 66 | INTEGER, PARAMETER :: R0=4, R1=R0+1, R2=R0+2 ! mode 4 |
---|
| 67 | c NB : rad = 6371220 dans W91 (6371229 dans LMDZ) |
---|
| 68 | c omeg = 7.292e-5 dans W91 (7.2722e-5 dans LMDZ) |
---|
| 69 | |
---|
| 70 | IF(0==0) THEN |
---|
| 71 | c Williamson et al. (1991) : onde de Rossby-Haurwitz |
---|
| 72 | teta = preff/rho/cpp |
---|
| 73 | c geopotentiel (pression de surface) |
---|
| 74 | do j=1,jjp1 |
---|
| 75 | costh2 = cos(rlatu(j))**2 |
---|
| 76 | Ath = (R0+1)*(costh2**2) + (2*R0*R0-R0-2)*costh2 - 2*R0*R0 |
---|
| 77 | Ath = .25*(K**2)*(costh2**(R0-1))*Ath |
---|
| 78 | Ath = .5*K*(2*omeg+K)*costh2 + Ath |
---|
| 79 | Bth = (R1*R1+1)-R1*R1*costh2 |
---|
| 80 | Bth = 2*(omeg+K)*K/(R1*R2) * (costh2**(R0/2))*Bth |
---|
| 81 | Cth = R1*costh2 - R2 |
---|
| 82 | Cth = .25*K*K*(costh2**R0)*Cth |
---|
| 83 | do i=1,iip1 |
---|
| 84 | ij=(j-1)*iip1+i |
---|
| 85 | lon = rlonv(i) |
---|
| 86 | dps = Ath + Bth*cos(R0*lon) + Cth*cos(2*R0*lon) |
---|
| 87 | ps(ij) = rho*(gh0 + (rad**2)*dps) |
---|
| 88 | enddo |
---|
| 89 | enddo |
---|
| 90 | write(lunout,*) 'W91 ps', MAXVAL(ps), MINVAL(ps) |
---|
| 91 | c vitesse zonale ucov |
---|
| 92 | do j=1,jjp1 |
---|
| 93 | costh = cos(rlatu(j)) |
---|
| 94 | costh2 = costh**2 |
---|
| 95 | Ath = rad*K*costh |
---|
| 96 | Bth = R0*(1-costh2)-costh2 |
---|
| 97 | Bth = rad*K*Bth*(costh**(R0-1)) |
---|
| 98 | do i=1,iip1 |
---|
| 99 | ij=(j-1)*iip1+i |
---|
| 100 | lon = rlonu(i) |
---|
| 101 | ucov(ij,1) = (Ath + Bth*cos(R0*lon)) |
---|
| 102 | enddo |
---|
| 103 | enddo |
---|
| 104 | write(lunout,*) 'W91 u', MAXVAL(ucov(:,1)), MINVAL(ucov(:,1)) |
---|
| 105 | ucov(:,1)=ucov(:,1)*cu |
---|
| 106 | c vitesse meridienne vcov |
---|
| 107 | do j=1,jjm |
---|
| 108 | sinth = sin(rlatv(j)) |
---|
| 109 | costh = cos(rlatv(j)) |
---|
| 110 | Ath = -rad*K*R0*sinth*(costh**(R0-1)) |
---|
| 111 | do i=1,iip1 |
---|
| 112 | ij=(j-1)*iip1+i |
---|
| 113 | lon = rlonv(i) |
---|
| 114 | vcov(ij,1) = Ath*sin(R0*lon) |
---|
| 115 | enddo |
---|
| 116 | enddo |
---|
| 117 | write(lunout,*) 'W91 v', MAXVAL(vcov(:,1)), MINVAL(vcov(:,1)) |
---|
| 118 | vcov(:,1)=vcov(:,1)*cv |
---|
| 119 | |
---|
| 120 | c ucov=0 |
---|
| 121 | c vcov=0 |
---|
| 122 | ELSE |
---|
| 123 | c test non-tournant, onde se propageant en latitude |
---|
| 124 | do j=1,jjp1 |
---|
| 125 | do i=1,iip1 |
---|
| 126 | ij=(j-1)*iip1+i |
---|
| 127 | ps(ij) = 1e5*(1 + .1*exp(-100*(1+sin(rlatu(j)))**2) ) |
---|
| 128 | enddo |
---|
| 129 | enddo |
---|
| 130 | |
---|
| 131 | c rho = preff/(cpp*teta) |
---|
| 132 | teta = .01*preff/cpp ! rho = 100 ; phi = ps/rho = 1e3 ; c=30 m/s = 2600 km/j = 23 degres / j |
---|
| 133 | ucov=0. |
---|
| 134 | vcov=0. |
---|
| 135 | END IF |
---|
| 136 | |
---|
| 137 | CALL pression ( ip1jmp1, ap, bp, ps, p ) |
---|
| 138 | CALL massdair(p,masse) |
---|
| 139 | |
---|
| 140 | END |
---|
| 141 | c----------------------------------------------------------------------- |
---|